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Several authors have presented systems that estimate the audio similarity of two pieces of music through the calculation of a
distance metric, such as the Euclidean distance, between spectral features calculated from the audio, related to the timbre or
pitch of the signal. These features can be augmented with other, temporally or rhythmically based features such as zero-crossing
rates, beat histograms, or fluctuation patterns to form a more well-rounded music similarity function. It is our contention that
perceptual or cultural labels, such as the genre, style, or emotion of the music, are also very important features in the perception
of music. These labels help to define complex regions of similarity within the available feature spaces. We demonstrate a machine-
learning-based approach to the construction of a similarity metric, which uses this contextual information to project the calculated
features into an intermediate space where a music similarity function that incorporates some of the cultural information may be
calculated.
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1. INTRODUCTION

The rapid growth of digital media delivery in recent years
has led to an increase in the demand for tools and tech-
niques for managing huge music catalogues. This growth
began with peer-to-peer file sharing services, internet radio
stations, such as the Shoutcast network, and online music
purchase services such as Apple’s iTunes music store. Re-
cently, these services have been joined by a host of mu-
sic subscription services, which allow unlimited access to
very large music catalogues, backed by digital media compa-
nies or record labels, including offerings from Yahoo, Real-
Networks (Rhapsody), BTOpenworld, AOL, MSN, Napster,
Listen.com, Streamwaves, and Emusic. By the end of 2006,
worldwide online music delivery is expected to be a $2 billion
market (http://blogs.zdnet.com/ITFacts/?p=9375).

All online music delivery services share the challenge of
providing the right content to each user. A music purchase
service will only be able to make sales if it can consistently
match users to the content that they are looking for, and
users will only remain members of music subscription ser-
vices while they can find new music that they like. Owing to
the size of the music catalogues in use, the existing methods
of organizing, browsing, and describing online music collec-
tions are unlikely to be sufficient for this task. In order to

implement intelligent song suggestion, playlist generation
and audio content-based search systems for these services,
efficient and accurate systems for estimating the similarity of
two pieces of music will need to be defined.

1.1. Existing work in similaritymetrics

A number of methods for estimating the similarity of pieces
of music have been proposed and can be organized into three
distinct categories; methods based on metadata, methods
based on analysis of the audio content, and methods based
on the study of usage patterns related to a music example.

Whitman and Lawrence [1] demonstrated two similarity
metrics, the first based on the mining of textual music data
retrieved from the web and Usenet for language constructs,
the second based on the analysis of user’s music collection
cooccurrence data downloaded from the OpenNap network.
Hu et al. [2] also demonstrated an analysis of textual mu-
sic data retrieved from the Internet, in the form of music
reviews. These reviews were mined in order to identify the
genre of the music and to predict the rating applied to the
piece by a reviewer. This system can be easily extended to es-
timate the similarity of two pieces, rather than the similarity
of a piece to a genre.

http://blogs.zdnet.com/ITFacts/?p=9375
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The commercial application Gracenote Playlist [3] uses
proprietary metadata, developed by over a thousand in-
house editors, to suggest music and generate playlists. Sys-
tems based on metadata will only work if the required meta-
data is both present and accurate. In order to ensure this is
the case, Gracenote uses waveform fingerprinting technol-
ogy, and an analysis of existing metadata in a file’s tags, col-
lectively known as Gracenote MusicID [4], to identify exam-
ples allowing them to retrieve the relevant metadata from
their database. However, this approach will fail when pre-
sented with music that has not been reviewed by an editor
(as will any metadata-based technique), fingerprinted, or for
some reason fails to be identified by the fingerprint (e.g.,
if it has been encoded at a low bit rate, as part of a mix
or from a noisy channel). Shazam Entertainment [5] also
provides a music fingerprint identification service, for sam-
ples submitted by mobile phone. Shazam implements this
content-based search by identifying audio artefacts that sur-
vive the codecs used by mobile phones, and by matching
them to fingerprints in their database. Metadata for the track
is returned to the user along with a purchasing option. This
search is limited to retrieving an exact recording of a par-
ticular piece and suffers from an inability to identify similar
recordings.

Logan and Salomon [6] present an audio content-based
method of estimating the “timbral” similarity of two pieces
of music based on the comparison of a signature for each
track, formed by clustering of Mel-frequency cepstral coeffi-
cients (MFCCs) calculated for 30-millisecond frames of the
audio signal, with the K-means algorithm. The similarity of
the two pieces is estimated by the Earth mover’s distance
(EMD) between the signatures. Although this method ig-
nores much of the temporal information in the signal, it has
been successfully applied to playlist generation, artist identi-
fication, and genre classification of music.

Pampalk et al. [7] present a similar method applied to
the estimation of similarity between tracks, artist identifi-
cation and genre classification of music. The spectral fea-
ture set used is augmented with an estimation of the fluc-
tuation patterns of the MFCC vectors. Efficient classifica-
tion is performed using a nearest neighbour algorithm also
based on the EMD. Pampalk et al. [8] demonstrate the use
of this technique for playlist generation, and refine the gen-
erated playlists with negative feedback from user’s “skipping
behaviour.”

Aucouturier and Pachet [9] describe a content-based
method of similarity estimation also based on the calculation
of MFCCs from the audio signal. The MFCCs for each song
are used to train a mixture of Gaussian distributions which
are compared by sampling in order to estimate the “tim-
bral” similarity of two pieces. Objective evaluation was per-
formed by estimating how often pieces from the same genre
were the most similar pieces in a database. Results showed
that performance on this task was not very good, although
a second subjective evaluation showed that the similarity es-
timates were reasonably good. Aucouturier and Pachet also
report that their system identifies surprising associations be-
tween certain pieces often from different genres of music,

which they term the “Aha” factor. These associations may be
due to confusion between superficially similar timbres of the
type described in Section 1.2, which we believe are due to a
lack of contextual information attached to the timbres. Au-
couturier and Pachet define a weighted combination of their
similarity metric with a metric based on textual metadata, al-
lowing the user to increase or decrease the number of these
confusions. Unfortunately, the use of textual metadata elimi-
nates many of the benefits of a purely content-based similar-
ity metric.

Ragno et al. [10] demonstrate a different method of es-
timating similarity based on ordering information in what
they describe as expertly authored streams (EAS), which
might be any published playlist. The ordered playlists are
used to build weighted graphs, which are merged and tra-
versed in order to estimate the similarity of two pieces ap-
pearing in the graph. This method of similarity estimation
is easily maintained by the addition of new human-authored
playlists but will fail when presented with content that has
not yet appeared in a playlist.

1.2. Commonmistakesmade by similarity calculations

Initial experiments in the use of the aforementioned content-
based “timbral” music similarity techniques showed that the
use of simple distance measurements between sets of fea-
tures, or clusters of features, can produce a number of un-
fortunate errors, despite generally good performance. Er-
rors are often the result of confusion between superficially
similar timbres of sounds, which a human listener might
identify as being very dissimilar. A common example might
be the confusion of a classical lute timbre, with that of an
acoustic guitar string that might be found in folk, pop, or
rock music. These two sounds are relatively close together
in almost any acoustic feature space and might be identi-
fied as similar by a naı̈ve listener, but would likely be placed
very far apart by any listener familiar with western mu-
sic. This may lead to the unlikely confusion of rock music
with classical music, and the corruption of any playlist pro-
duced.

It is our contention that errors of this type indicate that
accurate emulation of the similarity perceived between two
examples by human listeners, based directly on the audio
content, must be calculated on a scale that is nonlinear with
respect to the distance between the raw vectors in the fea-
ture space. Therefore, a deeper analysis of the relationship
between the acoustic features and the “ad hoc” definition of
musical styles must be performed prior to estimating simi-
larity.

In the following sections, we explain our views on the
use of contextual or cultural labels such as genre in music
description, our goal in the design of a music similarity esti-
mator, and use detail existing work in the extraction of cul-
tural metadata. Finally, we introduce and evaluate a content-
based method of estimating the “timbral” similarity of musi-
cal audio, which automatically extracts and leverages cultural
metadata in the similarity calculation.
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1.3. Human use of contextual labels
inmusic description

We have observed that when human beings describe music,
they often refer to contextual or cultural labels such as mem-
bership of a period, genre, or style of music; with reference
to similar artists or the emotional content of the music. Such
content-based descriptions often refer to two or more labels
in a number of fields, for example the music of DamienMar-
ley has been described as “a mix of original dancehall reggae
with an R&B/hip hop vibe,”1 while “Feed me weird things”
by Squarepusher has been described as a “jazz track with
drum’n’bass beats at high bpm.”2 There are few analogies to
this type of description in existing content-based similarity
techniques. However, metadata-based methods of similarity
judgement often make use of genre metadata applied by hu-
man annotators.

1.4. Problemswith the use of human annotation

There are several obvious problems with the use of metadata
labels applied by human annotators. Labels can only be ap-
plied to known examples, so novel music cannot be analyzed
until it has been annotated. Labels that are applied by a single
annotator may not be correct or may not correspond to the
point of view of an end user. Amongst the existing sources of
metadata there is a tendency to try and define an “exclusive”
label set (which is rarely accurate) and only apply a single
label to each example, thus losing the ability to combine la-
bels in a description, or to apply a single label to an album of
music, potentially mislabelling several tracks. Finally, there is
no degree of support for each label, as this is impossible to
establish for a subjective judgement, making accurate com-
bination of labels in a description difficult.

1.5. Design goals for a similarity estimator

Our goal in the design of a similarity estimator is to build a
system that can compare songs based on content, using re-
lationships between features and cultural or contextual in-
formation learned from a labelled data set (i.e., producing
greater separation between acoustically similar instruments
from different contexts or cultures). In order to implement
efficient search and recommendation systems, the similarity
estimator should be efficient at application time, however, a
reasonable index building time is allowed.

The similarity estimator should also be able to develop
its own point of view based on the examples it has been
given. For example, if fine separation of classical classes is re-
quired (baroque, romantic, late romantic, modern), the sys-
tem should be trained with examples of each class, plus ex-
amples from other more distant classes (rock, pop, jazz, etc.)
at coarser granularity. This would allow definition of systems

1 http://cd.ciao.co.uk/Welcome To Jamrock Damian Marley Review
5536445.

2 http://www.bbc.co.uk/music/experimental/reviews/squarepusher go.
shtml.

for tasks or users, for example, allowing a system to mimic
a user’s similarity judgements, by using their own music col-
lection as a starting point. For example, if the user only listens
to dance music, they will care about fine separation of rhyth-
mic or acoustic styles and will be less sensitive to the nuances
of pitch classes, keys, or intonations used in classical music.

2. LEARNINGMUSICAL RELATIONSHIPS

Many systems for the automatic extraction of contextual or
cultural information, such as genre or artist metadata, from
musical audio have been proposed, and their performances
are estimated as part of the annual Music Information Re-
trieval Evaluation eXchange (MIREX) (see Downie et al.
[11]). All of the content-based music similarity techniques,
described in Section 1.1, have been used for genre classifi-
cation (and often the artist identification task) as this task
is much easier to evaluate than the similarity between two
pieces, because there is a large amount of labelled data al-
ready available, whereas music similarity data must be pro-
duced in painstaking human listening tests. A full survey of
the state of the art in this field is beyond the scope of this
paper; however, the MIREX 2005 Contest results [12] give
a good overview of each system and its corresponding per-
formance. Unfortunately, the tests performed are relatively
small and do not allow us to assess whether the models over-
fitted an unintended characteristic making performance esti-
mates overoptimistic. Many, if not all of these systems, could
also be extended to emotional content or style classification
of music; however, there is much less usable metadata avail-
able for this task and so few results have been published.

Each of these systems extracts a set of descriptors from
the audio content, often attempting to mimic the known
processes involved in the human perception of audio. These
descriptors are passed into some form of machine learning
model which learns to “perceive” or predict the label or la-
bels applied to the examples. At application time, a novel au-
dio example is parameterized and passed to themodel, which
calculates a degree of support for the hypothesis that each la-
bel should be applied to the example.

The output label is often chosen as the label with the
highest degree of support (see Figure 1(a)); however, a num-
ber of alternative schemes are available as shown in Figure 1.
Multiple labels can be applied to an example by defining a
threshold for each label, as shown in Figure 1(b), where the
outline indicates the thresholds that must be exceeded in or-
der to apply a label. Selection of the highest-peak abstracts
information in the degrees of support which could have been
used in the final classification decision. One method of lever-
aging this information is to calculate a “decision template”
(see Kuncheva [13, pages 170–175]) for each class of audio
(Figures 1(c) and 1(d)), which is normally an average profile
for examples of that class. A decision is made by calculating
the distance of a profile for an example from the available
“decision templates” (Figures 1(e) and 1(f)) and by select-
ing the closest. Distance metrics used include the Euclidean
and Mahalanobis distances. This method can also be used to
combine the output from several classifiers, as the “decision

http://cd.ciao.co.uk/ Welcome_To_Jamrock_Damian_Marley__Review_5536445
http://cd.ciao.co.uk/ Welcome_To_Jamrock_Damian_Marley__Review_5536445
http://www.bbc.co.uk/music/experimental/reviews/ squarepusher_go.shtml
http://www.bbc.co.uk/music/experimental/reviews/ squarepusher_go.shtml
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(a) Highest peak selected
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(b) Peaks above thresholds selected
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(c) Decision template 1 (drum’ n’ bass)
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(d) Decision template 2 (jungle)
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(e) Distance from decision template 1
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(f) Distance from decision template 2

Figure 1: Selecting an output label from continuous degrees of support.

template” can be very simply extended to contain a degree of
support for each label from each classifier. Even when based
on a single classifier, a decision template can improve the per-
formance of a classification system that outputs continuous
degrees of support, as it can help to resolve common confu-
sions where selecting the highest peak is not always correct.
For example, drum and bass tracks always have a similar de-
gree of support to jungle music (being very similar types of
music); however, jungle can be reliably identified if there is

also a high degree of support for reggae music, which is un-
common for drum and bass profiles.

3. MODEL-BASEDMUSIC SIMILARITY

If comparison of degree of support profiles can be used to
assign an example to the class with the most similar av-
erage profile in a decision template system, it is our con-
tention that the same comparison could be made between
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Figure 2: Spectral irregularity calculation.

two examples to calculate the distance between their contexts
(where the context might include information about known
genres, artists, or moods etc.). For simplicity, we will describe
a system based on a single classifier and a “timbral” feature
set; however, it is simple to extend this technique to multiple
classifiers, multiple label sets (genre, artist, or mood), and
feature sets/dimensions of similarity.

Let Px = {cx0, . . . , cxn} be the profile for example x, where
cxi is the probability returned by the classifier that example x
belongs to class i, and

∑n
i=1 c

x
i = 1, which ensures that sim-

ilarities returned are in the range [0 : 1]. The similarity SA,B
between two examples A and B is estimated as one minus the
Euclidean distance between their profiles PA and PB and is
defined as follows:

SA,B = 1−
√
√
√
√

n∑

i=1

(
cAi − cBi

)2
. (1)

The contextual similarity score SA,B returnedmay be used
as the final similarity metric or may form part of a weighted
combination with another metric based on the similarity of
acoustic features or textual metadata. In our own subjective
evaluations, we have found that this metric gives acceptable
performance when used on its own.

3.1. Parameterization ofmusical audio

In order to train the genre classification models used in the
model-based similarity metrics, the audio must be prepro-
cessed and a set of descriptors extracted. The audio signal is
divided into a sequence of 50% overlapping, 23millisecond
frames, and a set of novel features collectively known as Mel-
frequency spectral irregularities (MFSIs) are extracted to de-
scribe the timbre of each frame of audio. MFSIs are calcu-
lated from the output of a Mel-frequency scale filter bank
and are composed of two sets of coefficients, half describ-
ing the spectral envelope and half describing its irregularity.
The spectral features are the same as Mel-frequency cepstral
coefficients (MFCCs) without the discrete cosine transform
(DCT).

The irregularity coefficients are similar to the octave-
scale spectral contrast feature as described by Jiang et al.
[14], as they include a measure of how different the signal
is from white noise in each band. This allows us to differ-
entiate frames from pitched and noisy signals that may have
the same spectrum, such as string instruments and drums.

Our contention is that this measure comprises important
psychoacoustic information which can provide better audio
modelling than MFCCs. In our tests, the best audio mod-
elling performance was achieved with the same number of
bands of irregularity components as MFCC components,
perhaps because they are often being applied to complex
mixes of timbres and spectral envelopes. MFSI coefficients
are calculated by estimating the difference between the white
noise FFT magnitude coefficients that would have produced
the spectral coefficient in each band, and the actual coeffi-
cients that produced it. Higher values of these coefficients
indicate that the energy was highly localized in the band and
therefore would have sounded more pitched than noisy.

The features are calculated with 16 filters to reduce
the overall number of coefficients. We have experimented
with using more filters and a principal components analy-
sis (PCA) or DCT of each set of coefficients, to reduce the
size of the feature set, but found performance to be similar
using less filters. This property may not be true in all mod-
els as both the PCA and DCT reduce both noise within and
covariance between the dimensions of the features as do the
transformations used in our models (see Section 3.2), reduc-
ing or eliminating this benefit from the PCA/DCT.

An overview of the spectral irregularity calculation is
given in Figure 2.

As a final step, an onset detection function is calculated
and used to segment the sequence of descriptor frames into
units corresponding to a single audio event, as described by
West and Cox in [15]. The mean and variance of the descrip-
tors are calculated over each segment, to capture the tem-
poral variation of the features. The sequence of mean and
variance vectors is used to train the classification models.

The Marsyas [16] software package, a free software
framework for the rapid deployment and evaluation of com-
puter audition applications, was used to parameterise the
music audio for the Marsyas-based model. A single 30-
element summary feature vector was collected for each song.
The feature vector represents timbral texture (19 dimen-
sions), rhythmic content (6 dimensions), and pitch content
(5 dimensions) of the whole file. The timbral texture is rep-
resented by means and variances of the spectral centroid,
rolloff, flux and zero crossings, the low-energy component,
and the means and variances of the first five MFCCs (ex-
cluding the DC component). The rhythmic content is repre-
sented by a set of six features derived from the beat histogram
for the piece. These include the period and relative amplitude
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of the two largest histogram peaks, the ratio of the two largest
peaks, and the overall sum of the beat histogram (giving an
indication of the overall beat strength). The pitch content is
represented by a set of five features derived from the pitch
histogram for the piece. These include the period of the max-
imum peak in the unfolded histogram, the amplitude and
period of the maximum peak in the folded histogram, the in-
terval between the two largest peaks in the folded histogram,
and an overall confidence measure for the pitch detection.
Tzanetakis and Cook [17] describe the derivation and per-
formance of Marsyas and this feature set in detail.

3.2. Candidatemodels

We have evaluated the use of a number of different models,
trained on the features described above, to produce the clas-
sification likelihoods used in our similarity calculations, in-
cluding Fisher’s criterion linear discriminant analysis (LDA)
and a classification and regression tree (CART) of the type
proposed by West and Cox in [15] andWest [18], which per-
forms a multiclass linear discriminant analysis and fits a pair
of single Gaussian distributions in order to split each node in
the CART tree. The performance of this classifier was bench-
marked during the 2005 Music Information Retrieval Eval-
uation eXchange (MIREX) (see Downie et al. [11]) and is
detailed by Downie in [12].

The similarity calculation requires each classifier to re-
turn a real-valued degree of support for each class of au-
dio. This can present a challenge, particularly as our param-
eterization returns a sequence of vectors for each example
and some models, such as the LDA, do not return a well-
formatted or reliable degree of support. To get a useful degree
of support from the LDA, we classify each frame in the se-
quence and return the number of frames classified into each
class, divided by the total number of frames. In contrast, the
CART-based model returns a leaf node in the tree for each
vector and the final degree of support is calculated as the
percentage of training vectors from each class that reached
that node, normalized by the prior probability for vectors of
that class in the training set. The normalization step is nec-
essary as we are using variable-length sequences to train the
model and cannot assume that we will see the same distri-
bution of classes or file lengths when applying the model.
The probabilities are smoothed using Lidstone’s law [19] (to
avoid a single spurious zero probability eliminating all the
likelihoods for a class), the log taken and summed across all
the vectors from a single example (equivalent to multiplica-
tion of the probabilities). The resulting log likelihoods are
normalized so that the final degrees of support sum to 1.

3.3. Similarity spaces produced

The degree-of-support profile for each song in a collection,
in effect, defines a new intermediate feature set. The interme-
diate features pinpoint the location of each song in a high-
dimensional similarity space. Songs that are close together
in this high-dimensional space are similar (in terms of the
model used to generate these intermediate features), while
songs that are far apart in this space are dissimilar. The in-

termediate features provide a very compact representation of
a song in similarity space. The LDA- and CART-based fea-
tures require a single floating-point value to represent each
of the ten genre likelihoods, for a total of eighty bytes per
song which compares favourably to the Marsyas feature set
(30 features or 240 bytes), or MFCC mixture models (typi-
cally on the order of 200 values or 1600 bytes per song).

A visualization of this similarity space can be a useful
tool for exploring a music collection. To visualize the sim-
ilarity space, we use a stochastically based implementation
[20] of multidimensional scaling (MDS) [21], a technique
that attempts to best represent song similarity in a low-
dimensional representation. The MDS algorithm iteratively
calculates a low-dimensional displacement vector for each
song in the collection to minimize the difference between the
low-dimensional and the high-dimensional distances. The
resulting plots represent the song similarity space in two or
three dimensions. In the plots in Figure 3, each data point
represents a song in similarity space. Songs that are closer
together in the plot are more similar according to the corre-
sponding model than songs that are further apart in the plot.

For each plot, about one thousand songs were chosen at
random from the test collection. For plotting clarity, the gen-
res of the selected songs were limited to one of “rock,” “jazz,”
“classical,” and “blues.” The genre labels were derived from
the ID3 tags of the MP3 files as assigned by the music pub-
lisher.

Figure 3(a) shows the 2-dimensional projection of the
Marsyas feature space. From the plot, it is evident that the
Marsyas-based model is somewhat successful at separating
classical from rock, but is not very successful at separating
jazz and blues from each other or from rock and classical
genres.

Figure 3(b) shows the 2-dimensional projection of the
LDA-based genre model similarity space. In this plot we can
see that the separation between classical and rock music is
much more distinct than with the Marsyas model. The clus-
tering of jazz has improved, centering in an area between
rock and classical. Still, blues has not separated well from the
rest of the genres.

Figure 3(c) shows the 2-dimensional projection of the
CART-based genre model similarity space. The separation
between rock, classical, and jazz is very distinct, while blues
is forming a cluster in the jazz neighbourhood and another
smaller cluster in a rock neighbourhood. Figure 4 shows two
views of a 3-dimensional projection of this same space. In
this 3-dimensional view, it is easier to see the clustering and
separation of the jazz and the blues data.

An interesting characteristic of the CART-based visual-
ization is that there is spatial organization even within the
genre clusters. For instance, even though the system was
trained with a single “classical” label for all Western art mu-
sic, different “classical” subgenres appear in separate areas
within the “classical” cluster. Harpsichordmusic is near other
harpsichord music while being separated from choral and
string quartet music. This intracluster organization is a key
attribute of a visualization that is to be used for music collec-
tion exploration.
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Figure 3: Similarity spaces produced by (a) Marsyas features, (b)
an LDA genre model, and (c) a CART-based model.
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Figure 4: Two views of a 3D projection of the similarity space pro-
duced by the CART-based model.

4. EVALUATINGMODEL-BASEDMUSIC SIMILARITY

4.1. Challenges

The performance of music similarity metrics is particularly
hard to evaluate as we are trying to emulate a subjective per-
ceptual judgement. Therefore, it is both difficult to achieve a
consensus between annotators and nearly impossible to ac-
curately quantify judgements. A common solution to this
problem is to use the system one wants to evaluate to per-
form a task, related to music similarity, for which there al-
ready exists ground-truth metadata, such as classification of
music into genres or artist identification. Care must be taken
in evaluations of this type as overfitting of features on small
test collections can give misleading results.

4.1.1. Data set

The algorithms presented in this paper were evaluated using
MP3 files from the Magnatune collection [22]. This collec-
tion consists of 4510 tracks from 337 albums by 195 artists
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Table 1: Genre distribution for Magnatune data set.

Genre Number Genre Number

Acid 9 Other 8

Ambient 156 Pop 42

Blues 113 Punk 101

Celtic 24 Punk Rock 37

Classical 1871 Retro 14

Electronic 529 Rock 486

Ethnic 600 Techno 10

Folk 71 Trance 9

Hard rock 52 Trip-Hop 7

Industrial 29 Unknown 17

Instrumental 11 New Age 202

Jazz 64 Metal 48

Table 2: Genre distribution used in training models.

Genre Training instances

Ambient 100

Blues 100

Classical 250

Electronic 250

Ethnic 250

Folk 71

Jazz 64

New age 100

Punk 100

Rock 250

representing twenty four genres. The overall genre distribu-
tions are shown in Table 1.

The LDA and CART models were trained on 1535 exam-
ples from this database using the 10 most frequently occur-
ring genres. Table 2 shows the distribution of genres used in
training the models. These models were then applied to the
remaining 2975 songs in the collection in order to generate a
degree-of-support profile vector for each song. The Marsyas
model was generated by collecting the 30 Marsyas features
for each of the 2975 songs.

4.2. Evaluationmetric

4.2.1. Distancemeasure statistics

We first use a technique described by Logan and Salomon
[6] to examine some overall statistics of the distance mea-
sure. Table 3 shows the average distance between songs for
the entire database of 2975 songs. We also show the average
distance between songs of the same genre, songs by the same
artist, and songs on the same album. FromTable 3 we see that
all three models correctly assign smaller distances to songs in
the same genre, than the overall average distance, with even
smaller distances assigned for songs by the same artist on the

Table 3: Statistics of the distance measure.

Average distance between songs

Model All songs Same genre Same artist Same album

Marsyas 1.17 1.08 0.91 0.84

LDA 1.22 0.72 0.59 0.51

CART 1.21 0.60 0.48 0.38

Table 4: Average number of closest songs with the same genre.

Model Closest 5 Closest 10 Closest 20

Marsyas 2.57 4.96 9.53

LDA 2.77 5.434 10.65

CART 3.01 6.71 13.99

Table 5: Average number of closest songs with the same artist.

Model Closest 5 Closest 10 Closest 20

Marsyas 0.71 1.15 1.84

LDA 0.90 1.57 2.71

CART 1.46 2.60 4.45

Table 6: Average number of closest songs occurring on the same
album.

Model Closest 5 Closest 10 Closest 20

Marsyas 0.42 0.87 0.99

LDA 0.56 0.96 1.55

CART 0.96 1.64 2.65

same album. The LDA- and CART-based models assign sig-
nificantly lower genre, artist, and album distances compared
to the Marsyas model, confirming the impression given in
Figure 2 that the LDA- and CART-based models are doing a
better job of clustering the songs in a way that agrees with the
labels and possibly human perceptions.

4.2.2. Objective relevance

We use the technique described by Logan and Salomon [6]
to examine the relevance of the topN songs returned by each
model in response to a query song. We examine three objec-
tive definitions of relevance: songs in the same genre, songs
by the same artist, and songs on the same album. For each
song in our database, we analyze the top 5, 10, and 20 most
similar songs according to each model.

Tables 4, 5, and 6 show the average number of songs re-
turned by each model that has the same genre, artist, and
album label as the query song. The genre for a song is deter-
mined by the ID3 tag for the MP3 file and is assigned by the
music publisher.
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Table 7: Time required to calculate two-million distance.

Model Time

Marsyas 0.77 seconds

LDA 0.41 seconds

CART 0.41 seconds

4.2.3. Runtime performance

An important aspect of a music recommendation system is
its runtime performance on large collections of music. Typ-
ical online music stores contain several million songs. A vi-
able song similarity metric must be able to process such a
collection in a reasonable amount of time. Modern, high-
performance text search engines such as Google have condi-
tioned users to expect query-response times of under a sec-
ond for any type of queries. A music recommender system
that uses a similarity distance metric will need to be able to
calculate on the order of two-million-song distances per sec-
ond in order to meet the user’s expectations of speed. Table 7
shows the amount of time required to calculate two million
distances. Performance data was collected on a system with a
2GHz AMD Turion 64 CPU running the Java HotSpot(TM)
64-Bit Server VM (version 1.5).

These times compare favourably to stochastic distance
metrics such as a Monte Carlo sampling approximation.
Pampalk et al. [7] describe a CPU performance-optimized
Monte Carlo system that calculates 15554 distances in 20.98
seconds. Extrapolating to two-million-distance calculations
yields a runtime of 2697.61 seconds or 6580 times slower
than the CART-based model.

Another use for a song similarity metric is to create
playlists on handheld music players such as the iPod. These
devices typically have slow CPUs (when compared to desk-
top or server systems), and limited memory. A typical hand
held music player will have a CPU that performs at one hun-
dredth the speed of a desktop system. However, the num-
ber of songs typically managed by a handheld player is also
greatly reduced. With current technology, a large-capacity
player will manage 20 000 songs. Therefore, even though the
CPU power is one hundred times less, the search space is one
hundred times smaller. A system that performs well indexing
a 2 000 000 song database with a high-end CPU should per-
form equally well on the much slower handheld device with
the correspondingly smaller music collection.

5. CONCLUSIONS

We have presented improvements to a content-based, “tim-
bral” music similarity function that appears to produce
much better estimations of similarity than existing tech-
niques. Our evaluation shows that the use of a genre classi-
fication model, as part of the similarity calculation, not only
yields a higher number of songs from the same genre as the
query song, but also a higher number of songs from the same
artist and album. These gains are important as the model was

not trained on this metadata, but still provides useful infor-
mation for these tasks.

Although this is not a perfect evaluation, it does indicate
that there are real gains in accuracy to be made using this
technique, coupled with a significant reduction in runtime.
An ideal evaluation would involve large-scale listening tests.
However, the ranking of a large music collection is difficult
and it has been shown that there is large potential for overfit-
ting on small test collections [7]. At present, the most com-
mon form of evaluation of music similarity techniques is the
performance on the classification of audio into genres. These
experiments are often limited in scope due to the scarcity of
freely available annotated data and do not directly evaluate
the performance of the system on the intended task (genre
classification being only a facet of audio similarity). Alterna-
tives should be explored for future work.

Further work on this technique will evaluate the exten-
sion of the retrieval system to likelihoods from multiple
models and feature sets, such as a rhythmic classification
model, to form a more well-rounded music similarity func-
tion. These likelihoods will either be integrated by simple
concatenation (late integration) or through a constrained re-
gression on an independent data set (early integration) [13].
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