Skip to main content

Table 2 The CA-USSD algorithm

From: Sequence set design for waveform-agile coherent radar systems

Step 1: set k=0, initialize modulation codes {x(n,m)},
n=0,1,...,N−1,m=0,1,...,M−1 using randomly generate codes;
Step 2:
for n=0:N-1
Step 2.1: calculate the matrix\(\widetilde {\mathbf {Q}}_{n}\)by Eq. (27) and (28);
Step 2.2: solve\(\overline {\mathcal {P}}_{n}\) by \(\mathbf {x}_{n}^{(t+1)} = - \widetilde {\mathbf {Q}}_{n}^{(t)} \mathbf {x}_{n}^{(t)}\);
Step 2.3:\(\widetilde {\mathbf {x}}_{n}^{(t+1)} = e^{j \text {arg}(\mathbf {x}_{n}^{(t+1)})}\).
Step 3: set k=k+1, repeat the Step (2) until a certain stop criterion,
e.g.\(\sum _{n=0}^{N-1} \sum _{m=0}^{M-1} \| x(n,m)^{(k+1)} -x(n,m)^{(k)} \|^{2} \leq \epsilon \),
where ε is a predefined value.