MPFMCA $$\boldsymbol {f}(\boldsymbol {x}_{\mathbbm {i},k}, \boldsymbol {u}_{k,\mathbbm {i}} =0) + {{\boldsymbol {\nu }}_{\text {MPF}}}^{\dag }$$(31)[x,y,υ,ϕ]
IPF, $${{\sum }_{\text {MPF}}}$$MCA $$\boldsymbol {f}(\boldsymbol {x}_{\mathbbm {i},k}, \boldsymbol {u}_{k,\mathbbm {i}}) + {{\boldsymbol {\nu }}_{\text {MPF}}}^{\dag }$$$$\boldsymbol {u}_{k,\mathbbm {i}}={{\omega }}_{k,\mathbbm {i}}$$(31)[x,y,υ,ϕ]
IPF, $$\boldsymbol {\sum }_{\text {RF}}$$  $$\boldsymbol {f}(\boldsymbol {x}_{\mathbbm {i},k}, \boldsymbol {u}_{k,\mathbbm {i}}) + {{\boldsymbol {\nu }}_{\text {RF}}}^{\ddag }$$
RFaTThis workMCA $$\boldsymbol {f}(\boldsymbol {x}_{\mathbbm {i},k}, \boldsymbol {u}_{k,\mathbbm {i}}) + {{\boldsymbol {\nu }}_{\text {RF}}}^{\dag }$$$$\boldsymbol {u}_{k,\mathbbm {i}}={z}_{\boldsymbol {\theta }}(\boldsymbol {x}_{k,\mathbbm {i}})$$(31)[x,y,υ,ϕ]
1. $${{\sum }_{\text {MPF}}}=\text {diag}[{0.05}\ {\mathrm {m}}, {0.05}\ {\mathrm {m}}, T^{2} {0.01}\ {\mathrm {m}/\mathrm {s}}^{2}, T^{2} {0.7}\ {\text {rad}/\mathrm {s}}^{2}]$$ has been found to be the optimal covariance matrix of the zero-mean process noise for the MPF algorithm in results not reported in this work
2. $${{\sum }_{\text {RF}}}=\text {diag}[{0.02}\ {\mathrm {m}}, {0.02}\ {\mathrm {m}}, T^{2} {0.002}\ {\mathrm {m}/\mathrm {s}}^{2}, T^{2} {0.01}\ {\text {rad}/\mathrm {s}}^{2}]$$ has been found to be the optimal covariance matrix of the zero-mean process noise for the RFaT algorithm in results not reported in this work