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A novel approach that employs a complexity-based sequential hypothesis testing (SHT) technique for real-time detection of ventric-
ular fibrillation (VF) and ventricular tachycardia (VT) is presented. A dataset consisting of a number of VF and VT electrocardio-
gram (ECG) recordings drawn from the MIT-BIH database was adopted for such an analysis. It was split into two smaller datasets
for algorithm training and testing, respectively. Each ECG recording was measured in a 10-second interval. For each recording, a
number of overlapping windowed ECG data segments were obtained by shifting a 5-second window by a step of 1 second. During
the windowing process, the complexity measure (CM) value was calculated for each windowed segment and the task of pattern
recognition was then sequentially performed by the SHT procedure. A preliminary test conducted using the database produced
optimal overall predictive accuracy of 96.67%. The algorithm was also implemented on a commercial embedded DSP controller,
permitting a hardware realization of real-time ventricular arrhythmia detection.

Copyright © 2007 Szi-Wen Chen. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Ventricular fibrillation (VF) and ventricular tachycardia (VT)
are life-threatening cardiac arrhythmias [1]. Reduction of
mortality from such cardiac causes depends on rapid detec-
tion and accurate classification of these arrhythmias. Thus,
the development of accurate noninvasive techniques for
identifying patients at risk of lethal arrhythmias is essential
to reducing mortality from cardiac deaths. For this reason,
a number of quantitative analysis techniques for electrocar-
diogram (ECG) arrhythmia recognition have been proposed
previously [1–9]. While all these algorithms show advan-
tages in versatile aspects of performance evaluation, some of
them are still too difficult to implement and compute for
defibrillators. On the other hand, for computational con-
venience, some algorithms utilized in either surface ECG
monitoring-based automated external defibrillators (AEDs)
or in implantable cardiovertor/defibrillators relied only on
simple heart rate for arrhythmia detection. In fact, this might
be problematic since it has been indicated that simply using
heart rate as the sole featuremight always unavoidably lead to
a certain error rate in the detection since while both VF and
VT have significantly higher rates than normal sinus rhythm,
the rate range of VF overlaps with that of VT. Therefore,

using the heart rate as a single feature might achieve only
moderate specificity in differentiating VT from VF so that
unpredictably serious consequences might result.

In this paper, a sequential hypothesis testing (SHT) algo-
rithm in conjunction with a novel feature, dubbed complex-
ity measure (CM), for VF and VT detection is presented. The
main idea behind the approach is that the order or disorder
status of a time series, such as biological signals, can be char-
acterized using complexity. The rationale of adopting CM in
this study is based on the fact that cardiac arrhythmias such
as VF and VT can be thought to belong to different nonlinear
physiological processes with a different complexity [7]. There
actually exist a number of different approaches developed for
the measure of complexity. In this study, CM was calculated
using the mathematical definitions proposed by Lempel and
Ziv [10] since it is considered as an easy-to-compute measure
of complexity in a one-dimensional signal. In general, for an
adequately preset window length, the method first converts
a raw ECG data segment to a 0-1 string using a schematic
thresholding process. Then, the CM value or its normalized
version corresponding to that 0-1 string can be calculated
simply by successive comparisons and accumulations of the
substrings. For such aspect of application, it has been in-
dicated by previous research that the distributions of CM
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values, respectively, derived from the ECG signals of VF and
VT groups could be perfectly separated [7]. In addition, re-
cently a novel Lempel-Ziv complexity-based algorithm used
to identify the arrhythmic pulse patterns was proposed [8].

It still remains uncertain, however, that CM is robust
with respect to VF/VT classification. Therefore, instead of
adopting a single CM value estimated from an ECG data seg-
ment with a fixed interval as the sole feature for separating
VF from VT, we may speculate that the task of classifica-
tion might be performed, with a degree of robustness, sim-
ply by applying the SHT technique to a feature vector com-
posed of CM values that were successively obtained from the
windowed ECG data. In fact, such a sequential technique has
been applied to the development of various VF/VT detection
approaches [2–4]. Our study here aimed at seeking a possible
application of a robust sequential form into CM estimates to
achieve higher sensitivity and specificity for VF and VT with
low computational cost.

This paper is organized as follows. Descriptions of the
CM calculation defined by Lempel and Ziv and the develop-
ment of the proposed sequential computing method for real-
time detection of VF and VT are in Section 2. Then, a perfor-
mance evaluation and discussion are presented in Section 3.
Section 4 gives a brief description of the hardware settings.
Finally, the paper is briefly concluded by Section 5.

2. METHODOLOGY

2.1. Complexitymeasure

The estimation of CM for ECG time series is reviewed in
this section. Initially, an ECG data segment, denoted by
�x(k)�nk=1, is converted into a new time sequence �s(k)�nk=1
composed of 0’s and 1’s only. The major steps of transform-
ing the original ECG signal into the 0-1 string are described
as follows. First, the ECG signal is normalized by subtracting
its mean value from every data sample x(k), that is,

xN (k) = x(k)�
1
n

n∑

k=1
x(k), (1)

where xN (k) represents the normalized ECG signal. Next, the
positive and negative peak values, denoted as Pp and Pn, re-
spectively, are searched out. Let Np represent the number of
data points x(k) that satisfy 0 < x(k) < 0.1Pp and Nn rep-
resent the number of those that satisfy 0.1Pn < x(k) < 0, a
thresholding scheme can be expressed as follows [7].

(1) If (Np + Nn) < 0.4n � the threshold, denoted as Th,
is selected as Th = 0.

(2) If (Np +Nn) � 0.4n and Nn < Np � Th = 0.2Pn.
(3) If (Np + Nn) � 0.4n and Nn � Np � Th = 0.2Pp.

Finally, the normalized ECG signal �xN (k)�nk=1 is converted
into 0-1 string �s(k)�nk=1 simply by

s(k) =
⎧
⎨
⎩
1 if x(k) � Th;

0 otherwise.
(2)

According to Lempel and Ziv’s work [10], the computa-
tional algorithm of CM, denoted as cn, is briefly described
as follows. Let S and Q denote two strings, respectively, and
let SQ represent the string resulting from concatenation of S
and Q. Moreover, SQπ represents a new string derived from
SQ with the last symbol deleted. Let v(SQπ) denote the set of
all different “parts” (substrings) of SQπ. Given a finite sym-
bol sequence �s(k)�nk=1, the algorithm can be summarized as
follows.

(1) At the beginning, cn = 1, S = s(1), Q = s(2), SQπ =
s(1).

(2) In the midst of computation, suppose at this time that
S = s(1)s(2) � � � s(m),Q = s(m+1)s(m+2) � � � s(m+p)
and SQπ = s(1)s(2) � � � s(m)s(m+1) � � � s(m+ p�1),
two conditions are considered:

(a) ifQ � v(SQπ) (i.e.,Q is a substring of SQπ), then
cn and S remain unchanged, and meanwhile, we
set

Q �� Qs(m + p + 1), (3)

that is, renew Q simply by padding it with the
symbol s(m + p + 1);

(b) if Q /� v(SQπ) (i.e., Q is not a substring of SQπ),
then we set

cn �� cn + 1, S�� SQ,

Q �� s(m + p + 1).
(4)

(3) Repeat doing step (2) until SQ = s(1)s(2) � � � s(n).

As a result, the result of cn gives the number of differ-
ent substrings of �s(k)�nk=1 and it can be viewed as the mea-
sure of complexity. It can be seen from the above that there
is no a priori information or parameter required to be de-
termined and the calculation is very simple for short-term
one-dimensional signals. Further, as shown by Lempel and
Ziv [10], for s(k) � �0, 1�, where k = 1, 2, . . . ,n, we have

lim
n��

cn = bn = n

log2(n)
. (5)

Note that in order to reduce the variation of the above mea-
sure cn due to its dependence on the sequence length n,
the normalized CM value C, defined as C = cn/bn (where
0 	 C 	 1), was employed for VF and VT detection through-
out this analysis.

A dataset consisting of 70 ECG recordings (25 VFs and
45 VTs) drawn from the MIT-BIH database was adopted
for such an analysis. Each ECG recording was 10 seconds in
length and the sampling frequency fs was 250Hz. The dataset
was further split into two smaller datasets for algorithm
training (40 ECG recordings) and testing (30 ECG record-
ings), respectively. In order to perform the task of VF/VT
detection using the SHT, a training database consisting of
40 ECG data recordings (15 VFs and 25 VTs) was used for



Szi-Wen Chen 3

�200

�150

�100

�50

0

50

100

150

200

A
m
pl
it
u
de

0 1 2 3 4 5 6 7 8 9 10

Time (s)

(a)

�200

�150

�100

�50

0

50

100

150

200

A
m
pl
it
u
de

0 1 2 3 4 5 6 7 8 9 10

Time (s)

(b)

Figure 1: Filtered arrhythmic signals: (a) VF, (b) VT.

Table 1: Performance of the proposed CM-SHT method for VF and VT detection.

Mean of CM Std. of CM α, β values Correct VF (%) Correct VT (%) Overall detection (%)

μVF = 0.2369 σVF = 0.0369 0.085 ∼ 0.100 10/10 = 100% 19/20 = 95% 29/30 � 96.67%

μVT = 0.1641 σVT = 0.0273

constructing the first- and second-order statistics. Figure 1
shows examples of the bandpass filtered VF and VT signals.
The algorithm training process was performed in the follow-
ing manners. A number of overlapping windowed ECG data
segments were obtained by shifting a 5-second window by
a step of 1 second throughout the entire 10-second record-
ing, thus resulting in six windowed segments for each ECG
recording. For each windowed segment, a normalized CM,
denoted as Ci, was calculated. The rationale for the choice of
5-second window for CM calculation is that for VF and VT
the Ci’s begin to well separate from each other when mea-
sured from 5-second ECG data segments [7]. As a result, for
each ECG recording, a feature vector composed of six CM
values that were, respectively, estimated from the six 5-s win-
dowed ECG segments would result. After obtaining the CM
estimates for all the ECG recordings in the training database,
the means, denoted as μVF, μVT, and standard deviations, de-
noted as σVF, σVT, corresponding to both the VF and VT pop-
ulations were calculated. Numerical results of these statistics
are shown in Table 1. These statistics were then incorporated
in the Wald-type SHT algorithm [11, 12].

2.2. Sequential hypothesis testing

The SHT algorithm implementation is described as follows.
According to the numerical experimental results obtained
from our analysis, we seek to discriminate the hypotheses

below (see also Table 1):

HVF : μVF = 0.2369, σVF = 0.0369;

HVT : μVT = 0.1641, σVT = 0.0273.
(6)

To approach the discrimination above, a likelihood ratio test
(LRT) Λ is constructed:

Λ
(
C1,C2, . . . ,Ci

) = f
(
C1,C2, . . . ,Ci 
 VF

)

f
(
C1,C2, . . . ,Ci 
 VT

) , (7)

and two thresholds, T1 and T2, are selected as

T1 = 1� β

α
, T2 = β

1� α
,
(
T1 > T2 > 0

)
, (8)

where f is the conditional probability density function un-
der the hypothesis HVF or HVT, and α, β both represent the
predetermined error probabilities; α is the probability of re-
jecting HVT when it is true and β is the probability of re-
jecting HVF when it is true. Comparing the LRT Λ with
the two thresholds T1 and T2, if Λ(C1, . . . ,Ci) � T1 (or
Λ(C1, . . . ,Ci) 	 T2), then the algorithm selectsHVF (orHVT)
and the test is terminated. If T2 < Λ(C1, . . . ,Ci) < T1, then
the test is inconclusive. In this case, the next CM value Ci+1

will be incorporated into the test, that is, Λ(C1, . . . ,Ci,Ci+1)
is calculated and then compared with T1 and T2. The above
process is repeated until either a decision is finally reached,
or all the CM values have been incorporated in the LRT but
still no decision is made.



4 EURASIP Journal on Advances in Signal Processing

0

2

4

6

8

10

12

14

16

18

20

P
ro
ba
bi
lit
y
de
n
si
ty

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

CM value

VFVT

Figure 2: The modeled Gaussian probability density functions of
CM for VF and VT, respectively.

According to the numerical results obtained from the
training process, the CM values obtained from the VF and
VT populations can be well modeled by Gaussian distribu-
tions with different means and standard deviations, as shown
in Figure 2. Therefore, the logarithmic form of (7) for a test
comprising m successive CM values estimated from an ECG
data recording is expressed as

ln
(
Λm
) = ln

[
f
(
C1,C2, . . . ,Cm 
 VF

)

f
(
C1,C2, . . . ,Cm 
 VT

)
]

= ln

[
Πm

i=1
(
1/
√
2πσ2VF

)
exp

(
�
(
Ci � μVF

)2
/2σ2VF

)

Πm
i=1
(
1/
√
2πσ2VT

)
exp

(
�
(
Ci � μVT

)2
/2σ2VT

)

]

= m ln

(
σVT
σVF

)
+

1
2σ2VT

m∑

i=1

(
Ci � μVT

)2

�
1

2σ2VF

m∑

i=1

(
Ci � μVF

)2
.

(9)

Comparing ln(Λm) with ln(T1) and ln(T2), a decision rule at
themth stage can be then formulated as

g
(
C1, . . . ,Cm

)
� s1,=� HVF;

	 s2,=� HVT;

otherwise =� continue testing,

(10)

where

g
(
C1, . . . ,Cm

) = 1
σ2VT

m∑

i=1

(
Ci � μVT

)2
�

1
σ2VF

m∑

i=1

(
Ci � μVF

)2
,

(11)

s1 = 2m ln
(
σVF
σVT

)
+ 2 ln

(
1� β

α

)
, (12)

s2 = 2m ln
(
σVF
σVT

)
+ 2 ln

(
β

1� α

)
. (13)

The test above is repeated until a decision (VF or VT) is
finally made. A block diagram of the CM-SHT algorithm
for VF and VT detection described above is also depicted in
Figure 3.

3. PERFORMANCE EVALUATION ANDDISCUSSION

In this section, a software-based performance evaluation of
the proposed algorithm is presented. A subset of the MIT-
BIH database consisting of 30 recordings (10 VFs and 20
VTs) was adopted as a testing database for a preliminary test
in this study. Each recording was 10 seconds in length and
sampled by the rate of 250Hz. Initially, the ECG signals were
preprocessed by digital bandpass filtering (2–30Hz) for re-
moval of baseline drift, motion artifacts, and 60Hz power-
line interference. The digital bandpass filter is formed by a
cascade of the fourth-order Butterworth lowpass and high-
pass filters.

The numerical results are listed in Table 1. It is observed
from the table that while only one VT episode was misclassi-
fied into the VF class, none of VF episodes were improperly
identified as VT. Consequently, the proposed CM-SHT ap-
proach optimally produced near 97% overall predictive ac-
curacy for both arrhythmic events, which is quite promis-
ing. Such a predictive accuracy is better than that achieved
by a previous SHT-based algorithm proposed by Chen et al.
[3, 4]. They employed a feature called “blanking variabil-
ity” (BV) as the basis for VF/VT discrimination and showed
that their method only achieved 95% overall detection
rate.

Demonstrative examples for quantitatively showing the
calculations of the CM and the SHT for one episode of
VF and VT (as shown in Figures 1(a) and 1(b)) are pro-
vided in Tables 2 and 3, respectively. Moreover, illustrations
in Figure 4 also show the sequential detection tracings for
demonstrating the decision-making processes corresponding
to both examples. It should be noted that according to the de-
tection results achieved in this study, almost all the ventric-
ular arrhythmias can be properly identified within (mostly
much faster than) 10 seconds. This is desirable and suitable
for clinical purpose. All in all, the preliminary results actually
indicated that the proposed approach might possess a good
and hopeful potential for discriminating VF from VT.

In addition, it has been known that there exists a tradeoff
between the error probabilities and the time steps or num-
ber of tests in the Wald-type hypothesis testing algorithm. In
general, the larger the error probability is set, the faster the
decision is made, and vice versa. Both (12) and (13) explain
such a tradeoff effect. From (12) and (13), we see that the
upper decision bound s1 and lower decision bound s2 will be
getting closer as both α and β increase; on the contrary, s1 and
s2 will be further apart when α and β decrease. That is, set-
ting a larger error probability would result in a narrower no-
decision region so that the tracings of function g(C1, . . . ,Cm)
would be easier to leave this region for reaching a decision of
VF or VT, implying that a decision might be reached more
quickly. Figure 5 gives an interpretative illustration for this
fact.
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Figure 3: Block diagram of the detection algorithm. x(m)(k) denotes themth windowed ECG segment.

Table 2: A demonstrative example for quantitatively showing the calculations of the CM and the SHT for the VF episode shown in
Figure 1(a). One may see that the episode is properly specified as VF at the fourth testing stage (i.e., number of SHT tests = 4).

Stage no. (m) CM
(
Cm

)
s1 g(C1, . . . ,Cm) s2 Test

m = 1 C1 = 0.1975 5.3588 g
(
C1
) = 0.3672 �4.1463 s2 < g < s1

m = 2 C2 = 0.2222 5.9650 g
(
C1,C2

) = 4.7581 �3.5401 s2 < g < s1
m = 3 C3 = 0.2058 6.5712 g

(
C1,C2,C3

) = 6.3837 �2.9339 s2 < g < s1
m = 4 C4 = 0.2304 7.1775 g

(
C1,C2,C3,C4

) = 12.2816 �2.3276 g � s1 (VF)
m = 5 — 7.7837 — �1.7214 —
m = 6 — 8.3899 — �1.1152 —

Table 3: A demonstrative example for quantitatively showing the calculations of the CM and the SHT for the VT episode shown in
Figure 1(b). One may see that the episode is properly specified as VT at the fifth testing stage (i.e., number of SHT tests = 5).

Stage no. (m) CM
(
Cm

)
s1 g

(
C1, . . . ,Cm

)
s2 Test

m = 1 C1 = 0.1893 5.3588 g
(
C1
) = �0.8084 �4.1463 s2 < g < s1

m = 2 C2 = 0.2058 5.9650 g
(
C1,C2

) = 0.8172 �3.5401 s2 < g < s1
m = 3 C3 = 0.1811 6.5712 g

(
C1,C2,C3

) = �1.0840 �2.9339 s2 < g < s1
m = 4 C4 = 0.1893 7.1775 g

(
C1,C2,C3,C4

) = �1.8924 �2.3276 s2 < g < s1
m = 5 C5 = 0.1564 7.7837 g

(
C1,C2,C3,C4,C5

) = �6.5747 �1.7214 g � s2 (VT)
m = 6 — 8.3899 — �1.1152 —
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Figure 4: Sequential detection tracings for (a) VF, (b) VT, α = β = 0.085. Note that here (a) and (b) are plotted according to the numerical
results as provided by Tables 2 and 3, respectively.
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Figure 5: Tracings of the function g(C1, . . . ,Cm). It can be seen from
the figure that by setting α = β = 0.085 (depicted by dotted lines),
a decision was reached right after four CM values were included for
testing (number of tests = 4, time taken for decision = 8 seconds);
if choosing α = β = 0.100 (depicted by the dashed lines), a decision
(but the same decision as the case above not guaranteed) would be
achieved more quickly (number of tests= 3, time taken for decision
= 7 seconds). This is because the latter would result in a narrower
no-decision region, thus the tracings of g(C1, . . . ,Cm) might leave
this region with a higher probability.

On the other hand, it should be also noted that the re-
sults obtained were not critically dependent on the choices
for α and β, indicating a degree of robustness in the per-
formance of the algorithm. Moreover, in order to under-
stand how the SNR affects the performance of the pro-
posed classifier, a numerical experiment was further per-
formed in this study. Here, we had taken a case where the
simulated ECG measurement was a composite signal of a
noise-free ECG and a zero-mean white Gaussian noise with
variance σ2. Simulated noise-free ECG signals were gener-
ated by applying bandpass filtering (with the passband of
2–30Hz) to all the ECG episodes in the testing database.
Also, different noise levels, that is, the values of σ , were re-
spectively determined by a set of given SNR values from
0–30 dB. Consequently, each of the simulated ECG signals
was finally composed by adding a noise signal to a noise-
free ECG. Then, performances were evaluated on all these
simulated ECG measurements. The overall detection rates
at different SNR values are listed in Table 4 and are also
presented in Figure 6. Observing the results in Table 4 and
Figure 6, one may see that the optimal overall detection
rate achieved by the proposed classifier could be achieved
at SNR 28 dB. Meanwhile, it is also revealed from Table 4
that the level of acceptable SNR should be at least 14 dB or
more, since promising performance in VF/VT classification

Table 4: SNR versus the overall detection accuracy.

SNR (dB) Overall detection (%)

0 33.33

2 33.33

4 46.67

6 63.33

8 70

10 70

12 83.33

14 93.33

16 93.33

18 93.33

20 93.33

22 93.33

24 93.33

26 93.33

28 96.67

30 96.67

accuracy (93.33%) could be still achieved by the proposed
algorithm.

Further, note that as mentioned previously, all the nu-
merical experimental results were obtained from the 250Hz
sampled ECG data. In general, for arrhythmia detection, se-
lecting the ECG sampling rate within [200, 250]Hz is appro-
priate [2–5, 7]. It is, however, interesting to speculate that
if one can get the similar results with a smaller sampling
frequency, the embedded real-time detection of lethal car-
diac arrhythmias may be implemented in a lower power-
consuming microprocessor. Table 5 shows the performance
of the proposed CM-SHT method achieved when the sam-
pling rate is reduced to 125Hz. It is revealed from Table 5
that similar to the previous case, there was only a misclassi-
fied VT episode (i.e., the VT episode was misclassified into
the VF class) and none of VF episodes were improperly iden-
tified as VT; however, in this case there was an inconclusive
episode seen in the algorithm evaluation, thus resulting in
about 93.33% overall predictive accuracy. Nevertheless, such
a performance can be still considered promising and accept-
able.

Although one may speculate that employing a higher
sampling rate might tax the capability of microprocessors for
online real-time processing, yet it is expectable that with the
steady improvement in microprocessor speed and comput-
ing power, this will not cause too much trouble. Therefore,
in the practical hardware implementation of the proposed al-
gorithm here, the sampling rate was still selected as 250Hz.
Descriptions of hardware settings will be in the next section.

4. HARDWARE SETTINGS

The algorithm was also implemented on a commercial em-
bedded DSP controller built by Spinel Technology Corpo-
ration, Taiwan (STC32 DSP Board). The onboard CPU is
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Table 5: Performance of the proposed CM-SHT method when the sampling rate is reduced to 125Hz.

Mean of CM Std. of CM α, β values Correct VF (%) Correct VT (%) Overall detection (%)

μVF = 0.3912 σVF = 0.0577 0.020 ∼ 0.025 10/10 = 100% 18/19 � 94.74% 28/30 � 93.33%
μVT = 0.2544 σVT = 0.0463 (one is inconclusive)
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Figure 6: SNR versus the overall detection accuracy.

a 32-bit, 50MHz floating-point digital signal processor (TI
TMS320C32). An environment of the STC32 software devel-
opment can be formed using the C3x code composer and
TI XDS510 emulator. In this hardware setting, raw ECG
signals were A/D converted with a resolution of 12 bits ev-
ery 4milliseconds (sampling frequency fs = 250Hz). The
TMS320C32 was then performing the bandpass prefiltering
(2–30Hz), the complexity calculations, as well as the sub-
sequent SHT for the task of decision making. Further, to
continuously monitor the detection results, a display inter-
face was also accomplished by Borland C++ Builder. It dis-
played the original ECG signals, CM values, and the final
detection results in PC. Detection results were indicated by
three flash colored lights as follows—green: “normal sinus
rhythm,” yellow: “VT,” and red: “VF.” Note that the process-
ing time of lethal arrhythmia detection task was adequately
short for beat to beat, permitting a real-time processing.

5. CONCLUSION

In this paper, a real-time ventricular arrhythmia detection al-
gorithm is proposed. In this algorithm, a sequential hypoth-
esis testing in conjunction with a complexity-measure-based
feature for VF and VT detection plays the central role of
the novel algorithm. As for its hardware realization, the al-
gorithm was also successfully implemented on a commercial
DSP board, functioning as a real-time ventricular arrhythmia
diagnostic system. To sum up, in addition to being principally

different from the time- and frequency-domain approaches,
the novel CM-SHT method had many advantages over the
conventional detection algorithms in many aspects such as
its reliability, simplicity, and feasibility in clinical use as well
as in practical AED implementation.
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