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gorithm compared to previous approximations.
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1. INTRODUCTION

Blind source separation (BSS) refers to the problem of re-
covering signals from several observed linear mixtures [1].
In this paper we deal with the convolutive mixing case as
encountered, for example, in acoustic environments. There-
fore, we are interested in finding a corresponding demixing
system, where the output signals yq(n), q = 1, . . . ,P, are de-
scribed by

yq(n) =
P∑

p=1

L−1∑

κ=0
wpq,κxp(n− κ), (1)

and where wpq,κ, κ = 0, . . . ,L− 1, denote the current weights
of the MIMO filter taps from the pth sensor channel xp(n)
to the qth output channel. In this paper the number of active
source signals Q is less than or equal to the number of mi-
crophones P. BSS algorithms are solely based on the funda-
mental assumption of mutual statistical independence of the
different source signals. The separation is achieved by forcing
the output signals yq to be mutually statistically decoupled
up to joint moments of a certain order.

In [2] a generic framework called TRINICON (Triple-
N ICA for convolutive mixtures) has been introduced
for multichannel blind signal processing, such as BSS or

dereverberation based on multichannel blind deconvolution
(MCBD). In [3, 4] we have also shown that based on this
framework many seemingly different BSS algorithms can be
treated in a unified way. Apart from these existing BSS algo-
rithms, also several novel broadband convolutive BSS algo-
rithms for both the time and frequency domains have been
derived. In this paper we exemplarily use a second-order
BSS algorithm resulting from the broadband time-domain
derivation in [3, 4]. This yields an algorithm which possesses
an inherent normalization of the coefficient update leading
to fast convergence also for colored signals such as speech.
However, for realistic acoustic environments large correla-
tion matrices have to be inverted for every output channel.
An approximation of this matrix by a diagonal matrix led to
a very efficient algorithm which allows real-time implemen-
tation using a block-online update structure [5]. In Section 2
the generic broadband algorithm combined with the block-
online update is briefly summarized. In Section 3 a novel
normalization strategy is presented which is obtained by the
application of the Szegö theorem and constitutes a better ap-
proximation of the inverse autocorrelation matrix. In gen-
eral, the Szegö theorem relates the eigenvalues of circulant
and Toeplitz matrices which can here be interpreted as the
relation between broadband and narrowband signal mod-
els. The novel normalization leads to an algorithm where the
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main parts of the algorithm are still implemented in a broad-
band manner and thus avoid the internal permutation prob-
lem and circularity effects as experienced in purely narrow-
band BSS algorithms. Due to the selective application of the
Szegö theorem only the normalization is implemented using
the narrowband approximation which leads to a computa-
tionally efficient algorithm as the matrix inverse can be re-
placed by a scalar inversion in each frequency bin. Another
important aspect for robust implementations is the regular-
ization of the possibly ill-conditioned correlation matrices
prior to inversion. This issue is discussed in Section 4 and
a novel regularization strategy is presented for the generic
broadband algorithm. An analogous regularization method
is then derived for the proposed algorithm. Finally, experi-
mental results show the improved performance of the new
algorithm.

2. GENERIC BROADBAND ALGORITHM

2.1. Cost function and block-online update

A block processing broadband algorithm simultaneously ex-
ploiting nonwhiteness and nonstationarity of the source sig-
nals is derived from the following matrix formulation [3].
First, we introduce a block output signal matrix

Yq(m) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yq(mL) · · · yq(mL−D + 1)

yq(mL + 1)
. . . yq(mL−D + 2)

...
. . .

...

yq(mL +N − 1) · · · yq(mL−D +N)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

and reformulate the convolution (1) as

Yq(m) =
P∑

p=1
Xp(m)Wpq, (3)

withm being the block time index and N denoting the block
length. TheN×DmatrixYq(m) incorporatesD time lags into
the correlation matrices in the cost function, as is necessary
for the exploitation of the nonwhiteness property. To ensure
linear convolutions for all elements of Yq(m), theN×2Lma-
trices Xp(m) and 2L×D matricesWpq are given as

Xp(m) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xp(mL) · · · xp(mL− 2L + 1)

xp(mL + 1)
. . . xp(mL− 2L + 2)

...
. . .

...

xp(mL +N − 1) · · · xp(mL− 2L +N)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(4)

Wpq(m) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wpq,0 0 · · · 0

wpq,1 wpq,0
. . .

...
... wpq,1

. . . 0

wpq,L−1
...

. . . wpq,0

0 wpq,L−1
. . . wpq,1

...
. . .

...
0 · · · 0 wpq,L−1
0 · · · 0 0
... · · · ...

...
0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5)

where the matrices Xp(m), p = 1, . . . ,P, in (3) are Toeplitz
matrices due to the shift of subsequent rows by one sample
each. The matrices Wpq exhibit a Sylvester structure which
is a special form of a Toeplitz matrix, where each column is
shifted by one sample containing the current weights wpq =
[wpq,0,wpq,1, . . . ,wpq,L−1]T of the MIMO sub-filter of length
L from the pth sensor channel to the qth output channel.
Superscript T denotes transposition of a vector or a matrix.
It can be seen that for the general case 1 ≤ D ≤ L the last
L − D + 1 rows are padded with zeros to ensure compatibil-
ity with Xp. To allow a convenient notation of the algorithm
combining all channels, we write (3) for all channels simul-
taneously as

Y(m) = X(m)W, (6)

with the matrices

Y(m) = [Y1(m), . . . ,YP(m)
]
,

X(m) = [X1(m), . . . ,XP(m)
]
,

W =

⎡
⎢⎢⎣

W11 · · · W1P
...

. . .
...

WP1 · · · WPP

⎤
⎥⎥⎦ .

(7)

The definition of Yq in (2) leads to the short-time corre-
lation matrix Ryy(m) = YH(m)Y(m) of size PD × PD which
is composed of channelwise D × D submatrices Rypyq(m) =
YH
p (m)Yq(m) each containing D time lags. Here ·H denotes

conjugate transposition. In [3] a cost function based on these
correlation matrices has been presented which inherently
includes all D time lags of all autocorrelations and cross-
correlations of the BSS output signals

J(m,W) =
∞∑

i=0
β(i,m)

{
log det bdiagRyy(i)− log detRyy(i)

}
,

(8)

where bdiagRyy creates a PD × PD block-diagonal matrix
with the channelwise D × D submatrices Ryqyq , q = 1, . . . ,P,
on the main diagonal and zeros elsewhere. The variable β de-
notes a weighting function with finite support that is normal-
ized according to

∑m
i=0 β(i,m) = 1 allowing offline, online, or

block-online realizations of the algorithm. The concept of a
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general weighting function is already well known from su-
pervised adaptive filtering [6]. There it was shown that, for
example, the weighting function

∑∞
i=0 β(i,m) = ∑m

i=0(1 −
λ)λm−i leads to a recursive online algorithm. The parameter
λ denotes the exponential forgetting factor (0 < λ < 1) and i
is the summation index of all blocks up to the current block
m. The cost function becomes zero if and only if Rypyq , p �= q,
that is, all output cross-correlations over all time lags become
zero. Thus, (8) explicitly exploits the nonwhiteness property
of the output signals.

In [3] a coefficient update based on (8) was derived and
in [5] a block-online update rule was derived for the coeffi-
cient update by specifying β(i,m) such that it leads to a com-
bination of an online update and an offline update. In the
block-online update scheme the offline part is calculated iter-
atively for the current blockm containing KN samples as

W̃ j(m) = W̃ j−1(m)− μQ̃
(
m, W̃ j−1(m)

)
, (9)

Q̃
(
m, W̃ j−1(m)

) = 1
K

mK+K−1∑

i=mK

Q
(
i, W̃ j−1(m)

)
, (10)

where j = 1, . . . , jmax denotes the current iteration, μ is the
stepsize, and W̃ j(m) is the demixing filter matrix after j itera-
tions based on data of themth block. Equation (10) performs
a simultaneous optimization for K blocks of length N which
allows to exploit the nonstationarity of the source signals as
for each block the source statistics change and thus new con-
ditions are generated. Thus, (10) contains K update terms
Q(i, W̃ j−1(m)) which are determined as the natural gradient
of the cost function (8) [3]

Q(i,W) =W
{
Ryy(i)− bdiagRyy(i)

}
bdiag−1 Ryy(i). (11)

A high number of offline iterations jmax allows a fast con-
vergence without introducing an additional algorithmic de-
lay but at the cost of an increased computational complexity.
The demixing filter matrix W̃ jmax (m) of the current block m
which is obtained from the offline part after jmax iterations
is then used as input to the online part of the block-online
algorithm which is written recursively as

W(m) = λW(m− 1) + (1− λ)W̃ jmax (m), (12)

with the forgetting factor λ. This yields the final demixing
filter matrixW(m) of the current blockm containing the fil-
ter weights wpq(m) used for separation. The demixing filter
weights wpq(m) of the current block are then used as ini-
tial values for the offline algorithm (9) of the next block. An
overview of the block-online update procedure can also be
found in the pseudocode given in Table 1.

It should be pointed out that the natural gradient (11)
obtained from the cost function (8) can similarly be derived
using the Kullback-Leibler divergence based on multivariate
probability density functions [4]. The second-order BSS al-
gorithm is then obtained by using the multivariate Gaussian
probability density function.

Table 1: Pseudocode of the block-online algorithm with improved
normalization according to Section 3.3 exemplarily shown for the
update Δw11(m) in the 2× 2 case.

Online part

(1) Get KL +N new samples xp(mKL), . . . ,

xp((m + 1)KL +N − 1) of the sensors xp, p = 1, 2, and

online block indexm = 0, 1, 2, . . . .

Offline part

Compute for each iteration j = 1, . . . , jmax

(2) Compute output signals yq(mKL), . . . ,

yq((m + 1)KL +N − L− 1), q = 1, 2 by convolving xp
with filter weights w̃

j−1
pq (m) from previous iteration.

(3) Generate K blocks of N samples [yq(iL), . . . ,

yq(iL +N − 1)] with offline block index,

i = mK , . . . ,mK + K − 1, to exploit nonstationarity.

Compute for each block i = mK , . . . ,mK + K − 1

(4) Compute cross-correlation matrix Ry2y1 (i) by

ry2 y1 (i,u) for u = −L + 1, . . . ,L− 1 according

to (14).

(5) Calculate the values on the diagonal of Ỹ1 by computing

the DFT of length R of the ith output signal block of

length N of Step (3).

(6) Calculate the signal energy of each block i

σ2
y1 (i) = ry1 y1 (i, 0) =

∑iL+N−1
n=iL y21(n).

(7) Calculate Ỹ
H

1 Ỹ1 in (33) by scalar multiplication in

each frequency bin and perform narrowband regulari-

zation according to (33) by using the signal energy σ2
y1

Sy1y1 (i) = ρỸ
H

1 (i)Ỹ1(i) + (1− ρ)σ2
y1 (i)I.

(8) Perform scalar inversion of the frequency-domain values

on the main diagonal of Sy1y1 (i) as given in (26) and

apply the inverse DFT to the resulting vector to obtain

the first column of the circulant matrix C−1
Ỹ1Ỹ1

(i).

(9) In (27) the circulant matrix C−1
Ỹ1Ỹ1

(i) is constrained to

yield the approximation of the inverse of the Toeplitz

matrix R−1y1y1 (i). Matrix R−1y1y1 (i) can be generated

by picking the first L and last L− 1 values of the

resulting vector from Step (8).

(10) Compute the matrix product Ry2y1 (i)R
−1
y1y1 (i)

in (11) by fast convolution techniques exploiting

the Toeplitz structure of both matrices. The result Ay2y1 (i)

of the matrix product may be approximated due to

complexity reasons by calculating only the entries

[a(i, 0), . . . , a(i,−L + 1)] in the first column and the

entries [a(i, 0), . . . , a(i,L− 1)] in the first row and

generate a Toeplitz structure from these values.

(11) Compute the matrix product W̃
j−1
12 (m)Ay2y1 (i) as

a convolution using Sylvester constraint SCR. Each filter

weight update Δw̃
j
11,κ, κ = 0, . . . ,L− 1, is thus

calculated as

Q̃(m, W̃
j−1
11 (m)) = 1

K

∑
i

∑L−1
n=0 w̃

j−1
12,n(m)a(i,n− κ).
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Table 1: Continued.

(12) Update equation for the offline part (note that also an

adaptive stepsize according to [5] can be applied):

W̃
j
11(m) = W̃

j−1
11 (m)− μQ̃(m, W̃

j−1
11 (m)).

Online part

(13) Compute the recursive update of the online part

yielding the demixing filterW11(m) used for separation:

W11(m) = λW11(m− 1) + (1− λ)W̃
jmax
11 (m).

(14) Compute Steps (4)–(13) analogously for the other channels

and use the demixing filterWpq(m) as initial filter for

the offline part W̃0
pq(m + 1) =Wpq(m).

2.2. Estimation of the correlationmatrices
and Sylvester constraint SC

In principle, there are two basic methods for the block-
based estimation of the short-time output correlation matri-
cesRypyq(i) for nonstationary signals: the so-called covariance
method and the correlation method, as they are known from
linear prediction problems [7].1 In [3] the more accurate co-
variance method was introduced by the definition Rypyq(i) =
YH
p (i)Yq(i). In [5] the computationally less complex corre-

lation method was used which is obtained by assuming sta-
tionarity within each block i. This leads to a Toeplitz structure
of the D ×D matrix Rypyq(i) which can be expressed as

Rypyq(i) =

⎡
⎢⎢⎢⎢⎢⎢⎣

ryp yq(i, 0) · · · ryp yq(i,D − 1)

ryp yq(i,−1)
. . . ryp yq(i,D − 2)

...
. . .

...

ryp yq(i,−D + 1) · · · ryp yq(i, 0)

⎤
⎥⎥⎥⎥⎥⎥⎦
, (13)

ryp yq(i,u) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

iL+N−u−1∑

n=iL
yp(n + u)yq(n) for u ≥ 0,

iL+N−1∑

n=iL−u
yp(n + u)yq(n) for u < 0.

(14)

Using the correlation method, the Toeplitz matrix Rypyq can
also be written as a matrix product

Rypyq(i) = ỸH
p (i)Ỹq(i), (15)

where Ỹp denotes (N +D)× D matrix exhibiting a Sylvester
structure as shown for the coefficient matrix in (5). The
first column vector of Ỹp(i) contains the output signal val-
ues yq(iL), . . . , yq(iL+N −1) analogously to the first column
vector of (2). In contrast to the covariance method using the
matrix defined in (2) now additionally D zeros are appended
to the output signal values. For each subsequent column this
vector is shifted by one sample as shown in (5).

1 It should be emphasized that the terms covariance method and correlation
method are not based upon the standard usage of the covariance function
as the correlation function with the means removed.

In [3] the coefficient update was derived by taking the
derivative with respect to the Sylvester matrix W. There, it
was shown that the Sylvester structure of the update Q in
(11) has to be ensured by a Sylvester constraint (SC). In
[5, 8] two efficient versions have been discussed. They al-
low to implement the matrix multiplication of W with the
remaining Toeplitz matrix in (11) as a fast convolution re-
ducing the complexity from O(L3) to O(log(L)). A detailed
analysis of the computational complexity of the algorithm
(9)–(12) can be found in [5]. In the present paper we ap-
ply the row Sylvester constraint SCR which calculates only
the Lth row of the updateQ and then replicates the elements
to obtain the Sylvester structure of W. A detailed discussion
of the Sylvester constraints can be found in [8].

3. NORMALIZATION STRATEGIES

The update of the generic algorithm given by (11) exhibits
an inherent normalization by the inverse of a block-diagonal
matrix. This is an advantage compared to algorithms based
on Frobenius norm cost functions as, for example, [9] where
heuristic normalizations have to be introduced. Moreover,
(11) allows for several normalization strategies by applying
certain approximations as shown in the following.

3.1. Exact normalization based onmatrix inverse

When using the correlation method, the D ×D Toeplitz ma-
trices Ryqyq , q = 1, . . . ,P, given by (15), have to be inverted in
(11). This is similar to the matrix inversion occurring in the
recursive least-squares (RLS) algorithm in supervised adap-
tive filtering [6]. The complexity of a Toeplitz matrix inver-
sion is O(D2). For realistic acoustic environments large val-
ues for D (e.g., 1024) are required which are prohibitive for
a real-time implementation of the exact normalization on
most current hardware platforms.

3.2. Normalization based on diagonalmatrices
in the time domain

In [5] an approximation of the matrix inverse has been used
to obtain an efficient algorithm suitable for real-time imple-
mentations. There, the off-diagonals of the autocorrelation
submatrices have been neglected, so that for the correlation
method it can be approximated by a diagonal matrix with the
output signal powers, that is,

Ryqyq(i) ≈ diag
{
Ryqyq(i)

} = σ2yq(i)I (16)

for q = 1, . . . ,P, where the diag operator applied to a matrix
sets all off-diagonal elements to zero. Thus, the matrix in-
version is replaced by an element-wise division. This is com-
parable to the normalization in the well-known normalized
least mean squares (NLMS) algorithm in supervised adaptive
filtering approximating the RLS algorithm [6].
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3.3. Novel approximation of exact normalization
based on the Szegö theorem

The broadband algorithm given by (9)–(12) can also be for-
mulated equivalently in the frequency domain as has been
presented in [3]. Additionally it has been shown that by cer-
tain approximations to this frequency-domain formulation a
purely narrowband version of the broadband algorithm can
be obtained. In this section we will derive a novel algorithm
combining broadband and narrowband techniques by us-
ing two steps. First, the exact normalization is formulated
equivalently in the frequency domain (Section 3.3.1). In a
second step the Szegö theorem is applied to the normaliza-
tion to obtain an efficient version of the exact normalization
(Section 3.3.2). The Szegö theorem allows a selective intro-
duction of narrowband approximations to specific parts of
the algorithm. This approach allows to combine both the ad-
vantages of the broadband algorithm (e.g., avoiding internal
permutation ambiguity and circularity problem) and the low
complexity of a narrowband approach.

3.3.1. Exact normalization expressed in
the frequency domain

In [10] it was shown that any Toeplitz matrix can be ex-
pressed equivalently in the frequency domain by first gen-
erating a circulant matrix by proper extension of the Toeplitz
matrix. Then the circulant matrix is diagonalized by using
the discrete Fourier transform (DFT) matrix FR of size R×R
where R ≥ N + D denotes the transformation length. These
two steps are given for the Toeplitz output signal matrix Ỹq

as

Ỹq =W01N+D
N+D×RCỸq

W1D0
R×D (17)

=W01N+D
N+D×RF

−1
R ỸqFRW

1D0
R×D, (18)

where CỸq
is a R×R circulant matrix and the window matri-

ces are given as

W01N+D
N+D×R =

[
0N+D×R−N−D, IN+D×N+D

]
,

W1D0
R×D =

[
ID×D, 0R−D×D

]
.

(19)

Here the convention is used that the lower index of a matrix
denotes its dimensions and the upper index describes the po-
sitions of ones and zeros. The size of the unity submatrices is
indicated in subscript (e.g., “01D”). The matrix Ỹq exhibits a
diagonal structure containing the eigenvalues of the circulant
matrix CỸq

on the main diagonal. The eigenvalues are calcu-

lated by the DFT of the first column of CỸq
and thus Ỹq can

be interpreted as the frequency-domain counterpart of Ỹq:

Ỹq

= Diag
{
FR
[
0, . . . , 0, yq(iL), . . . , yq(iL+N − 1), 0, . . . , 0

]T}
.

(20)

Sylvester matrix Ỹq

of size N +D �D

Constrained

byW01N+D
N+D�R

N +D

0
0

0

0

R

R

D = L

Constrained

byW1D0
R�D

Figure 1: Illustration of (17) showing the relation between circu-
lant matrix CỸq and Toeplitz matrix Ỹq.

The operator Diag{a} denotes a square matrix with the ele-
ments of vector a on its main diagonal. An illustration of the
circulant matrix CỸq

and the window matrices, which con-

strain the circular matrix to the original matrix Ỹq, is given
in Figure 1. With (18) we can now write Rypyq as

Rypyq =W1D0
D×RF

−1
R Ỹ

H

p FRW
01N+D
R×N+D

·W01N+D
N+D×RF

−1
R ỸqFRW

1D0
R×D.

(21)

It can be seen in the upper left corner of the illustration in
Figure 1 that by extending the window matrix W01N+D

N+D×R to
W01R

R×R = IR×R only rows of zeros are introduced at the be-
ginning of the matrix Ỹq, that is, (17) is now of the form

[
0R−N−D×D

Ỹq

]
= CỸq

W1D0
R×D. (22)

These appended rows of zeros have no effect on the calcula-
tion of the correlation matrix Rypyq and thus we can replace
the multiplication of the window matrices in (21) by

W01R
R×RW

01R
R×R = IR×R. (23)

This leads to

Rypyq =W1D0
D×RF

−1
R Ỹ

H

p ỸqFRW
1D0
R×D (24)

=W1D0
D×RCỸpỸq

W1D0
R×D. (25)

The correlation matrix in (24) is an equivalent expression to
(15) in the frequency domain. Thus, the normalization based
on the inversion of (24) or (25) for p = q = 1, . . . ,P still
corresponds to the exact normalization based on the matrix
inverse of a Toeplitz matrix as described in Section 3.1. In the
following it is shown how the inverse of (25) can be approx-
imated to obtain an efficient implementation.
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3.3.2. Application of the Szegö theorem

In the tutorial paper [10] the Szegö theorem is formulated
and proven for finite-order Toeplitz matrices. A finite-order
Toeplitz matrix is defined as an R× R Toeplitz matrix where
a finite D exists such that all elements of the matrix with the
row or column index greater than D are equal to zero. It was
shown in [10] that the R × R Toeplitz matrix of order D is
asymptotically equivalent to the R× R circulant matrix gen-
erated from an appropriately complemented D × D Toeplitz
matrix. If the two matrices are also of Hermitian structure,
then the Szegö theorem on the asymptotic eigenvalue distri-
bution states the following.

(1) The eigenvalues of both matrices lie between a lower
bound and an upper bound.

(2) The arithmeticmeans of the eigenvalues of bothmatri-
ces are equal if the size R of both matrices approaches
infinity.

Then, the eigenvalues of both matrices are said to be asymp-
totically equally distributed.

It can be seen in (25) that the autocorrelationmatrix nec-
essary for the normalization can be expressed as a D × D
Toeplitz matrix Ryqyq or an R×R circulant matrix CỸqỸq

gen-
erated from the Toeplitz matrix by extending it appropriately
and multiplying it with some windowmatrices. According to
[10] both matrices are asymptotically equivalent. As both the
Toeplitz and the circulant matrices are Hermitian, it is pos-
sible to apply the Szegö theorem. The eigenvalues of CỸqỸq

are given in (24) as the elements on the main diagonal of

the diagonal matrix Ỹ
H

q Ỹq. The Szegö theorem states that the
eigenvalues of the R × R Toeplitz matrix generated by ap-
pending zeros to Ryqyq can be asymptotically approximated

by Ỹ
H

q Ỹq for R → ∞. The benefit of this approximation be-
comes clear if we take a look at the inverse of a circulant ma-
trix. The inverse of a circulant matrix can be easily calculated
by inverting its eigenvalues

C−1
ỸqỸq

= F−1R
(
Ỹ
H

q Ỹq

)−1
FR. (26)

By using the Szegö theorem we can now approximate the in-
verse of the Toeplitz matrix Ryqyq by the inverse of the circu-
lant matrix (26) for R→∞,

R−1yqyq ≈W1D0
D×RF

−1
R

(
Ỹ
H

q Ỹq

)−1
FRW

1D0
R×D. (27)

This can also be denoted as narrowband approximation be-

cause the eigenvalues Ỹ
H

q Ỹq can easily be determined as the
DFT of the first column of the circulant matrix CỸqỸq

. The
inverse in (27) can now be efficiently implemented as a scalar

inversion because Ỹ
H

q Ỹq denotes a diagonal matrix. More-
over, it is important to note that the inverse of a circulant
matrix is also circulant. Thus, after the windowing by W1D0···
the resulting matrix R−1yqyq exhibits again a Toeplitz structure.

The error which is introduced by the narrowband ap-
proximation has been examined in [11] for the case of sta-
tionary random processes. The error has been measured as

the difference between the exact inversion of the Toeplitz ma-
trix given in (24) and the approximated inverse given in (27).
The results obtained in [11] show that for R � D the nar-
rowband approximation is well justified.

In summary, (27) can be efficiently implemented as a
DFT of the first column of CỸqỸq

followed by a scalar in-
version of the frequency-domain values and then applying
the inverse DFT. After the windowing operation these val-
ues are then replicated to generate the Toeplitz structure of
R−1yqyq . This approach reduces the complexity from O(D2) to
O(R logR) (e.g., experiments in Section 5: D = L, R = 4L).
Obtaining a Toeplitz matrix after the inversion has the ad-
vantage that in the update equation (11) again a product of
Toeplitz matrices has to be calculated which can be efficiently
implemented using fast convolutions. For more details see
[5].

4. REGULARIZATION OF THEMATRIX INVERSE

Prior to the inversion of the autocorrelation Toeplitzmatrices
according to (15) a regularization is necessary as these matri-
ces may be ill-conditioned. Here we propose to attenuate the
off-diagonals of Ryqyq by multiplying them with the factor ρ:

R̆yqyq = ρRyqyq + (1− ρ) diag
{
Ryqyq

}

= ρRyqyq + (1− ρ)σ2yq I.
(28)

The attenuation factor ρ has to be within the range 0 ≤ ρ ≤ 1.
Using this regularization, the algorithm performs also well
even if there is just one active source. It should be noted that
for ρ = 0 the previous approximation of the normalization
in [5] and Section 3.2 can be seen as a special case of the
regularized version of the novel normalization presented in
Section 3.3.

The selective narrowband approximation of Section 3.3
leads to an inversion of circulant matrices CỸpỸq

instead of
Toeplitz matrices Ryqyq . Thus, analogously to (28) it is desir-
able for the proposed algorithm to also regularizeCỸpỸq

prior
to inversion:

C̆ỸqỸq
= ρCỸqỸq

+ (1− ρ)diag
{
CỸqỸq

}
. (29)

In Section 3.3 it was pointed out that every circulant matrix
can be expressed using the DFT, inverse DFT matrix, and a
diagonal matrix

CỸqỸq
= F−1R Ỹ

H

q ỸqFR. (30)

The diagonal matrix Ỹ
H

q Ỹq contains the DFT transformed el-
ements of the first column of the circulant matrix on its di-
agonal. Thus, by applying the diag operator on CỸqỸq

we can
write

diag
{
CỸqỸq

} = ryq yq(0) · I = σ2yq · I
= F−1R σ2yq · I · FR.

(31)
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Thus, (29) can be simplified to a narrowband regularization
in each frequency bin as

C̆ỸpỸq
= ρF−1R Ỹ

H

q ỸqFR + (1− ρ)σ2yq I (32)

= F−1R
(
ρỸ

H

q Ỹq + (1− ρ)σ2yq I
)
FR. (33)

Note that the second term in (32) is equivalent to the sec-
ond term in (28). This time-frequency equivalence can be
explained by the Parseval theorem. It should be noted that
the regularization in (32) can also be applied to purely nar-
rowband algorithms (e.g., [3, Section IV-C]). There, consid-
erable separation performance improvements compared to a
regularization by adding a constant have been observed too.

A pseudocode of the efficient implementation of the pro-
posed algorithm based on (9)–(12) together with the novel
normalization presented in Section 3.3 and the new regu-
larization in Section 4 is given in Table 1. There, the imple-
mentation is exemplarily shown for the update Δw11(m) for
P = 2,D = L and application of the Sylvester constraint SCR.

5. EXPERIMENTS

The experiments were conducted using speech data con-
volved with measured impulse responses of speakers in two
different environments: (a) in a real room (580 cm × 590 cm
× 310 cm) with reverberation time T60 = 250ms at±45◦ and
2m distance of the sources to the array, and (b) impulse re-
sponses of a driver and codriver in a car (T60 = 50ms) with
the array mounted to the rear mirror. In the car scenario also
recorded background noise with 0 dB SNR was added. The
sampling frequency was fs = 16 kHz. A two-element micro-
phone array with an interelement spacing of 20 cm was used
for both recordings. The demixing filter length L was cho-
sen to 1024 taps, the block length N = 2L, and the number
of time lags considered in the correlation matrices was set to
D = L. The frameshift was L samples, K = 8 blocks have
been used to exploit nonstationarity, and jmax = 5 iterations
have been used as number of iterations for the offline up-
date. The adaptive stepsize proposed in [5] has been used
with the minimum and maximum values μmin = 0.0001,
μmax = 0.01, respectively, and the forgetting factor λ = 0.2.
The factor ρ for the novel regularization has been set to
ρ = 0.5. The demixing filters were initialized with a shifted
unit impulse where wqq,20 = 1 for q = 1, . . . ,P and zeros
elsewhere.

To evaluate the performance, the signal-to-interference
ratio (SIR) was calculated which is defined for the qth chan-
nel as the ratio of the signal power of the target source signal
ys,q(n) to the signal power from the crosstalk signal yc,q(n)
given by

SIRq(n) = 10 log10
Ê
{
y2s,q(n)

}

Ê
{
y2c,q(n)

} , (34)

where the estimate Ê of the expectation operator is im-
plemented as a moving average. To obtain the target and
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Figure 2: SIR results for reverberant room.

20

18

16

14

12

10

8

6

4

2

0

SI
R
(d
B
)

0 2 4 6 8 10 12 14 16 18

Time (s)

Exact normalization (Section 3.1)
Approx. normalization in the time domain (Section 3.2)
Novel hybrid algorithm (Section 3.3)

Figure 3: SIR results for car environment (0 dB car noise).

crosstalk signal component for the SIR calculation, each sig-
nal component at the microphone signals is processed indi-
vidually by the demixing system obtained by the BSS algo-
rithm. A possible external permutation, that is, if the source
signal sp(n) is obtained at a BSS output channel yq(n) with
p �= q, is corrected before the SIR calculation. In the exper-
iments the channelwise SIRq defined in (34) has been aver-
aged over both channels q = 1, 2.

In Figures 2 and 3 the results of the broadband algorithm
with the three different normalization schemes presented in
Section 3 are shown. The dashed line represents the exact
normalization by the inverse of the Toeplitz matrix which
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is estimated using the correlation method. It can be seen
that the novel normalization scheme (solid) obtained by
the narrowband approximation corresponding to the inver-
sion of a circulant matrix approximates the exact normal-
ization very well. Moreover, the novel normalization yields
improved performance compared to the time-domain ap-
proximation (dash-dotted) resulting in a normalization by
the output signal power. Sometimes the novel algorithm even
seems to slightly outperform the exact normalization. This
can be explained by the usage of an adaptive stepsize [5]
which may result in slightly different convergence speeds for
all three algorithms. It should also be noted that the fluctu-
ation of the SIR is due to the nonstationarity of the speech
signals.

6. CONCLUSION

In this paper a novel efficient normalization scheme was pre-
sented resulting in a novel algorithm combining advantages
of broadband algorithms with the efficiency of narrowband
techniques. Moreover, a regularizationmethod was proposed
leading to improved convergence behavior. Experimental re-
sults in realistic acoustic environments confirm the efficiency
of the proposed approach.
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