# Table 2 An iterative calculation of $$IR_{i}^{(k)}(X_{i},{\mathcal {M}}^{*})$$ for a signal Xi of Table 1

i$$\dots$$− 3− 2− 10123$$\dots$$
$$\text {Ave}_{i+\ell }^{\tau _{0}}(X_{i})$$=−1$$\dots$$− 1− 1− 1$$-\tfrac {1}{3}$$$$\tfrac {1}{3}$$11$$\dots$$
=0$$\dots$$− 1− 1$$-\tfrac {1}{3}$$$$\tfrac {1}{3}$$111$$\dots$$
=1$$\dots$$− 1$$-\tfrac {1}{3}$$$$\tfrac {1}{3}$$1111$$\dots$$
$$IR_{i}^{(1)}(X_{i},{\mathcal {M}}^{*})=\text {median}\left (\text {Ave}_{i+\ell }^{\tau _{0}}(X_{i})\right)$$$$\dots$$− 1− 1$$-\tfrac {1}{3}$$$$\tfrac {1}{3}$$111$$\dots$$
$$X_{i} - IR_{i}^{(1)}(X_{i},{\mathcal {M}}^{*})$$$$\dots$$h−3h−2$$h_{-1}- \tfrac {2}{3}$$$$h_{0}+\tfrac {2}{3}$$h1h2h3$$\dots$$
$$\text {Ave}_{i+\ell }^{\tau _{0}}(X_{i} - IR_{i}^{(1)}(X_{i},{\mathcal {M}}^{*})$$=−1$$\dots$$00$$-\tfrac {2}{9}$$00$$\tfrac {2}{9}$$0$$\dots$$
=0$$\dots$$0$$-\tfrac {2}{9}$$00$$\tfrac {2}{9}$$00$$\dots$$
=1$$\dots$$$$-\tfrac {2}{9}$$00$$\tfrac {2}{9}$$000$$\dots$$
$${\mathcal {M}}^{*}(X_{i} - IR_{i}^{(1)}(X_{i},{\mathcal {M}}^{*})$$$$\dots$$0000000$$\dots$$
$$IR_{i}^{(2)}(X_{i},{\mathcal {M}}^{*})$$$$\dots$$− 1− 1$$-\tfrac {1}{3}$$$$\tfrac {1}{3}$$111$$\dots$$
$$IR_{i}^{(3)}(X_{i},{\mathcal {M}}^{*})$$$$\dots$$− 1− 1$$-\tfrac {1}{3}$$$$\tfrac {1}{3}$$111$$\dots$$

$$IR_{i}(X_{i},{\mathcal {M}}^{*})$$$$\dots$$− 1− 1$$-\tfrac {1}{3}$$$$\tfrac {1}{3}$$111$$\dots$$