Skip to main content

Table 3 Algorithm overview

From: Random field-aided tracking of autonomous kinetically passive wireless agents

AbbreviationProposed inMPF LATime update (TUD)Extra TUD parameters/ RF variableMotion modelState variables
MPF[16]MCA [16]\(\boldsymbol {f}(\boldsymbol {x}_{\mathbbm {i},k}, \boldsymbol {u}_{k,\mathbbm {i}} =0) + {{\boldsymbol {\nu }}_{\text {MPF}}}^{\dag }\)(31)[x,y,υ,ϕ]
IPF, \({{\sum }_{\text {MPF}}}\)[13]MCA [16]\(\boldsymbol {f}(\boldsymbol {x}_{\mathbbm {i},k}, \boldsymbol {u}_{k,\mathbbm {i}}) + {{\boldsymbol {\nu }}_{\text {MPF}}}^{\dag }\)\(\boldsymbol {u}_{k,\mathbbm {i}}={{\omega }}_{k,\mathbbm {i}}\)(31)[x,y,υ,ϕ]
IPF, \(\boldsymbol {\sum }_{\text {RF}}\)  \(\boldsymbol {f}(\boldsymbol {x}_{\mathbbm {i},k}, \boldsymbol {u}_{k,\mathbbm {i}}) + {{\boldsymbol {\nu }}_{\text {RF}}}^{\ddag }\)   
RFaTThis workMCA [16]\(\boldsymbol {f}(\boldsymbol {x}_{\mathbbm {i},k}, \boldsymbol {u}_{k,\mathbbm {i}}) + {{\boldsymbol {\nu }}_{\text {RF}}}^{\dag }\)\(\boldsymbol {u}_{k,\mathbbm {i}}={z}_{\boldsymbol {\theta }}(\boldsymbol {x}_{k,\mathbbm {i}})\)(31)[x,y,υ,ϕ]
  1. \({{\sum }_{\text {MPF}}}=\text {diag}[{0.05}\ {\mathrm {m}}, {0.05}\ {\mathrm {m}}, T^{2} {0.01}\ {\mathrm {m}/\mathrm {s}}^{2}, T^{2} {0.7}\ {\text {rad}/\mathrm {s}}^{2}]\) has been found to be the optimal covariance matrix of the zero-mean process noise for the MPF algorithm in results not reported in this work
  2. \({{\sum }_{\text {RF}}}=\text {diag}[{0.02}\ {\mathrm {m}}, {0.02}\ {\mathrm {m}}, T^{2} {0.002}\ {\mathrm {m}/\mathrm {s}}^{2}, T^{2} {0.01}\ {\text {rad}/\mathrm {s}}^{2}]\) has been found to be the optimal covariance matrix of the zero-mean process noise for the RFaT algorithm in results not reported in this work