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This paper deals with the distributed constant false alarm rate (CFAR) radar detection of targets embedded in heavy-tailed Pear-
son distributed clutter. In particular, we extend the results obtained for the cell averaging (CA), order statistics (OS), and censored
mean level CMLD CFAR processors operating in positive alpha-stable (P&S) random variables to more general situations, specif-
ically to the presence of interfering targets and distributed CFAR detectors. The receiver operating characteristics of the greatest
of (GO) and the smallest of (SO) CFAR processors are also determined. The performance characteristics of distributed systems
are presented and compared in both homogeneous and in presence of interfering targets. We demonstrate, via simulation results,
that the distributed systems when the clutter is modelled as positive alpha-stable distribution offer robustness properties against
multiple target situations especially when using the “OR” fusion rule.
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1. INTRODUCTION

In radar detection, the goal is to automatically detect a tar-
get in a nonstationary noise and clutter while maintaining a
constant probability of false alarm. Classical detection using
amatched filter receiver and a fixed threshold is no longer ap-
plicable due to the nonstationary nature of the background
noise. Indeed, a small increase in the total noise power re-
sults in a corresponding increase of several orders of mag-
nitude in the probability of false alarm. Therefore, adaptive
threshold techniques are needed to maintain a constant false
alarm rate. Hence, CFAR detectors have been designed to set
the threshold adaptively according to local information on
the background noise. More specifically, CFAR detectors es-
timate the characteristics of the noise by processing a win-
dow of reference cells surrounding the cell under test. The
CA approach is such an adaptive procedure. However, the
CA detector has a severely degraded performance in clut-
ter edge and interfering targets echoes [1, 2]. Rohling modi-
fied the common CA-CFAR technique by replacing the arith-
metic averaging estimator of the clutter power by a newmod-
ule based on order statistics (OS) [3]. The OS-CFAR pro-
cedure protects against nonhomogeneous situations caused
by clutter edges and interfering targets (which is of inter-
est in this paper). Target detectability and robustness against

interfering targets can also be enhanced using distributed de-
tection [4, 5]. However, the design of a distributed detec-
tion is strongly affected by the clutter model assumed. Ac-
tual data, such as active sonar returns [6], sea clutter mea-
surements [7], and monostatic clutter from the US Air Force
Mountaintop Database [8], have been successfully modelled
with heavy-tailed distributions; the tails of these distribu-
tions showed a power-law or algebraic asymptote, which is
characteristic of the so-called alpha-stable family and was
contrasted with the exponentially decaying tails of the K dis-
tribution [9] and Weibull families. Indeed, alpha-stable pro-
cesses have to be effective in modelling many real-life engi-
neering problems such as outliers and impulsive signals [10].
The probability density function (pdf) of alpha-stable pro-
cesses does not have a closed form except for the cases α = 1
(Cauchy distribution), α = 1/2 (Levy or Pearson distribu-
tion) and α = 2 (Gaussian distribution), where α is the char-
acteristic exponent of the distribution. For this main reason,
Pearson is the distribution of interest here. This is further
justified by the fact that Pierce showed that the Pearson dis-
tribution closely models the modulation of certain sea clutter
returns [7]. Tsakalides et al. [11] studied the design and per-
formance of CFAR processors, notably OS, CA, and CMLD,
for the case of positive alpha-stable (P&S) measurements.
They showed that the processors studied give rise to a CFAR
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Figure 1: Block diagram of the CA, CAGO, and CASO-CFAR de-
tector structure.

detector for Pearson distributed heavy-tailed output signals.
Our contribution extends the results found in [11] to more
general situations. Namely, we consider two identical and dif-
ferent CFAR distributed detectors assuming positive alpha-
stable distributed data in interfering targets environment and
using the fusion rules “AND” and “OR.” The organization of
this paper is as follows: in Section 2, we briefly review the
development and the computation structure of CFAR tech-
niques. In Section 3, we derive the false alarm probabilities
of the CAGO and CASO CFAR processors for Pearson dis-
tributed heavy-tailed output signals. The detection probabil-
ities are computed by simulation method. In Section 4, we
study the distributed CFAR system with different combina-
tions in both absence and presence of three interfering tar-
gets. Finally, the results and conclusions are provided in Sec-
tions 5 and 6, respectively.

2. BASIC ASSUMPTION AND PROBLEM
FORMULATION

CFAR technique is a signal processing technique used in au-
tomatic radar detection system to control the false alarm rate
when the clutter parameters are unknown or slowly time
varying. The CFAR algorithm adjusts the detection thresh-
old on a cell by cell basis, so that, in clutter or noise interfer-
ence environments, the false alarm probability is kept con-
stant. In Figure 1, the local CA-CFAR detector block diagram
is shown. For a system where square-law detects the output
of a matched filter to obtain the test statistic, the problem can
be modelled as the following hypothesis testing problem:

H1 (target present) : Y = s + c,

H0 (target absent) : Y = c,
(1)

where s and c are the signal and clutter components, respec-
tively.

Implementing a generalized likelihood ratio test, the de-
cision for H0 or H1 is realized by the following thresholding

operation:

e(Y) =
⎧⎨
⎩
target present if Y ≥ S,

target absent if Y < S.
(2)

The threshold S is calculated as the product

S = T · Z, (3)

where Z is the estimate of the average clutter strength and
T is a scaling factor used to achieve a derived Pfa. We briefly
recall the single CA-CFAR results for the case of Pearson dis-
tributed data. Then, we extend the results to single greatest of
CAGO and single smallest of CASO CFAR for the same case.

3. ANALYSIS OF SINGLE DETECTORS

The analytical results for the probability of false alarm of sin-
gle CA, CAGO, and CASO-CFAR, when the cell samples fol-
low the Pearson distribution, are derived as follows.

3.1. Single CA-CFAR for Pearson distributed data

The output measurements follow the Pearson distribution.
It has been demonstrated that the CA-CFAR processor in
Figure 1 is a CFAR processor for Pearson distribution data by
showing that the false alarm probability Pfa is independent of
the dispersion γ of the measurements [11].

3.1.1. Probability of false alarm Pfa

Assume that X1, . . . ,XN follow the Pearson distribution with
probability density function (pdf) given by [11]

pXi(x) =
⎧⎪⎨
⎪⎩

γ√
2π

1
x3/2

e−γ2/2x, x ≥ 0,

0 otherwise,
(4)

where γ is the scale parameter of the distribution. Pfa indi-
cates the probability that a noise random variable Y0 is in-
terpreted as target echo during the thresholding decision (2).
This probability is given by

Pfa = Pr
{
Y0 ≥ T · Z}. (5)

The cell averaging (CA) CFAR method selects the average of
the reference cell values as a measure of the clutter level Z,
that is,

Z = ZCA = 1
N

N∑
i=1

Xi. (6)

The PCA
fa is expressed as

PCA
fa =

√
2N
π

∫∞
0
erf
(

y√
2T

)
e−Ny2/2dy, (7)

where

erf(y) = 2√
π

∫ y

0
e−t

2
dt. (8)
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The important conclusion from (7) is that the false alarm
probability is controlled by the scaling factor T and it does
not depend on the dispersion parameter γ of the Pearson dis-
tributed parent population. As a consequence, the CA CFAR
method may be considered as a CFAR method for Pearson
background.

3.1.2. Probability of detection

We consider the case of a Rayleigh fluctuating target with
parameter σs2 in a heavy-tailed background noise scenario
when the CFAR processor is presented by a square-law de-
tector. The probability of detection is given by

PCA
d = Pr

{
Y1 ≥ TZ

} =
∫∞
0
Pr
{
Y1 ≥ Tz

}
pZCA(z)dz. (9)

Exact analytical evaluation of this expression is not easy. In
fact, to specify Y1 under H1 would require specifying the in-
phase and quadrature components of both the clutter and the
useful signal, whereas only their amplitudes pdfs are given.
Therefore, we have to resort to computer simulation. Hence,
the test-cell measurement is considered as a scalar product of
the two vectors: the clutter and the useful signal, respectively.
So that

Y1 = s + c +
√
s · c · cos(ϕ), (10)

where ϕ is the angle between the vectors s and c and is uni-
formly distributed in [0,2π], and s and c are the signal and
clutter components, respectively.

Notice that, the detection probability is a function of the
clutter dispersion γ and the power parameter of the Rayleigh
fluctuation target σs.

3.2. Greatest-of (CAGO) CFAR

In this section, the clutter level is estimated by selecting the
greatest of the leading and lagging sets of the reference cells.
Therefore the statistic ZCAGO is given by

ZCAGO = max
(
Z1,Z2

)
, (11)

where Z1 is the average of the leading reference window, that
is,

Z1 =
(
2
N

) N/2∑
i=1

Xi, (12)

and Z2 is the average of the lagging reference window, that is,

Z2 =
(
2
N

) N∑
i=N/2

Xi. (13)

Likewise, Z1 and Z2 are Pearson distributed random vari-
ables since these are the average of the sum of N/2 Pearson
distributed random variables, respectively. The dispersion of
Z1, Z2 is equal to γZ1 =

√
N/2γXi. Hence, the pdf of Z1(Z2) is

given by

pZ1(z) =
⎧⎪⎨
⎪⎩
√
N/2γ√
2π

1
z3/2

e−Nγ2/4z, z ≥ 0,

0 otherwise,
(14)

and the corresponding pdf of Z1(Z2) is

PZ1 (z) =

⎧⎪⎪⎨
⎪⎪⎩
2

(
1− φ

(√
Nγ√
2z

))
, z ≥ 0,

0 otherwise.
(15)

In this case, the pdf of ZCAGO has the following formula [12]:

pZCAGO(z) = 2pZ1 (z)PZ1(z). (16)

The evaluation of the probability of false alarm Pfa for this
scheme gives

PCAGO
fa = Pr

{
Y0 ≥ TZ

}
=
∫∞
0
Pr
{
Y0 ≥ Tz

}
pZCAGO(z)dz,

(17)

PCAGO
fa = 2

√
N

π

∫∞
0
erf

(
y√
2T

)

×
(
1− erf

(√
N

2
y

))
e−N(y2/4)dy.

(18)

As we can see from (18), the false alarm probability is con-
trolled by the scaling factor T and it does not depend on
the dispersion parameter γ of the Pearson distributed par-
ent population. As a consequence, the CAGO-CFAR method
may be considered as a CFAR method for Pearson back-
ground.

3.3. Smallest-of (CASO) CFAR

In the CASO-CFAR scheme, the clutter level estimate is the
smallest of the sums of the leading and lagging sets of the
reference cells. That is,

ZCASO = min
(
Z1,Z2

)
. (19)

In this case, the pdf of ZCASO is given by [12]

pZCASO(z) = 2pZ1

(
1− PZ1 (z)

)
. (20)

The corresponding probability of false alarm is

PCASO
fa = Pr

{
Y0 ≥ TZ

}
=
∫∞
0
Pr
{
Y0 ≥ Tz

}
pZCASO(z)dz,

(21)

PCASO
fa = 2

√
N

π

∫∞
0
erf

(
y√
2T

)
erf

(√
N

2
y

)
e−N(y2/4)dy.

(22)

From (22), we see that CASO is also a CFARmethod for Pear-
son background.

If some interfering targets appear in both the leading and
lagging sets of the reference cells, the three detectors (CA,
CAGO and CASO-CFAR) are not optimal. They show a se-
vere degradation in detection performance. This remains a
major problem in detection. Target detectability can be en-
hanced using distributed detection. In the following, we will
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Figure 2: Decentralized detection scheme.

study the distributed CFAR systems and analyze their perfor-
mance. Namely, we consider two identical or different con-
stant false alarm rate (CFAR) distributed detectors assum-
ing positive alpha-stable distributed data in both the absence
and presence of interfering targets and using the fusion rules
“AND” and “OR.” The rational is to study the resistance of
the “OR” and “AND” fusion rules to undesired effects. It is
worth observing, via simulation results, that the combina-
tion of two different CFAR processors, such as CA-CAGO
gives larger gain and robustness against multiple targets.

4. DECENTRALIZED CFAR DETECTORS FOR
PEARSONDISTRIBUTED DATA

The scheme under consideration is depicted in Figure 2,
where the relevant symbols are also introduced. Specifically,
for i = 1, . . . ,M, with M the number of local detectors
employed, Fi is the ith local detector, Yi is the square en-
velope of the return from the test cell to the ith detec-
tor. It is assumed to follow a positive alpha-stable distri-
bution under Hypothesis H0, and Rayleigh fluctuating tar-
get plus a positive alpha-stable noise under Hypothesis H1

(presence of a target). Xi is the vector whose components
are the Ni square envelopes of the returns from the cells
in the reference window to the ith detector; the “AND” de-
cision rule consists of declaring the presence of a target
when all the remote sensors decide in favor of target pres-
ence while in the “OR” logic the overall decision is H1 if
any of the M detectors decides for the presence of a tar-
get.

If the fusion centre makes a decision according to the
“AND” logic, the overall system performance is

Pfa =
M∏
i=1

Pfai,

Pd =
M∏
i=1

Pdi.

(23)

When adopting the “OR” logic, it is

Pfa = 1−
M∏
i=1

(
1− Pfai

)
,

Pd = 1−
M∏
i=1

(
1− Pdi

)
.

(24)

We assume that the generalized signal-to-noise ratio (GSNR)
is the same at each sensor. The GSNR is defined in [11] as

GSNR = 20 log
σs
γ
, (25)

where σs is the parameter of the Rayleigh fluctuating target.
Let us consider the case of two distributed CA-CFAR

system operating in homogeneous Pearson distributed data,
with the same characteristics, that is, pCAfa 1 = pCAfa 2 = 10−4.
So that T1 = T2 = T . The probability of false alarm of each
sensor is

PCA
fa 1 =

√
2N1

π

∫∞
0
erf
(

y1√
2T1

)
e−N1 y12/2dy1,

PCA
fa 2 =

√
2N2

π

∫∞
0
erf
(

y2√
2T2

)
e−N2 y22/2dy2,

(26)

where N1, N2 are the number of reference cells in the two CA
CFAR detectors, respectively. By substituting (26) into (23)
we get the overall probability of false alarm for the “AND”
fusion rule; that is,

Pfa =
√

2N1

π

∫∞
0
erf
(

y1√
2T

)
e−N1 y12/2dy1

×
√

2N2

π

∫∞
0
erf
(

y2√
2T

)
e−N2 y22/2dy2

= 2
π

√
N1N2

∫∞
0
erf
(

y1√
2T

)
e−N1 y12/2dy1

×
∫∞
0
erf
(

y2√
2T

)
e−N2 y22/2dy2.

(27)

The overall probability of detection is the product of the two
partially detection probabilities PCA

d1 and PCA
d2 as shown in

(23):

Pd = PCA
d1 P

CA
d2 , (28)

where PCA
d1 and PCA

d2 are calculated by the simulation method
discussed above.

Likewise, when employing the “OR” fusion rule for the
same case and by applying (24), we find the overall probabil-
ity of false alarm and the overall probability of detection.

Similarly, we examine the performance of other combi-
nations, namely we consider two distributed CFAR systems
such that the detectors are different; notably the CA-CAGO
CFAR system and CA-CASOCFAR system. The overall prob-
ability of false alarm and the overall probability of detection
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for the “AND” and “OR” fusion rules are found by using (23)
and (24), respectively.

We note here that there does not seem to be a clear ad-
vantage in designing a distributed CFAR system using dif-
ferent sample sizes. However, the combination of different
sensors offers performance improvements and better robust-
ness against interfering targets. It is worth noting that almost
no gain is achieved when the “AND” fusion rule is used even
if we adopt a larger reference windows. Conversely, with the
“OR” logic a consistent gain can be attained. Also, we notice
that the combination and the increase in the number of sen-
sors are more effective than enlarging the reference windows,
as far as the detection probability is concerned. Hence, a large
number of detectors operating in homogeneous or nonho-
mogeneous positive alpha-stable background behave consid-
erably better than a single sensor when the “OR” fusion rule
is adopted.

5. RESULTS ANDDISCUSSIONS

To investigate the effectiveness of the analytical results, a sim-
ulation study based on Monte-Carlo counting procedure is
conducted. In Figure 3 the probabilities of detection PCA

d ,
PCAGO
d , and PCASO

d are plotted versus the generalized signal-
to-noise ratio (GSNR) for the probabilities of false alarm
PCA
fa = PCAGO

fa = PCASO
fa = 10−4, operating in homogeneous

Pearson distributed clutter. For the sake of comparison be-
tween the single CA, CAGO, and CASO-CFAR detectors,
we assume that these detectors have identical characteristics,
that is, equal Ni.

As expected, the CASOCFAR detector achieves better de-
tection probability than both the CA and CAGO CFAR de-
tectors, the performance of the CA is better than the CAGO
CFAR. At a GSNR > 90 dB, CA and CAGO-CFAR give the
same results. In the presence of three interfering targets with
equal generalized interference signal-to-noise ratio (GINR),
GINR1 = GINR2 = GINR3 = 50 dB, the performances of
the above detectors are evaluated when the probabilities of
false alarm equal PCA

fa = PCAGO
fa = PCASO

fa = 10−4. The de-
tection probabilities as a function of the primary GSNR are
shown in Figure 4. From this figure, we notice that an in-
tolerable performance degradation occurs in the CAGO and
CA schemes. This is due to an over estimation of the mean
power of the background, the CASO scheme has the best per-
formance in a multiple target situation. Therefore, the CASO
processor is capable of resolving multiple targets in the refer-
ence window when all the interfering targets appear in either
side of the cell under test. We notice here that the thresh-
old multipliers Ti are determined on the assumption that no
interfering targets are present in the cells of reference win-
dow. The threshold multipliers used to achieve a desired Pfa
(PCA

fa = PCAGO
fa = PCASO

fa = 10−4) for the three detectors are
computed by solving numerically (7), (18), and (22), respec-
tively. The results are summarised in Table 1. Table 1 demon-
strates that the CAGO exhibits the lowest threshold.

The performances under homogeneous Pearson environ-
ments, for two distributed CA CACFAR and the combina-
tion CA CAGOCFAR systems, are shown in Figures 5 and
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Table 1: The threshold multipliers Ti of the detectors CA, CAGO,
and CASO.

Detectors CA CAGO CASO

Thresholds Ti 1.560× 106 7.250× 105 9.885× 105
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Figure 5: Probability of detection of two distributed CA-CACFAR
system in homogeneous Pearson background, adopting the “AND”
and “OR” fusion rules. N1 = 32, N2 = 32. Pfa = 10−4.

6, respectively, in terms of the detection probability versus
the generalized signal-to-noise ratio (GSNR). The latter is as-
sumed to be equal at each sensor. A comparison between the
two classical fusion rules, “AND” and “OR,” reveals that the
“OR” logic is superior to the “AND” logic for all proposed
distributed system.

We can easily see, from Figure 7, that the robustness of
distributed CA CACFAR system against interfering targets
is better than the single CACFAR. These figures highlight
that it does not seem to be a clear advantage in design-
ing a distributed CFAR system using different samples sizes.
However, the combination of different sensors produces a
better performance than identical detectors and better ro-
bustness against interfering targets. It is worth noting that
almost no gain is achieved with the “AND” fusion rule, nei-
ther by adopting larger reference windows, nor by increasing
M (number of sensors). Conversely, with the “OR” logic a
consistent gain can be attained. We see also that the combi-
nation of different sensors is more effective than enlarging
the reference windows, as far as the detection probability is
concerned. Hence a large number of detectors, operating in
homogeneous Pearson background and in the presence of
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Figure 6: Probability of detection of two distributed CA CAGOC-
FAR system in homogeneous Pearson background adopting the
“AND” and “OR” fusion rules. N1 = N2 = 32. Pfa = 10−4.
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Figure 7: Probability of detection of two distributed CA CAC-
FAR system in homogeneous Pearson background and in pres-
ence of three interfering targets in one detector (GINR1 = GINR2

= GINR3 = 50 dB) adopting the “AND” and “OR” fusion rules.
N1 = 32, N2 = 16. Pfa = 10−4.

interfering targets, behave considerably better than a single
sensor when the “OR” fusion rule is adopted.

6. CONCLUSIONS

In this work, we have assessed the performance of decentral-
ized CFAR detectors in homogeneous positive alpha-stable
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operating environment and in the presence of interfering tar-
gets. The local sensors are assumed to be identical or different
CFAR processors taking their own decisions about the pres-
ence of a target. Such binary information is subsequently sent
to a fusion centre for the final decision which is taken accord-
ing to “AND” or “OR” fusion logic. In [11], the performance
of single CFAR detectors is addressed for the case of homo-
geneous Pearson background. However, as in many practical
situations, the radar system is expected to work in nonnom-
inal disturbance situations. This has motivated us to investi-
gate the performances in more general scenarios and extend
their results to distributed CFAR systems. Thus, we have con-
sidered the presence in the local sensor reference windows of
spurious targets. The performances assessment, conducted
via Monte Carlo simulations have shown that the distributed
systems, especially the combination of different CFAR pro-
cessors when the clutter is modelled as positive alpha-stable
measurements and using OR fusion rule, offer robustness
proprieties against multiple targets.
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