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Frequency-domain and time-domain processing approaches to direction-of-arrival (DOA) estimation for multiple broadband far
field signals using beamspace preprocessing structures are proposed. The technique is based on constant mainlobe response beam-
forming. A set of frequency-domain and time-domain beamformers with constant (frequency independent) mainlobe response
and controlled sidelobes is designed to cover the spatial sector of interest using optimal array pattern synthesis technique and
optimal FIR filters design technique. These techniques lead the resulting beampatterns higher mainlobe approximation accuracy
and yet lower sidelobes. For the scenario of strong out-of-sector interfering sources, our approaches can form nulls or notches in
the direction of them and yet guarantee that the mainlobe response of the beamformers is constant over the design band. Nu-
merical results show that the proposed time-domain processing DOA estimator has comparable performance with the proposed
frequency-domain processing method, and that both of them are able to resolve correlated source signals and provide better res-
olution at lower signal-to-noise ratio (SNR) and lower root-mean-square error (RMSE) of the DOA estimate compared with the
existing method. Our beamspace DOA estimators maintain good DOA estimation and spatial resolution capability in the scenario
of strong out-of-sector interfering sources.
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1. INTRODUCTION

Broadband direction-of-arrival (DOA) estimation has found
numerous applications to radar, sonar, wireless communica-
tions, and other areas. Incoherent signal-subspace methods
such as [1, 2] perform narrowband DOA estimation for each
frequency bin and then statistically combine the resulting es-
timates to form a broadband DOA estimate. However, co-
herent signal sources cannot be handled by this approach.
The coherent signal subspace (CSS) method was proposed
byWang and Kaveh [3] as an alternative method to deal with
coherent signal sources. It decomposes the broadband data
into several narrowband frequency bins and finds focusing
matrices that transform the covariance matrices of each bin
into the one corresponding to the reference frequency bin.
Conventional narrowband DOA estimation methods such as
MUSIC [4] may then be directly applied to find the direc-
tions of arrival. CSS methods have been found to exhibit bet-
ter resolution at low signal-to-noise ratio (SNR) and lower
estimate variance than incoherentmethods. However, the de-
sign of focusing matrices in the CSS method requires prelim-
inary DOA estimates in the neighborhood of the true direc-
tions of arrival.

Other broadband DOA estimation methods based on
the beamspace preprocessing are proposed in [5, 6]. The
beamspace preprocessing is performed by using frequency-
invariant beamformers (FIBs) that transform the ele-
mentspace into the beamspace. The beamforming matrices
perform the same operation as focusing matrices in the CSS
method, but without preliminary DOA estimates. In [5], Lee
constructs a beamforming matrix for each frequency bin
such that the resulting beampatterns are essentially identi-
cal for all frequencies by solving a least squares optimiza-
tion problem. However, the least squares fit is employed not
only in the mainlobe but also in the sidelobe regions, which
leads to suboptimal designs since the sidelobes only need
to be guaranteed to remain below the prescribed threshold
value. In [6], Ward et al. present a DOA estimator that per-
forms broadband focusing using time-domain processing,
in which a set of appropriately designed beam-shaping fil-
ters [7] ensure that the similar array pattern is produced for
all frequencies within the design band. The estimator need
not perform frequency decomposition. However, the FIBs
may not be achieved for arrays with arbitrary geometry and
nonuniform interelement spacing. Moreover, it is difficult to
control the mainlobe width and sidelobe level. Furthermore,
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the robustness of the beamformers designed in [5, 6] may
decrease since the beamforming weights can be very large.
We will refer to the beamspace preprocessing approaches in
[5, 6] as frequency-domain frequency-invariant beamspace
(FD-FIBS) approach and time-domain frequency-invariant
beamspace (TD-FIBS) approach, respectively.

In this paper, new broadband DOA estimation ap-
proaches are proposed by designing a set of frequency-
domain and time-domain beamformers with constant main-
lobe response over the design band to cover the spatial sector
of interest. We will refer to the beamformer with constant
mainlobe response as constant mainlobe response beamformer
(CMRB). The frequency-domain weight vector of CMRB is
designed using optimal array pattern synthesis techniques
to ensure that the resulting beampattern is constant within
the mainlobe over the design band while guarantee the side-
lobes to be below the prescribed values. For our array pattern
synthesis problems, the least squares fit process is only per-
formed within the mainlobe, which can lead to higher main-
lobe approximation accuracy. For our time-domain beam-
former, a bank of FIR filters corresponding to the input chan-
nels are designed to provide the frequency responses that ap-
proximate the frequency-domain array weights for each sen-
sor. Both the array pattern synthesis and the FIR filter de-
sign problems are formulated as the second-order cone pro-
gramming (SOCP), which can be solved efficiently using the
well-developed interior-point methods [8, 9]. The SOCP ap-
proach has been exploited in robust array interpolation [10]
and robust beamforming [11, 12]. The proposed DOA esti-
mators are able to resolve correlated source signals and can
be applicable to arrays of arbitrary geometry. For the sce-
nario of strong out-of-sector interfering sources, our esti-
mators can maintain good DOA estimation and spatial res-
olution capability by forming nulls or notches in the corre-
sponding directions and yet guarantee that the mainlobe re-
sponse of the broadband beamformer is constant over the
design band.

The paper is organized as follows. A brief review of
broadband beamspace DOA estimation is presented in
Section 2. In Section 3, the frequency-domain and time-
domain CMRBs are designed using SOCP approach. In
Section 4, the frequency-domain and time-domain process-
ing methods for beamspace DOA estimation are presented.
Section 5 presents simulation results confirming the effi-
ciency of the proposed methods, and Section 6 concludes the
paper.

2. BACKGROUND

Consider anN-element array with a known arbitrary geome-
try. Assume that D < N far field broadband sources impinge
on the array from directions Θ = [θ1, . . . , θd, . . . , θD]. The
time series received at the nth element is

xn(t) =
D∑

d=1
sd
[
t − ξn

(
θd
)]

+ vn(t), n = 1, . . . ,N , (1)

where sd(t) is the dth source signal, ξn(θd) is the propagation
delay to the nth sensor associated with the dth source, and
vn(t) is the additive white noise. With suitable data segmen-
tation and Fourier transform, the frequency response of the
N × 1 complex array data snapshot vector is given by

x
(
f j
) = A

(
Θ, f j

)
s
(
f j
)
+ v
(
f j
)
, (2)

where the argument f j denotes the dependence of the array
data on different frequency bins, s( f j) = [s1( f j), . . . , sD( f j)]T

is the D×1 source signal vector. Here (·)T denotes the trans-
pose. v( f j) is the N × 1 additive noise vector, and A(Θ, f j) =
[a(θ1, f j), . . . , a(θD, f j)] is the N × D source direction ma-
trix with a(θd, f j) = [e−i2π f j ξ1(θd), . . . , e−i2π f j ξN (θd)]T (d =
1, . . . ,D) being the array manifold vector. Here i = √−1.

In beamspace eigen-based methods, multiple beams are
formed over the spatial sector of interest by using a set
of K (D < K < N) beamforming weight vectors w jk =
[w1( f j , k), . . . ,wn( f j , k), . . . ,wN ( f j , k)]T , j = 1, . . . , J , k =
1, . . . ,K . Here wn( f j , k) is the weight of the kth beamformer
associated with the nth sensor employed at the frequency bin
f j . Assume that the pointing directions of the K beamform-
ers are Φ = [φ1, . . . ,φk, . . . ,φK ]. The received elementspace
data snapshot vectors are converted into a reduced dimen-
sion beamspace data snapshot vector via the matrix transfor-
mation

y
(
f j
) =WH

j x
(
f j
) =WH

j A
(
Θ, f j

)
s
(
f j
)
+WH

j v
(
f j
)

= B
(
Θ, f j

)
s
(
f j
)
+ vB

(
f j
)
,

(3)

where B(Θ, f j) = WH
j A(Θ, f j) and vB( f j) = WH

j v
(
f j
)
are

the beamspace DOAmatrices and noise vectors, respectively.
Here (·)H denotes the Hermitian transpose. And W j =
[w j1,w j2, . . . ,w jK ] is the N × K beamforming matrices em-
ployed at the frequency bin f j .

Assume that we apply the constant (frequency indepen-
dent) mainlobe response beamforming technique. Then the
response of the beamformer may be made approximately
constant within the mainlobe over the design band, that is,

pk
(
θ, f j

) = wH
jka
(
θ, f j

) ≈ pCMR,k(θ),

j = 1, . . . , J , k = 1, . . . ,K , θ ∈ ΘM ,
(4)

where pCMR,k(θ) is the constant mainlobe response associ-
ated with the kth beamformer, ΘM is the mainlobe angular
region, in contrast to the methods in [5, 6], where the beam-
formers are designed to ensure that the resulting beampat-
tern is constant over both the mainlobe and the sidelobe re-
gions.

Because the constant response property of the beam-
formers, the beamspace DOA matrices are approximately
constant for all frequencies, that is,

B
(
Θ, f j

) ≈ B(Θ), j = 1, . . . , J. (5)

Hence, the broadband source directions are completely char-
acterized by a single beamspace DOA matrix B(Θ).
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Assuming the source signals and the noise are uncorre-
lated, the constant mainlobe response beamspace (CMRBS)
data covariance matrix is

Ry
(
f j
) = E

{
y
(
f j
)
yH
(
f j
)}

= B(Θ)E
{
s
(
f j
)
sH
(
f j
)}
BH(Θ)

+WH
j E
{
v
(
f j
)
vH
(
f j
)}
W j

= B(Θ)Rs
(
f j
)
BH(Θ) + Rv

(
f j
)
,

(6)

whereRs( f j) = E{s( f j)sH( f j)} is theD×D source covariance
matrix, and Rv( f j) = WH

j E{v( f j)vH( f j)}W j is the K × K
CMRBS noise covariance matrix. The broadband CMRBS
data covariance matrix can be formed as

Ry =
J∑

j=1
Ry
(
f j
)

=
J∑

j=1

[
B(Θ)Rs

(
f j
)
BH(Θ)

]
+

J∑

j=1
Rv
(
f j
)

= B(Θ)

[ J∑

j=1
Rs
(
f j
)
]
BH(Θ) + Rv,

(7)

where Rv =
∑J

j=1 Rv( f j) is the broadband beamspace noise
covariance matrix.

The broadband CMRBS data covariance matrix (7) is
now in a form in which conventional eigen-based DOA es-
timators may be applied. Denote the eigen-decomposition of
matrix pencil (Ry ,Rv) as (see also [3])

RyE = ΛRvE, (8)

where Λ is the diagonal matrix of sorted eigenvalues, E =
[Es,Ev] contains the corresponding eigenvectors with Es and
Ev being the eigenvectors corresponding to the largest D
eigenvalues and to the smallest K–D eigenvalues, respec-
tively.

For the MUSIC algorithm [4], the source directions are
given by the D peak positions of the following spatial spec-
trum:

P(θ) = bH(θ)b(θ)
bH(θ)EvEHv b(θ)

, (9)

where b(θ) is the transformed steering vector in beamspace.
It is defined as b(θ) = WH( f )a(θ, f ) for some f = f j , j =
1, . . . , J .

3. DESIGN OF CONSTANTMAINLOBE
RESPONSE BEAMFORMER

Concentrate on one of the K beamformers, for example, the
kth beamformer, and omit the k symbol temporarily for con-
venience. The other beamformers can be designed by the
same procedure.

3.1. Frequency-domain beamformer

For a reference beampattern, it is preferable to employ beam-
formers exhibiting high gain within the desired spatial sec-
tor and yet uniformly low sidelobes in order to suppress un-
wanted out-of-sector interfering sources. Let f0 be the refer-
ence frequency, which need not be one of f j ( j = 1, . . . , J).
Let θs ∈ ΘS (s = 1, . . . , S) and θm ∈ ΘM (m = 1, . . . ,M) be
a chosen grid that approximates the sidelobe region ΘS, and
the mainlobe region ΘM , respectively, using a finite number
of angles. The design of reference beampattern, say pd(θ, f0),
can be stated as

min
w0

wH
0 Rnw0,

subject to pd
(
φ0, f0

) = 1,
∣∣pd

(
θs, f0

)∣∣ ≤ δ, ∀θs ∈ ΘS,

(10)

where w0 is the optimal weight vector, that is, design vari-
able, and pd(θ, f0) = wH

0 a(θ, f0), Rn is the noise covariance
matrix at the reference frequency f0 which becomes an iden-
tity matrix for the special case of spatially white noise, φ0 is
the pointing direction of the beamformer, and δ is the pre-
scribed sidelobe value.

The optimal weight vector employed at the frequency bin
f j , say w j0, can be obtained by solving the following least
squares optimization problem:

min
w j0

( M∑

m=1

∣∣pd
(
θm, fo

)− p
(
θm, f j

)∣∣2
)
, θm ∈ ΘM ,

subject to
∣∣p
(
θs, f j

)∣∣ ≤ δs, ∀θs ∈ ΘS,

‖w j0
∥∥ ≤ Δ,

(11)

where p(θ, f j) = wH
j0a(θ, f j) is the so-obtained beampattern

at the frequency bin f j , δs (s = 1, . . . , S) are the desired side-
lobe values which can be prescribed to satisfy various re-
quirements. It can even be prescribed to provide nulls or
notches to suppress strong out-of-sector interferences. The
constraint ‖w j0‖ ≤ Δ limits the white-noise gain to improve
the beamformer robustness against random errors in array
characteristics [13].

The optimization problems (10) and (11) can be formu-
lated as the SOCP problem, which can be efficiently solved
using the well-established interior point algorithms, for ex-
ample, by SeDuMi MATLAB toolbox [8]. A review of the ap-
plications of SOCP can be found in [9].

3.2. Time-domain beamformer

Time-domain broadband beamformers can be implemented
by placing a tapped delay line or FIR filter at the output of
each sensor [14–16]. Each sensor feeds an FIR filter and the
filter outputs are summed to produce the beam output time
series. In a time-domain CMRB, the sensor filters perform
the role of beam shaping and ensure that the beam shape is
constant as a function of frequency within the mainlobe.

Assume that the FIR filter associated with the nth sensor
is hn = [hn(1), . . . ,hn(l), . . . ,hn(L)]T . Here L is the length of
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Figure 1: FIR broadband beamformer structure.

the filter and hn is a real vector. Its corresponding frequency
response at frequency f j isHn( f j), and should equal approxi-
mately the array weightwn( f j) employed at frequency f j . The
key problem of the time-domain broadband beamformer is
how to design the FIR filters.

The inherent group delay (unit in taps) of an FIR filter of
length L is nearly (L − 1)/2. The group delay of the desired
FIR filter is not exactly equal to (L − 1)/2 in general, and
can be decomposed into an integer part plus a decimal part.
We assume that the needed presteering delay (unit in taps)
that aligns the desired signal arrived from φ0 (the pointing
direction of the beamformer) for channel n is ζn(φ0). The
array weight can be thus rewritten as [17]

wn
(
f j
) = e−i2π f j int[ζn(φ0)−(L−1)/2]Ts

·wn
(
f j
)
ei2π f j int[ζn(φ0)−(L−1)/2]Ts ,

(12)

where Ts is the sampling interval and int[·] denotes round
towards nearest integer. The first part of (12) can be imple-
mented by a tapped delay-line delay of τn(φ0) = int[ζn(φ0)−
(L− 1)/2] taps (when it is minus, a plus integral number can
be added for all channels), and the second part by an FIR
filter. Thus, the desired frequency response of an FIR filter
associated with the nth sensor can be expressed as

Hn,d
(
f j
) = wn

(
f j
)
ei2π f j τn(φ0)Ts ,

j = 1, 2, . . . , J , n = 1, 2, . . . ,N ,
(13)

The structure of FIR broadband beamformer with pointing
direction φ0 is shown in Figure 1.

The complex frequency response corresponding to the
impulse response hn is given by

H( f ) =
L∑

l=1
hn(l)e−i(l−1)2π f / fs = eT( f )hn, (14)

where e( f ) = [1, e−i2π f / fs , . . . , e−i(L−1)2π f / fs]T and fs is the
sampling frequency.

Let Fp be the stopband, which is discretized using a finite
number of frequencies fp ∈ FP (p = 1, 2, . . . ,P). The design
problem of FIR filter associated with the nth sensor is then

stated as

min
hn

( J∑

j=1

∣∣Hn,d
(
f j
)− eT

(
f j
)
hn
∣∣2
)
,

subject to
∣∣eT

(
fp
)
hn
∣∣ ≤ ε, ∀ fp ∈ FP ,

(15)

where ε is the prescribed stopband attenuation.
The optimization problems (15) can also be formulated

as a second-order cone programming problem. An SOCP-
based solving procedure for an FIR filter design can be found
in our earlier paper [18].

4. CONSTANTMAINLOBE RESPONSE BEAMSPACE
DOA ESTIMATION

4.1. Frequency-domain processing

The frequency-domain processing structure for DOA estima-
tion is shown in Figure 2(a). Assume we apply CMRBs to the
received array data in frequency domain. TheK-dimensional
time series of the K conjunctive beamformer outputs at the
frequency bin f j is given by

y
(
f j , q

) =WH
j x
(
f j , q

)
, (16)

where q is the snapshot index. The K × K beamspace data
covariance matrix of the K beamformer outputs at the fre-
quency bin f j can be estimated from the data vector y( f j , q)
over a finite series of snapshots q = 1, 2, . . . ,Q,

R̂y( f j) = 1
Q

Q∑

q=1

[
y
(
f j , q

)
yH
(
f j , q

)]
, (17)

The broadband beamspace data covariancematrix is then
constructed by coherently combining the sample covariance
matrices

R̂y =
J∑

j=1
R̂y
(
f j
)
. (18)

Assuming the element space noise covariance matrix,
that is, E{v( f j)vH( f j)}, is known, then the broadband
beamspace noise covariance matrix can be formed as

Rv =
J∑

j=1

[
WH

j E
{
v
(
f j
)
vH
(
f j
)}
W j
]
. (19)

In the specific case in which the noise is spatially white
and uncorrelated from sensor to sensor, the beamspace noise
covariance matrix is

Rv = σ2

J

J∑

j=1

[
WH

(
f j
)
W
(
f j
)]
, (20)

where σ2 is the noise power. If W is not unitary, then the
noise will get colored after multiplication withW.



Shefeng Yan 5

x1(t)

x2(t)

xN (t)

B
u

ff
er

B
u

ff
er

B
u

ff
er

FF
T

FF
T

FF
T

x( f1)

x( f2)

x( fJ )

x( f1)

x( f2)

x( fJ )

x( f1)

x( f2)

x( fJ )

w11

w21

wJ1

w12

w22

wJ2

w1K

w2K

wJK

y( f1)

R̂y( f1)

R̂y( f2)

R̂y( fJ )

R̂y

Rv

...

...

......

...

...

...

...

N
ar
ro
w
ba
n
d
D
O
A
es
ti
m
at
or

(e
.g
.,
M
U
SI
C
)

(a)

Delays Filters

x1(t)

x2(t)

xN (t)

y1(t)

yK (t)

∑

∑

∑

τ1(φ1) � Ts

τ2(φ1) � Ts

τN (φ1) � Ts

τ1(φ2) � Ts

τ2(φ2) � Ts

τN (φ2) � Ts

τ1(φK ) � Ts

τ2(φK ) � Ts

τN (φK ) � Ts

h11

h21

hN1

h12

h22

hN2

h1K

h2K

hNK

R̂y

Rv

...

...

...

...

...

N
ar
ro
w
ba
n
d
D
O
A
es
ti
m
at
or

(e
.g
.,
M
U
SI
C
)

(b)

Figure 2: Broadband DOA estimation using CMRBs. (a) Frequency-domain processing structure. (b) Time-domain processing structure.

4.2. Time-domain processing

The time-domain processing structure for DOA estima-
tion is shown in Figure 2(b). Let hnk = [hnk(1), . . . ,hnk(l) . . . ,
hnk(L)]T be the filter associated with the nth sensor employed
at the kth beamformer. The time series of the kth beam-
former output is given by

yk(t) =
N∑

n=1

L∑

l=1
hnk(l)xn

[
t − (l − 1)− τn(φk)

]
, (21)

where t is the time index.
The K-dimensional time series of the K conjunctive

beamformer outputs is given by

y(t) = [ ỹT1 (t), . . . , ỹTk (t), . . . , ỹTK (t)
]T
, (22)

where ỹk(t) is the discrete-time analytic signal of yk(t), which
can be obtained via a Hilbert transform. Note that since fo-
cusing is performed by a set of FIR filters in the time do-
main, it is unnecessary to perform frequency decomposition
in order to form the beamspace data covariance matrix. The
broadband beamspace data covariance matrix can be formed
from the K-dimensional beamformer outputs over a finite
time period t = 1, 2, . . . ,T .

R̂y = 1
T

T∑

t=1

[
y(t)yH(t)

]
. (23)

From (13), we see that the virtual beamforming weights
employed at frequency f associated with the nth sensor and
the kth beamformer is

ŵn( f , k) = Hnk( f )e−i2π f τn(φk)Ts , (24)

whereHnk( f ) = eT( f )hnk is the resulting frequency response
of the FIR filters associated with the nth sensor and the kth
beamformer.

The broadband beamspace noise covariance matrix can
now be formed as

Rv =
∫ fU

fL
ŴH( f )E

{
v( f )vH( f )

}
Ŵ( f )df , (25)

where

Ŵ( f ) =

⎡
⎢⎢⎢⎣

ŵ1( f , 1) · · · ŵ1( f ,K)

...
. . .

...

ŵN ( f , 1) · · · ŵN ( f ,K)

⎤
⎥⎥⎥⎦ (26)

is the virtual N × K beamforming matrix and [ fL, fU] is
the design band. The integral operation can be represented
approximately in a sum form by discretizing the frequency
band.

In the specific case in which the noise is spatially white
and uncorrelated from sensor to sensor, the broadband
beamspace noise covariance matrix is

Rv = σ2

fU − fL

∫ fU

fL
ŴH( f )Ŵ( f )df . (27)

4.3. Summary of DOA estimation algorithms

We will refer to the proposed frequency-domain and time-
domain constant mainlobe response beamspace processing
DOA estimators as the FD-CMRBS approach and the TD-
CMRBS approach, respectively.

An outline of the FD-CMRBS broadband DOA estimator
is given as follows.
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(1) DesignK reference beamformers (10) and thenK CM-
RBs (11) that cover the spatial region of interest.

(2) Calculate the broadband beamspace noise covariance
matrix Rv (19) or (20).

(3) Calculate the K-dimensional beamformer outputs at
each frequency bin (16), and estimate the broadband
beamspace data covariance matrix R̂y (18) from the
beamformer outputs over a finite snapshot period.

(4) Estimate the DOA of the sources from R̂y and Rv us-
ing a conventional narrowbandDOA estimator such as
MUSIC (9).

For the FD-CMRBS DOA estimator, the beamform-
ing matrix can be calculated offline, and the broadband
beamspace noise covariance matrix needs only to be cal-
culated once, also offline, if the noise covariance does not
change over the observation time.

An outline of the TD-CMRBS broadbandDOA estimator
is given as follows.

(1) Design K reference beamformer (10) and then K CM-
RBs (11) that cover the spatial region of interest.

(2) Calculate the desired frequency response of the FIR
filters associated with each sensor for each of the K
beamformers from frequency-domain weight vectors
(13), and then design the filters (15).

(3) Calculate the virtual beamforming weights (24) from
the FIR filters.

(4) Calculate the broadband beamspace noise covariance
matrix Rv (25) or (27).

(5) Calculate the K-dimensional time series of the K
beamformer outputs (22), and estimate the broadband
beamspace data covariance matrix R̂y (23) from the
beamformer outputs over a finite time period.

(6) Estimate the DOA of the sources from R̂y and Rv us-
ing a conventional narrowbandDOA estimator such as
MUSIC (9).

For the TD-CMRBS DOA estimator, the FIR filters can
be calculated offline, and the broadband beamspace noise co-
variance matrix can also be calculated once, also off line.

4.4. Computational complexities

The major computational demand of the broadband
beamspace DOA estimators comes from the implementation
of broadband beamformers.

For the frequency-domain implementation, we assume
the FFT length is �, which is assumed to be a power of 2. The
computation of the FFT for the data obtained from all the N
sensors requires a computational complexity ofN×�× log2 �
complex multiplications. In the weight-and-sum stage, to
form K beams, it requires a complexity ofN× J×K complex
multiplication. The overall complexity of frequency-domain
broadband beamforming for a block of � data samples is
N × � × log2 � +N × J × K complex multiplication.

If the percentage of the overlap among the input blocks
is α, the overall complexity will be (N × � × log2 � + N ×
J ×K)/(1−α) complex multiplication. If the sliding window

technique is used, in which the FFT is computed each time
a new sample enters the buffer, the complexity of frequency-
domain broadband beamforming for the � data samples will
be (N × � × log2 � +N × J ×K)× � complex multiplication.

For the time-domain implementation, the beam output
time series is produced when each new data sample arrives,
in contrast to the FFT beamformer, which requires a block
of samples to perform the FFT. Since the tap weights of the
FIR filters are real, to form K beams, the overall complex-
ity of time-domain broadband beamforming for the � data
samples is N × � × L × K real multiplication, in which the
computational complexity of a real multiplication is 4 times
less than that of a complex multiplication.

Therefore, if the parameters are chosen to be some rea-
sonable values (such as those used in Section 5), the time-
domain implementation has a higher computational com-
plexity as compared to the frequency-domain implementa-
tion without overlap, while less than that of the frequency-
domain implementation with the sliding window technique.

5. SIMULATIONS

5.1. DOA estimation for correlated sources

Consider a linear array of N = 15 uniformly spaced el-
ements, with a half-wavelength spacing at the center fre-
quency, also chosen as the reference frequency, f0 = 0.3125
(The normalized sampling frequency was 1). The normal-
ized design band [ fL, fU] = [0.25, 0.375] is decomposed
into J = 33 uniformly distributed subbands. K = 4 CM-
RBs are designed to cover the spatial sector [0◦, 22.5◦] with
respect to the broadside of the array, that is, {φk}4k=1 =
{0◦, 7.5◦, 15◦, 22.5◦}. The corresponding beampatterns at all
the 33 frequency bins are shown in Figure 3(a). The varia-
tion with frequency of the beampattern directed towards 0◦ is
shown in Figure 3(b), from which it is seen that the resulting
beampattern within the mainlobe is approximately constant
over the frequency band and the sidelobes are strictly guaran-
teed to be below −30 dB. Just as we desired, the SOCP-based
optimal array pattern synthesis approach provides small syn-
thesized errors to CMRBs.

The desired frequency response of the FIR filters associ-
ated with each sensor for each beamformer is calculated from
the array weights via (13). The desired magnitude and phase
responses within the design band associated with the 5th sen-
sor for the first beamformer is shown in Figure 3(c) (with
“·”). Assume that the length of each FIR filter is L = 64.
By solving the optimization problem (15), the magnitude
and phase responses of the resulting FIR filter are shown in
Figure 3(c). Similar results were obtained for the other FIR
filters.

The beampatterns of the time-domain FIR beamformer
are calculated at the same 33 frequency bins and shown in
Figure 3(d), from which it is seen that the mainlobe response
of the resulting beampattern is approximately constant over
the entire design band. The time-domain broadband CMRB
is implemented with satisfying beampatterns. The sidelobes
are just a little higher than that of the frequency-domain
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Figure 3: Design of the CMRBs. (a) Superposition of the beampatterns of frequency-domain CMRBs in K = 4 directions at J = 33
frequencies. (b) Variation of beampattern with frequency for the beamformer of 0◦. (c) Frequency response of the FIR filter associated with
the 5th sensor of the first beamformer. (d) Superposition of the beampatterns of time-domain CMRBs in K = 4 directions calculated at
J = 33 frequencies.

beampatterns since there exist some errors, which are very
small and acceptable, between the desired and the designed
filters.

A set of simulations was performed to compare the
performance of the proposed FD-CMRBS and TD-CMRBS
DOA estimators with the FD-FIBS DOA estimator proposed
by Lee in [5]. Signals from two correlated sources arrived
at θ1 = 8◦ and θ2 = 11◦. The first source signal is as-
sumed to be a bandpass white Gaussian process with flat
spectral density over the design band. The second source
signal is a delayed version of the first one. The delay at the
first sensor (the spatial reference point) is 10Ts. A spatially
white Gaussian bandpass noise with flat spectral density, in-
dependent of the received signals, was present at each array

element. The received data was decomposed into J = 33 fre-
quency bins using an unwindowed FFT of length � = 256.
For our frequency-domain processing approach, 30 snap-
shots were used to calculate each DOA estimate. Thus, a total
of 256×30 = 7680 data samples were used for each DOA esti-
mation. The same amount of data samples was used for each
DOA estimator. The conventional MUSIC DOA estimator is
used on the beamformer outputs for each approach.

Figure 4 shows the spatial spectra of the three broad-
band beamspace DOA estimators when the SNR is 6 dB. All
the approaches are able to resolve the correlated source sig-
nals. Our TD-CMRBS DOA estimator has comparable per-
formance with our FD-CMRBS estimator, and, as expected,
both of them outperform the FD-FIBS.



8 EURASIP Journal on Advances in Signal Processing

302520151050�5�10

Angle (deg)

�60

�50

�40

�30

�20

�10

0

M
U
SI
C
sp
at
ia
ls
pe
ct
ru
m

(d
B
)

FD-FIBS
FD-CMRBS
TD-CMRBS

Figure 4: DOA estimation result for two correlated sources using FD-FIBS, FD-CMRDS, and TD-CMRDS.
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Figure 5: Performance comparison of FD-FIBS, FD-CMRBS, and FD-CMRBS for several SNR values. (a) Comparison of the resolution
performance. (b) Comparison of the RMSEs.

The probability of resolution versus SNR for the two
sources is shown in Figure 5(a). Results are based on 100 in-
dependent trials for each SNR, using the same array data for
each approach. The signal sources are said to be resolved in a
trial if [19]

2∑

d=1

∣∣θ̂d − θd
∣∣ <

∣∣θ1 − θ2
∣∣, (28)

where θ̂d is the DOA estimate of the dth source in the trial.

The resulting sample root-mean-squared error (RMSE)
of the DOA estimate of the source at θ1 = 8◦, obtained from
100 independent trials, is shown in Figure 5(b). These re-
sults also show that the performance of TD-CMRBS is com-
parable with that of FD-CMRBS, and that our approaches
exhibit better resolution performance than that of FD-FIBS.
Also plotted in Figure 5(b) is the square root of Cramer-Rao
bound (CRB) of the source at 8◦, which is numerically calcu-
lated by the procedure given in the appendix of [3]. The RM-
SEs of our DOA estimators (FD-CMRBS and TD-CMRBS)
are seen to be very close to the square root of CRB, which
confirm the efficiency of the proposed methods.
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Figure 6: DOA estimation for the scenario of strong out-of-sector interfering source. (a) Directions of the two correlated sources and the
interfering source. (b) DOA estimation result using the beamformers with uniform sidelobes. (c) Superposition of the notch beampatterns.
(d) DOA estimation result using the notch beamformers.

5.2. Interference rejection via notch beamformers

Consider the scenario of strong out-of-sector interfering
sources. For the above linear array, the two correlated sources
arrived at 8◦ and 11◦ with SNR = 6 dB. An interfering source,
independent of the wanted sources, arrived at −54◦ with
the interference-to-noise ratio (INR) of 26 dB, as shown in
Figure 6(a).

Figure 6(b) shows the spatial spectrum of beamspace
MUSIC using the beamformers shown in Figure 3(a). It is
seen that the CMRBs with uniformly sidelobe level of−30 dB
cannot resolve the correlated sources in the scenario of strong
out-of-sector interfering sources.

The K = 4 CMRBs that cover the same spatial sector
[0◦, 22.5◦] are designed by setting a notch with the depth of
−60 dB and the width of 4◦ in the direction of the interfering
source. The resulting beampatterns are shown in Figure 6(c),

from which it is seen that the mainlobe response is constant
over the design band and the prescribed notch is formed on
each beampattern. The MUSIC DOA estimation method is
used on the K beamformer outputs. The spatial spectrum
of the frequency-domain processing approach is shown in
Figure 6(d), from which it is seen that our approach is able
to resolve correlated source signals in the scenario of strong
out-of-sector interfering sources.

6. CONCLUSION

Frequency-domain and time-domain processing approaches
to broadband beamspace coherent signal subspace DOA es-
timation using constant mainlobe response beamforming
have been proposed. Our approaches can be applicable to
arrays of arbitrary geometry. SOCP-based time-domain and
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frequency-domain broadband beamformers with constant
mainlobe response are designed. The MUSICmethod is then
applied to the beamformer outputs to perform the DOA
estimation. Computer simulations results show that our
frequency-domain and time-domain broadband beamspace
DOA estimators exhibit better resolution performance than
the existing method. Our DOA estimators maintain good
DOA estimation and spatial resolution capability in the sce-
nario of strong out-of-sector interfering sources by setting a
notch in the direction of the interfering source.
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