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We discuss the asymptotic Cramer-Rao bound (CRB) for frequency estimation in the presence of multiplicative noise. To improve
numerical stability, covariance matrix tapering is employed when the covariance matrix of the signal is singular at high SNR. It is
shown that the periodogram-based CRB is a special case of frequency domain evaluation of the CRB, employing the covariance
matrix tapering technique. Using the proposed technique, large sample frequency domain CRB is evaluated for Jake’s model. The
dependency of the large sample CRB on the Doppler frequency, signal-to-noise ratio, and data length is investigated in the paper.
Finally, an asymptotic closed form CRB for frequency estimation in the presence of multiplicative and additive colored noise is
derived. Numerical results show that the asymptotic CRB obtained in frequency domain is accurate, although its evaluation is
computationally simple.
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1. INTRODUCTION

The problem of frequency estimation from noisy signals is
of fundamental importance in a variety of applications. Al-
though the performance of frequency estimation in the pres-
ence of additive noise is rather well understood, the same can
not be stated for frequency estimation in the presence ofmul-
tiplicative noise. Recently, frequency estimation in the pres-
ence of multiplicative noise has received much attention, es-
pecially in fading multipath channels, backscatter radar sig-
nal processing, and array processing of spatial distributed
signals [1–3]. A preliminary step in the development of es-
timation algorithms in these environments is to identify the
fundamental limits of their performance. The Cramer-Rao
lower bound (CRB) is a such fundamental lower bound on
the variance of any unbiased estimate [4], and is also known
to be asymptotically achievable when the number of obser-
vations is large.

Computation of the exact CRB in the presence of mul-
tiplicative noise has been discussed in [3, 5]. However, the
exact results are usually presented in matrix form that does
not offer much insight into the estimation problem that one
is dealing with. Furthermore, it is noticed that under high
signal-to-noise ratio (SNR) conditions, the covariance ma-
trix involved in CRB evaluation tends to be singular which
makes the derivation of the exact CRB numerically unstable.

This effect is more prominent when the number of observa-
tions is large, and in certain multiplicative noise models (e.g.,
Jake’s model), the effect is quite apparent even at a low num-
ber of data samples. Similar singularity problems were also
encountered in fading channel simulation, minimum mean
square error (MMSE) multiuser detection [6, 7]. Parame-
ter estimation with singular information matrices was also
discussed in [8], and commonly the singularity is caused by
high-dimensional parameter estimation problems via the use
of matrix pseudoinverse.

In this paper, to improve numerical stability, we propose
to use covariance matrix tapering (CMT) technique when
the covariance matrix of the signal is singular. The CMT
technique was previously proposed to modify the array pat-
tern in the application of adaptive beamforming [9]. Here in
this paper, we will use CMT to resolve the problem of covari-
ance matrix singularity.

For large sample CRB evaluation and computational sim-
plicity, we also propose a DFT-based frequency domain CRB
evaluation in conjunction with the CMT technique. In this
approach, the asymptotic CRB has been derived using the pe-
riodogram of the data in frequency domain [10]. It is noted
that this technique is accurate under the condition that the
data record length is much larger than the correlation time of
the multiplicative noise. Finally, a closed form expression of
the large samples CRB for Jake’s model is given and a general
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expression for an asymptotic CRB in the presence of mul-
tiplicative noise and colored additive noise is provided. The
unified approach of the use of CMT in time domain and fre-
quency domain CRB evaluation and a general closed form
expression of the CRB for Jake’s model are the novel contri-
butions reported in the paper. The closed form expression of
the CRB in frequency domain provides direct insight to the
accuracy of frequency estimation in different fading chan-
nels. Using the expressions for CRB, in Section 4, we have
clearly shown how a channel can be characterized under dif-
ferent fading conditions.

Following is an outline of the paper. Section 2 outlines
the general signal model encountered in the communication
channels. In Section 3, the CRB in time domain in conjunc-
tion with the CMT is proposed to solve the singularity prob-
lem when the data length and SNR are large. In Section 4, a
detailed discussion on the asymptotic CRB at different fad-
ing channels is described. In Section 5, we derive the closed
form expressions for the CRB in the presence of multiplica-
tive noise and additive colored noise. Our conclusion fol-
lowed in Section 6.

2. SIGNALMODEL

Consider a general, discrete-time complex time-varying
channel in wireless communications, having a frequency off-
set between the transmitter and the receiver. The data sam-
ples at the receiver can be expressed as

x(n) = (μe jφ + a(n)
)
e jω0n + v(n), n = 0, 1, . . . ,N − 1,

(1)

where μ and φ are the amplitude and phase of the signal
propagating along the direct path. a(n) is the fading causing
multiplicative noise. ω0 is the frequency offset between the
transmitter and the receiver. v(n) is the additive noise. N is
the number of data samples. The following assumptions are
placed on the signal model.

(1) a(n) is a stationary complex Gaussian process which
is circular symmetric with zero mean and variance σ2a .
(As noted in [11], circularity is an important property
in realistic channels.) Its normalized autocorrelation
function is defined as ra(m) = E[a(n + m)a∗(n)]/σ2a ,
thus ra(0) = 1. The Gaussian assumption of a(n) gives
rise to the well-known Rayleigh distributed amplitude
fading when μ = 0, while if μ �= 0, it is the Rician fad-
ing.

(2) v(n) is a sequence of independent, identically dis-
tributed complex zero mean Gaussian variable with
variance σ2v , and is independent of a(n). The SNR is
defined as SNR = (μ2 + σ2a )/σ

2
v = (μ2/σ2a + 1)/σ2v /σ

2
a =

β(1 + κ), where κ = μ2/σ2a is the Rician factor, and β =
σ2a /σ

2
v . Thus it can be seen for Rayleigh fading (μ = 0,

σ2a �= 0), SNR = β, while in the classical additive white
Gaussian noise environment, SNR = μ2/σ2v = κβ.

(3) ra(m) is assumed to be real valued, this will suffice to
ensure a consistent frequency estimation via the algo-

rithm proposed in this paper. Otherwise, the phase of
ra(m) has to be estimated prior to the frequency es-
timation. This assumption has been made implicitly
by many authors, for example, in ionospheric chan-
nels for mobile cellular communications, with the cor-
relation function of the fading process is commonly
selected as J0(2π fdτ), where J0(·) is the zeroth-order
Bessel function of the first kind and fd is the Doppler
spread [12].

It is noted that estimation of φ and μ can be decoupled from
the estimation of ω0, φ and μ can also be estimated once ω0 is
estimated [13]. In this paper, we only focus on frequency es-
timation and its CRB in the presence of multiplicative noise.

3. BOUNDS FOR FREQUENCY ESTIMATION
EVALUATED IN THE TIME DOMAIN

In this section, we consider the CRB for frequency estimation
evaluated in the time domain. The CMT is used to regularize
the possible ill conditioning of the covariance matrix in time
domain. To begin with, consider the signal model presented
in Section 2, note here that in the initial discussion, we as-
sume white noise, which is relaxed in Section 5. Recall that
the variance of an unbiased estimate θ̂i of the parameter θi
has a lower bound that is given by [4],

E
[(
θ̂i − θi

)2] ≥ J−1ii , (2)

where E[·] denotes ensemble average and J−1ii is the ith ele-
ment of the diagonal of the inverse of the Fisher information
matrix (FIM) J with its (i, j)th element [4],

Ji j = 2Re
(
∂mH

∂θi
R−1

∂m
∂θ j

)
+ tr

(
R−1

∂R
∂θi

R−1
∂R
∂θ j

)
. (3)

In the above, [·]H denotes the Hermitian transpose, θ is the
vector consisting of parameters θi. Re(u) is the real part of
u, tr denotes trace of the matrix, R andm are the covariance
matrix and mean vector of the received signal. Representing
the signal model in (1) in terms of vectors, we obtain

x = Λ
(
μe jφ1 + a

)
+ v, (4)

where x = [x[0], x[1], . . . , x[N − 1]]T , v = [v[0], v[1], . . . ,
v[N−1]]T , 1 = [1, 1, . . . , 1]T , a = [a[0], a[1], . . . , a[N−1]]T ,
and [·]T denotes vector transpose. Λ = diag[1, e jω0 , . . . ,
e jω0(N−1)]. Suppose that the covariance matrix of multiplica-
tive noise a(n) is expressed as σ2aRa, then mean vector and
covariance matrix of the data vector x can be expressed as

mx = μe jφΛ1, (5)

Rx = σ2aΛRaΛ
−1 + σ2v I. (6)
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3.1. Exact CRB in the presence ofmultiplicative noise

Substituting (5) and (6) into (3), the entries of the FIM can
be written as [5],

Jω0,ω0 = 2μ21TDRz
−1D1 + 2tr

(
R−1z DRzD−D2),

Jω0,φ = 2μ2 Re
{
1TDRz

−11
}
,

Jφ,φ = 2μ21TRz
−11,

(7)

where Rz = σ2aRa + σ2v I, D is a diagonal matrix having the
form D = diag[0, 1, 2, . . . ,N − 1]. The FIM entry for μ is de-
coupled from the entries for frequency offset and phase of the
multiplicative noise [3], thus we have the CRB for frequency
estimation

CRB
(
ω0
) = Jφ,φ

Jω0,ω0Jφ,φ − Jω0,φJω0,φ
. (8)

Specifically, if μ �= 0, σ2a = 0, the covariance matrix becomes
proportional to identity matrix, and the CRB for frequency
estimation is simplified to

CRB
(
ω0
) = 2σ2v

μ21HDD1
= 6σ2v

μ2N3
. (9)

This is the classical expression for CRB in additive white
Gaussian noise [4]. If μ = 0, σ2a �= 0, which represents the
Rayleigh fading in wireless communications, the CRB for fre-
quency estimation is simplified to

CRB
(
ω0
) = 1

2 tr
(
Rz
−1DRzD−D2

) . (10)

Note that the denominator of (10) vanishes for temporally
white multiplicative noise which will lead to an infinite CRB,
but it is noted here that under this condition, the parameters
are unidentifiable.

3.2. Bounds evaluated in the time domain using CMT

The CRB obtained in (8) and (10) is exact for even a finite
length of data N . However, for certain fading models, the co-
variance matrix Rz can be singular especially when the SNR
is high. This singularity is caused by the rapid time varia-
tion of the fading resulting in information singular process.
Information singular processes are simply those having zero
Kolmogorov entropy (or equivalently, those processes which
are completely determined by their infinite past) [14]. Hence
such processes are deterministic which will cause the eigen-
values of the covariance matrix to be zero according to the
prediction theory [6, 14]. Note that, in wireless communi-
cation applications, a commonly used model is Jake’s model
which has the covariance function R(τ) = J0(ωdτ), where
J0(·) is the zeroth-order Bessel function of the first kind and
ωd is the maximum Doppler frequency. For Jake’s model, the
covariance matrix tends to be ill conditioned even when the

data length is small. The effect is more prominent with the
increase in the data length. In the following, we will regu-
larize this information singularity using the CMT. The basic
idea of CMT is to multiply the elements of the covariance
matrix with different weights, in order to attenuate those el-
ements away from the main diagonal. With the use of CMT,
the CRB for frequency estimation in (10) can be re-expressed
as

CRB
(
ω0
) = 1

2 tr
((
Rz ◦ T

)−1
D
(
Rz ◦ T

)
D−D2

) , (11)

with the symbol ◦ representing the Hadamard elementwise
product between matrices, and T denoting a tapering ma-
trix. T is real, symmetric, and Toeplitz. The following the-
orems provide useful insight into the underlying stochastic
properties of CMT technique. For proofs and more details,
see [9].

Theorem 1. If A,B ∈ CN×N are both positive semidefinite
matrices, so is A ◦ B. Moreover, if A is positive definite and B is
positive semidefinite with no zero diagonal entries, then A ◦ B
is positive definite.

Theorem2. LetP N denote the space of complex-valuedN×N
positive semidefinite covariance matrices. Then, if A,B ∈ P N

and with additional property di = 1, for all i : i = 1, . . . ,N ,
where di denotes the ith diagonal entry ofA and B, then χ(A) ≥
χ(A ◦ B), where χ(A) is the eigenvalue spread of A.

Suppose we choose B as T , with T being positive definite.
Then Theorem 2 suggests (A◦T) is positive definite and that
the eigenvalue spread has been reduced due to the tapering.
That is, a singular matrix can be regularized via the use of T .
Though Theorems 1 and 2 provide the fundamental property
of the CMT as a regularization technique, however, they do
not provide a general guideline to choose an optimal tapering
matrix. In [9], the tapering matrix is chosen as

[T]mn = sin
(
απ|m− n|)

απ|m− n| = sinc
(
α(m− n)

)
, (12)

where [T]mn is the (m,n)th element of matrix T and 0 ≤ α ≤
1. Note for the special case α = 0, the tapering matrix de-
fined in (12) becomes a matrix with all ones and thus no
regularization is obtained, while for the case α = 1, the ta-
pering matrix becomes the identity matrix, the covariance
matrix Rz will become a diagonal matrix and the CRB be-
comes CRB obtained via the periodogram [10]. As an ex-
ample, Figure 1 illustrates the regularization property of the
CMT applied to resolve the singularity problem of the covari-
ance matrix. Consider a Rayleigh fading channel with nor-
malized Doppler frequency fd = 0.01, and the multiplica-
tive noise is described via Jake’s model. The SNR varies from
25 dB, 60 dB to 100 dB. It can be seen that when α decreases
from 0.003, 0.002 to 0.001, the CRB gradually meets the ex-
act CRB (α = 0). Therefore, it is evident (from the plot of
SNR = 25dB) that if α1 < α2, then CRB(α1) < CRB(α2),
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Figure 1: The exact CRB compared with the CRB when CMT reg-
ularization is used for different SNRs, SNR = 25, 60, 100 and the
normalized Doppler frequency fd = 0.01, μ = 0.

and α = 0 provides no regularization to the covariance ma-
trix. Exact value of α selected depends on the required trade-
off between the matrix regularization and the deviation from
the CRB. At high SNR=100 dB and large data samples, the
singularity of the covariance matrix is prominent. We note
from the simulation that the bound obtained using the ta-
pering matrix with α = 0.001 is very close to the exact CRB
while maintaining regular conditions.

4. BOUNDS FOR FREQUENCY ESTIMATION
EVALUATED IN THE FREQUENCY DOMAIN

The time domain CRB evaluation discussed in the previous
section requires matrix inversion. In this section, we elabo-
rate the use of CMT in the evaluation of the CRB in the fre-
quency domain. The major advantage of the frequency do-
main evaluation is that it avoids matrix inversion and thus
it is especially useful when the data lengths are quite large.
In particular, we will show that the periodogam-based CRB
discussed in [10] is a special case of frequency domain CRB
evaluation via the CMT with α = 1. It is further noted that
the periodogam-based CRB can be related to the power spec-
trum of the signal, thereby providing more insight into char-
acteristics of the estimation problem. We also derive closed
form expressions for large samples CRB for Jake’s model.

4.1. Frequency domain CRBwith the CMT

By performing the DFT operation on the data vector x, we
obtain

y = Fx, (13)

where F is the normalized Fourier transform unitary matrix,
(FHF = I), which has the form F = [e0, e1, . . . , eN−1], where

ek = 1√
N

[
1, e− j(2πk/N), e− j(4πk/N), . . . , e− j(2πk(N−1)/N)],

k = 0, 1, . . . ,N − 1.
(14)

y is the transformed data vector having length N . Substitut-
ing (4) into (13), we obtain

y =
√
NFΛ

(
μe jφ1 + a

)
+
√
NFv. (15)

Consequently, the mean vectormy and the covariance matrix
Ry of y can be expressed as

my =
√
NμejφFΛ1, (16)

Ry = Nσ2aFΛRaΛ
HFH + σ2v NI. (17)

Note that the DFT is a linear reversible operator, and thus it
can not be directly used to avoid the singularity associated
with Ry. Again, CMT can be employed in the frequency do-
main to avoid the singularity problem. Equation (17) can be
then rewritten as

Rt = NFΛRzΛ
HFH ◦ T, (18)

where T is as given in (12). The (m,n)th element of Rt can be
expressed via matrix expansion

[
Rt
]
mn =

e j(2π/N)(m−n)

N

N−1∑

t=0

N−1∑

k=0
Rz
(
t − k,ω0

)

× e− j(2π/N)(t−k)e− j(2π/N)(mk−nt) sinc
(
α(m− n)

)
.

(19)

After further manipulation, the above can be written as

[
Rt
]
mn =

1
N
ejπ(m−n)

N−1∑

l=0
Rz
(
l,ω0

)
e j(π(m+n)l/N)

× sin
(
π(m− n)(N − l)/N

)

sin(π(m− n)/N)
sinc

(
α(m− n)

)
.

(20)

It can be seen from (19) that using the tapering matrix T,
with α = 1, Rt becomes a diagonal matrix

Rt = diag
{
P
(
ωk,ω0

)
, k = 0, 1, . . . ,N − 1

}
(21)

with the diagonal element P(ωk,ω0) given by

P
(
ωk,ω0

) =
N−1∑

l=−(N−1)
wB(l)Rz

(
ω0, l

)
e− jωkl, (22)

where ωk = 2πk/N and Rz(ω0, l) = σ2aRa(l)e jω0l + σ2v δ(l),
and δ(l) is the Kronecker delta function. wB(l) is the Bartlett
(triangular) window which is given by

wB(l) =
⎧
⎪⎨

⎪⎩

1− |l|
N

−N + 1 ≤ l ≤ N − 1,

0 elsewhere.
(23)
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Substituting (16) and (21) into FIM in (3), we obtain the en-
tries of the FIM as

Jω0,ω0 ≈
2μ21HDD1
P
(
ωγ
) +

N−1∑

k=0

(
P′
(
ωk,ω0

)

P
(
ωk,ω0

)

)2

,

Jω0,φ ≈
2μ21HD1
P
(
ωγ
) ,

Jφ,φ ≈ 2μ21H1
P
(
ωγ
) ,

(24)

where γ = Nω0/2π and P′(ωk,ω0) is the derivative of
P(ωk,ω0) with respect to ω0. The frequency domain eval-
uation of the CRB obtained via CMT with α = 1 is in
fact the periodogram-based CRB discussed in [10]. The ac-
curacy of the periodogram-based CRB increases with the
data samples N . As we can see from (20), when N → ∞,
[Rt]mn → 0. Hence, Rt is asymptotically a diagonal matrix
and the periodogram-based CRB asymptotically approaches
the exact CRB. Note that by decreasing α, the accuracy can be
increased but by then it requires matrix inversion, losing the
advantage of evaluating CRB in the frequency domain. Also
note that when α = 0, the CRB evaluation in the frequency
domain yields the same results as the evaluation in the time
domain.

4.2. Asymptotic expressions for CRB for
Jake’smodel

Using the periodogram-based CRB evaluation discussed in
the previous section, how asymptotic expressions for CRB
can be evaluated will be shown here. These expressions are
useful because they provide direct insight into how bounds
vary with parameters such as number of data points, the
Doppler frequency, or the SNR. We consider Jake’s model in
wireless communication and assume that the length of data
samples is much larger than the correlation time of the mul-
tiplicative noise. In this case, the power spectrum associated
with Jake’s model covariance function can be written at dis-
crete frequency points as

P
(
ωk
)=

⎧
⎪⎪⎨

⎪⎪⎩

2σ2a

ωd

√(
1− (ωk − ω0

)
/ωd
)2 + σ2v

∣
∣ωk − ω0

∣
∣ < ωd,

0 elsewhere.
(25)

Substituting (25) into (24), the FIM entries can be expressed
as

Jω0,ω0≈
2/3κβN3
(
2β/ωd

)
+ 1

+
N−1∑

k=0

⎛

⎜
⎝

2βωk

(
1−(ωk/ωd

)2)−1

2βω2
d + ω2

d

(
1−(ωk/ωd

)2)1/2

⎞

⎟
⎠

2

,

Jω0,φ ≈
κβN2

(
2β/ωd

)
+ 1

,

Jφ,φ ≈ 2κβN
(
2β/ωd

)
+ 1

.

(26)

Recall that κ = μ2/σ2a and β = σ2a /σ
2
v . Therefore, the large

sample CRB for frequency estimation is obtained as

CRB
(
ω0
) = 6

N3ξ + 6ζ
, (27)

where ξ=κβ/(2β/ωd+1), ζ=
∑N−1

k=0 ((2βωk(1−(ωk/ωd)2)−1)/
(2βω2

d+ω
2
d(1−(ωk/ωd)2)1/2))2. Equation (29) is a closed form

expression for CRB at large samples relating to Doppler fre-
quency, data length, and the SNR. It is worth noting that the
large sample (asymptotic) CRB can be obtained by approx-
imating the average periodogram by the power spectrum in
the continuous form and subsequently using Whittle’s for-
mula [5, 15]. However, the approach used here is direct and
more appropriate as the discussed frequency estimate is ob-
tained using discrete data.

It can be seen that, when β = 0, κ �= 0, (27) provides
the CRB in additive white Gaussian noise. When κ = 0,
β �= 0, the CRB is entirely determined by (Rayleigh fad-
ing) ζ , and the decay rate of the CRB with Doppler spread
is in the order of ω−4d . Furthermore, when β  1, ξ is
simplified to ξ = κωd/2, while ζ can be written as ζ =
∑N−1

k=0 ω2
k/ω

4
d(1− (ωk/ωd)2). In this case, the CRB is only de-

termined by ωd and κ, and not by SNR, which is known as
the floor effect of the fading channels.

Note that under the extremely fast fading condition for
Rayleigh fading channel, the multiplicative noise process
a(n) can be seen as a case of completely uncorrelated process,
that is, ra(m) = σ2a δm, where δm is the Kronecker delta func-
tion, so that S′a(ωk,ω0) = 0, ζ = 0. Thus CRB becomes in-
finite, that means in the presence of temporarily white mul-
tiplicative noise, no parameters are identifiable. The CRB in
the time invariant (slow) fading channel was derived in [3]
as

CRB
(
ω0
) ≈ 6

β(1 + κ)N3
. (28)

The CRB in the Ricean fast fading channel as κ is not too
small was approximately derived in [3] as the following:

CRB
(
ω0
) ≈ 2

(
κ + 1 + ρSa

(
ω0
))

β(κ + 1)κN3

≈ 2
β(κ + 1)N3

+
2Sa
(
ω0
)

κN3
.

(29)

Equation (29) is approximately obtained, and we can see that
when β → 0, (29) has the same floor effect of (27). However,
(27) also can be used in Rayleigh fading and is a general ex-
pression for fading channels.

In Figure 2, we show that for the multiplicative noise
with zero mean (κ = 0) (Rayleigh fading), the CRB in-
creases with the Doppler frequency monotonically. While in
Figure 3, κ �= 0, (Rician fading) the CRB first increases with
Doppler frequency at small values, while beyond that, the
CRB decreases with Doppler frequency. The dashed lines are
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the exact CRB and the solid lines represent the large sample
asymptotic expressions obtained from (27). It can be seen
that the asymptotic CRB meets the exact CRB only at high
Doppler frequency and large data samples. This verifies that
the periodogram-based CRB expressed in (27) is an asymp-
totic result mostly suitable for fast fading channels. Figure 4
demonstrates the floor effect of the CRB when β  1 in the
presence of fading channels. The floor effect of Rician chan-
nels has been discussed in the literature [3, 5]. But here, we
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bottom and κ = 100. β = 20dB.

emphasize that the floor effect is caused by the multiplicative
noise, and would be present even in Rayleigh channels.

Figure 5 demonstrates the asymptotic CRB in the pres-
ence of multiplicative noise on the effect of data length N for
different values of fd. It can be seen that when fd = 0.001, the
fading effect is almost negligible, and the channel is similar
to an additive white Gaussian noise channel. For large fd, for
example, fd = 0.011, the fading effect is determined by the
data length N , ξ and ζ are as shown in (27). In this case, it is
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seen that when N is smaller, the decay rate of CRB is around
N−3, and the channel behaves as slow fading channel. With
the increasing of N , the fading relatively becomes fast, and
the decay rate of CRB is around N−1 which is mainly deter-
mined by ζ in (27), in this situation, the channel can be seen
as a Rayleigh fast fading channel. When N is very large, the
decay rate of the CRB is around N−3 as seen in Figure 5. This
is also confirmed by (27) where ξ dominates and the chan-
nel behaves as a Rician fast fading channel. Thus knowing N ,
ξ, and ζ , using (27), we can determine whether the channel
behaves as a slow fading, Rayleigh fast fading, or Rician fast
fading channel. That is, the channel can be easily character-
ized with the use of (27).

5. CLOSED FORM EXPRESSION FOR CRB IN THE
PRESENCE OFMULTIPLICATIVE NOISE AND
ADDITIVE COLORED NOISE

So far in the discussion, we have considered the additive noise
as a white process. Through this discussion, the asymptotic
CRB expressions for frequency estimation in multiplicative
noise and additive white noise have been obtained. In this
section, we seek asymptotic CRB expressions in the presence
of multiplicative noise and additive colored noise. Without
loss of generality, suppose that the colored noise v(n) can be
modeled as an order p autoregressive (AR) process, which is
expressed via the AR coefficients ak in the following manner:

v(n) = −
p∑

k=1
akv(n− k) + e(n). (30)

Here e(n) is a white Gaussian noise process with variance σ2.
We define that the SNR = (μ2 + σ2a )/σ

2. Let us first assume
that only the colored noise is present (i.e., σ2a = 0). Then the
inversion of the data covariance matrix Rx is given by [16],

Rx
−1 = 1

σ2
(
A1AH

1 − A2AH
2

)
, (31)

where A1 and A2 are lower triangular Toeplitz matrices given
by

[
A1
]
i j =

⎧
⎪⎪⎨

⎪⎪⎩

1, i = j,

ai− j , i > j,

0, i < j,

[
A2
]
i j =

⎧
⎨

⎩
0, i < j,

a∗N−i+ j , i ≥ j.

(32)

The form in (31) is useful to calculate the exact CRB in
the presence of AR colored noise. Substituting (31) into (3),
and performing the matrix expansion, the FIM entries in the

presence of the AR colored noise are obtained as

Jμ,μ ≈ 2
σ2
∣
∣A
(
e jω0

)∣∣2(N − 3),

Jω0,ω0 ≈
2μ2

σ2

(
∣∣A
(
e jω0

)∣∣2
N−1∑

n=0
(n− 2)2 + (N − 1)2

)

,

Jφ,φ ≈ 2μ2

σ2
∣
∣A
(
e jω0

)∣∣2(N − 1),

Jω0,φ = Jφ,ω0 ≈
2μ2

σ2
∣
∣A
(
e jω0

)∣∣2
N−1∑

n=0
n,

Jμ,ω0 = Jω0,μ = 0,

Jμ,φ = Jφ,μ = 0,

(33)

where |A(e jω0 )|−2 is the normalized spectrum of the AR col-
ored noise and A(e jω0 ) = 1 + Σ

p
k=1ake

− jkω0 , (k = 1, 2, . . . , p).
Assume that the second term in the right-hand side of equa-
tion for Jω0,ω0 is small and that the following condition is sat-
isfied:

∣
∣A
(
e jω0

)∣∣−2 � N

3
. (34)

After the matrix inversion, we obtain the asymptotic CRB for
frequency estimation in AR colored noise as

CRB
(
ω0
) = 6σ2

∣
∣A
(
e jω0

)∣∣−2

μ2N
(
N2 − 1

) . (35)

This is in accordance with the asymptotic CRB for short data
length as discussed in [16]. Further investigation has revealed
that for other colored noise, such asMA colored noise, the re-
sults are entirely similar as that of the AR colored noise, pro-
vided that the normalized spectrum of the colored noise is
much smaller than data length, that is, the condition in (34)
is satisfied. Hence we are led to the conjecture that the CRB
in colored noise can be obtained by modifying the variance
of white noise to accommodate the true AR spectral noise
density at the sinusoidal frequency. Following the above, the
obvious modification to (27) for the case of colored AR noise
is given by replacing β by β = σ2a |A(e jω0 )|2/σ2, and making
κβ = μ2|A(e jω0 )|2/σ2 while keeping κ unchanged. The CRB
in the time invariant (slow) fading channel in additive col-
ored noise is then given by

CRB
(
ω0
) ≈ 6

∣
∣A
(
e jω0

)∣∣−2

β(1 + κ)N3
. (36)

Note that the exact bound can also be obtained from the FIM,
where the mean vector is as the same as what appeared in (5).
Assuming that the multiplicative noise and additive colored
noise are independent, the data covariance matrix can be ex-
pressed as

Rx = σ2aΛRaΛ
−1 + σ2vRv, (37)

where σ2vRv is the covariance matrix of the colored noise.
Equation (37) can be used to evaluate the exact CRB. Figure 6
compares the exact CRB and asymptotic CRB expression
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Figure 6: The asymptotic CRB and exact CRB in the presence of
first-order AR colored noise and multiplicative noise for different
values of N , N = 32, 64, 128, 256. SNR = 10dB. Doppler frequency
fd = 0.1. κ = 1.

in multiplicative noise and additive first-order AR noise. In
Figure 6, CRB versus frequency offset is shown with the data
samples N varying from 32, 64, 128, and 256 from the top
plot to the bottom plot. The AR coefficient is set as a1 =
0.9e j0.6π . It can be seen that the asymptotic CRB is close to
the exact CRB when N is large. Notice that the CRB in the
presence of additive colored noise varies with the frequency,
although in the presence of additive white noise, it is inde-
pendent of the frequency. We can also see from Figure 6 that
the the CRB peaks at a frequency offset corresponding to the
phase of the AR coefficient a1, a fact due to the spectral char-
acteristics of the colored noise.

6. CONCLUSIONS

Computation of the CRB in the presence of multiplicative
noise has been addressed in detail in this paper. It is noted
that under high SNR conditions, and in certain multiplica-
tive noise models (e.g., Jake’s model), the covariance matrix
involved in CRB evaluation tends to be singular which makes
the evaluation of the CRB numerically unstable. In this pa-
per, we propose to use CMT technique when the covariance
matrix of the signal is singular so as to improve the numerical
stability.

We also propose a computationally simple DFT-based
frequency domain CRB evaluationmethod. In this approach,
the CRB has been derived using the periodogram of the data.
It is noted that this technique is accurate under the condition
that the data record length is much larger than the correla-
tion time of the multiplicative noise. Large sample approxi-
mations to the CRB for Jake’s model is given and a general
expression for an asymptotic CRB in the presence of multi-
plicative noise and colored additive noise is provided. These

closed form expressions provide direct insights into the CRB
in different fading channels, and help one to obtain proper
fading channel characterization.
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