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The ergodic capacity of MIMO frequency-flat and -selective channels depends greatly on the eigenvalue distribution of spatial cor-
relation matrices. Knowing the eigenstructure of correlation matrices at the transmitter is very important to enhance the capacity
of the system. This fact becomes of great importance in MIMO wireless systems where because of the fast changing nature of the
underlying channel, full channel knowledge is difficult to obtain at the transmitter. In this paper, we first investigate the effect of
eigenvalues distribution of spatial correlationmatrices on the capacity of frequency-flat and -selective channels. Next, we introduce
a practical scheme known as linear precoding that can enhance the ergodic capacity of the channel by changing the eigenstructure
of the channel by applying a linear transformation. We derive the structures of precoders using eigenvalue decomposition and
linear algebra techniques in both cases and show their similarities from an algebraic point of view. Simulations show the ability of
this technique to change the eigenstructure of the channel, and hence enhance the ergodic capacity considerably.
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1. INTRODUCTION

It has been shown that the capacity of a MIMO system is
greatly reduced by spatial correlation in the underlying chan-
nel [1, 2]. Spatial correlation can reduce the rank of the chan-
nel matrix, and hence greatly surpasses the multiplexing gain
of a MIMO system. Various techniques that have been pro-
posed in the literature to reduce the correlation effects are
based on two main approaches. One aims to avoid corre-
lation in the channel by antenna beamforming [3, 4]. The
other tries to cancel the existing channel correlation by suit-
able methods at the transmitter or receiver. In this paper,
our focus is on the linear precoding technique based on the
knowledge of correlation at the transmitter, aiming to in-
crease the ergodic capacity of fading channels by modifying
the eigenvalue spread of the channel correlation matrices.

Linear precoder design in MIMO systems is a relatively
simple (in term of implementation and design complexity)
strategy that tries to improve the transmission quality and
rate by optimal allocation of resources such as power and
bits over multiple antennas, based on the channel properties.
Design of the precoders based on full channel knowledge for
MIMO systems in frequency-flat and -selective channels has

been investigated by many works. For a detailed overview on
the designs for frequency-flat channels, see [5, 6]. While we
see a number of different precoder structures for frequency-
flat fading channel proposed in the literature, there are fewer
papers addressing MIMO precoding designs in a frequency-
selective fading environment [7]. In designs based on full
channel knowledge, it is assumed that the transmitter has
the instantaneous channel information and based on this
information, a metric related to performance, such as pair-
wise error probability (PEP) or minimummean-square error
(MMSE) or rate (ergodic capacity or probability of outage),
is defined and optimized by selection of proper linear pre-
coder.

In a fast fading environment, however, the assumption of
full channel knowledge at the transmitter is no longer real-
istic due to the finite delay in channel response estimation
and reporting. Hence, it is more reasonable to assume that
the transmitter knows only partial channel knowledge such
as spatial correlation information, that is, transmit and re-
ceive correlation matrices.

Optimal precoding designs using PEP criterion based on
transmit and receive correlation matrices were presented in
[8, 9], respectively. In [10], optimal precoding designs based
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on both transmit and receive correlation matrices were de-
veloped for three different criteria, that is, PEP, MMSE, and
ergodic capacity. The results indicate that the optimal pre-
coder structures for these criteria are very similar. All of the
above designs are for flat fading channels.

In this paper, we investigate the channel correlation
effects on the capacity of frequency-flat and frequency-
selective fading channels from an algebraic viewpoint and
develop the corresponding linear precoding structures to
maximize their ergodic capacity. We show that the eigen-
values of the correlation matrices play a key role in the er-
godic capacity of fading channels. In particular, the effect
of correlation on the capacity of the system becomes more
pronounced with increase in the eigenvalue spread of the
spatial correlation matrices. Therefore, in general, our focus
is to find how we can modify the eigenvalues of the chan-
nel correlation matrices to enhance the capacity. Based on
linear algebraic structures of frequency-flat and frequency-
selective fading MIMO channels, we construct suitable ana-
lytical models to include channel spatial correlations in both
cases, and derive the precoding matrix structures that can
maximize their ergodic channel capacity. In both cases, the
precoding matrices are closely related to the eigenstructures
(eigenvalues and eigenvectors) of spatial correlation matri-
ces. We further show that the structure of the precoder in the
frequency-flat case is an eigenbeamformer with beams point-
ing to the eigenmodes of the transmit correlation matrix. For
a frequency-selective fading channel with L independent ef-
fective paths, the precoder can be constructed as a number of
parallel precoders for frequency-flat fading channels. In this
sense, there is a kind of duality between precoder design for
frequency-flat and -selective channels.

The rest of this paper is organized as follows. In Section 2,
we consider the case of frequency-flat fading channels. The
so-called Kronecker model is introduced to represent the
spatial correlation effects in MIMO system. Based on this
channel model, we investigate the effects of eigenvalues of
spatial correlation matrix and their spread on the ergodic
channel capacity and develop the corresponding precoding
structure based on the eigenstructure of the channel spatial
correlation matrix in order to maximize the ergodic capacity.
In Section 3, we consider the case of frequency-selective fad-
ing channels. We develop a comprehensive linear algebraic
model of a frequency-selective fading channel with L effective
paths in terms of channel correlation matrices. Furthermore,
we analyze the effects of the eigenstructures of the channel
correlation matrices on the ergodic capacity of a frequency-
selective fading channel and develop the optimum precoder
based on the eigenstructures of spatial correlation matrices
of L effective channel paths for maximum ergodic capacity.
It is shown that the structure includes L parallel precoders,
each for one frequency-flat fading channel path, with specific
power loadings. Section 4 presents illustrative examples with
numerical results and plots. The effects of eigenvalues of spa-
tial correlation matrices on the capacity of both frequency-
flat and frequency-selective fading channels in various con-
ditions are presented. The effects of precoding on the eigen-
value spreads of the channel correlation matrices are also

shown. Furthermore, performance in terms of achievable er-
godic capacity versus SNR of the proposed precoders is eval-
uated and compared with that of systems using no precoding
in various scenarios by means of simulation. It is shown that
the precoders perform well in changing the eigenstructure
(mainly eigenvalue spread) of the channels in favor of chan-
nel capacity. In other words, the precoders are capable of pro-
viding a considerable capacity gain in different propagation
scenarios by changing the characteristics of the channel cor-
relation matrices. Finally, Section 5 includes with concluding
remarks.

2. FREQUENCY-FLAT FADING CHANNEL

2.1. Systemmodel

Consider a MIMO transmission system over a frequency-flat
fading channel, using transmitter and receiver equipped with
M and N antennas, respectively. The discrete-time wireless
MIMO fading channel impulse response can be assumed to
be an N ×M matrix H and the system model (input-output
relationship) at the kth time instant can be written as

y(k) = H(k) · s(k) + n(k), (1)

where s[k] is the transmittedM × 1 data vector with statisti-
cally independent entries and y[k] and n[k] denote theN×1
received and noise vectors, respectively. We assume that the
elements ofH and n are complex Gaussian random variables
with 1/2 variance per dimension, and E{nnH} = σ2nIN , where
σ2n is the noise variance and IN is the identity matrix of size
N . Besides, E{·} denotes expectation and superscript H is
Hermitian (conjugate transpose) operator.

For simplicity, we assume the receiver (e.g., mobile unit)
to be surrounded by local scatterers so that fading at the mo-
bile unit is spatially uncorrelated while transmitter (e.g., base
station) is located in a high altitude, and therefore the fading
is correlated at base station. However, it is straightforward to
generalize the model to the case when both transmitter and
receiver are spatially correlated.1 Due to the assumed spatial
correlation at transmit side, the elements of each row of H
are correlated and for each row, we can write

RT = E
{
hHi hi

}
, i = 0 · · ·N − 1, (2)

where hi is the ith row of H. RT is theM ×M transmit non-
negative, semidefinite correlation matrix, and hence can be
represented as RT = R1/2

T RH/2
T (Choleski factorization). Sub-

sequently, the channel matrixH can be represented as

H = GR1/2
T , (3)

where G is an uncorrelated N × M matrix with i.i.d. zero-
mean normalized Gaussian distributed entries, that is, G ∼

CN(0, 1). The model proposed here is usually known as Kro-
necker model in the related literature [11].

1 For a more detailed analysis including receive correlation, see [10].
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2.2. Effect of correlation

We start by defining the mutual information in each channel
use. We assume an independent and invariant realization of
the channel matrix in each channel. Using (1), the mutual
information of such a system is defined as [12, 13]

I(s; y) = log
[
det
(
IN +

1
σ2n

HΣHH
)]

, (4)

where Σ is the M ×M covariance matrix of Gaussian input
x with a maximum power limit due to the total power limi-
tation at transmitter, that is, tr(Σ) ≤ P. Note that the instan-
taneous capacity of the system is defined as the maximum of
mutual information over all covariance matrices Σ that sat-
isfy the power constraint, and the ergodic capacity is the en-
semble average over instantaneous capacity.

In the following analysis, for simplicity we assume an
equal power allocation Σ = (P/N)IM . Based on this assump-
tion, the mutual information in (4) can be written as

I(s; y) = log
[
det
(
IN +

P

Nσ2n
HHH

)]
. (5)

This is in fact the instantaneous channel capacity when trans-
mitter has no knowledge about the channel. Our objective is
to understand the effect of transmit correlationmatrix (more
specifically its eigenvalues) on the ergodic capacity of the sys-
tem.

Lemma 1. Instantaneous mutual information has the follow-
ing distribution:

I ∼ log det
(
IM +

P

Nσ2n
ΔGHG

)
, (6)

where Δ = diag{δi(RT)}M−1i=0 , that is, δi’s are the eigenvalues of
transmit correlation matrix.

Proof. Substituting H from (3) into (5) will result in

I = log
[
det
(
IN +

P

Nσ2n
GRTGH

)]
. (7)

By applying the eigenvalue decomposition of RT = ΦΔΦH

and the fact that GΦ ∼ G (and henceΦHGH
∼ GH), (7) can

be rewritten as

I ∼ log det
(
IN +

P

Nσ2n
GΔGH

)
. (8)

Using the matrix equality det(I + AB) = det(I + BA) will
complete the proof.

As previously mentioned, the ergodic capacity is defined
as C = E{I}. The importance of C comes from the fact that
at transmission rates lower than C, the error probability of
a good code decays exponentially with the transmission rate.
Here, our objective is to investigate the effects of the eigen-
values of transmit correlation matrix on C. We show the im-
portance of these eigenvalues in two ways. First, following the

same approach as in [14], we consider the asymptotic case of
large number of receive antennas, based on the law of large
numbers, when the number of receive antennas (N) is large
(1/N)GHG→ IM , and is hence in the limit

C = E
{
log det

(
IM +

P

Nσ2n
ΔGHG

)}

= log det
(
IM +

P

σ2n
Δ
)

=
M∑

i=1
log
(
1 +

P

σ2n
δi

)
,

(9)

where δi’s are the diagonal entries ofΔ, the eigenvalue matrix
check of transmit correlation matrix RT . This clearly shows
the effect of the eigenvalues of correlation matrix on the er-
godic capacity of a frequency-flat MIMO channel. It is also
possible to derive the same result by applying Jensen’s in-
equality [15] to the first equation in (9) to compute an upper
bound on ergodic capacity. Using Jensen’s inequality,

C ≤ CUB = log detE
{(

IM +
P

Nσ2n
ΔGHG

)}
. (10)

Since the entries of G are Gaussian with zero mean and 1/2
variance per dimension, it follows that

C ≤ CUB = log detE
{(

IM +
P

σ2n
Δ
)}

=
M∑

i=1
log
(
1 +

P

σ2n
δi

)
.

(11)

This bound gets tighter by increasing N , the number of the
receive antennas, and the inequality in (11) becomes equality
in the limit of large N .

The following lemma specifies the optimal case for eigen-
values in order to maximize the ergodic capacity. We borrow
this lemma from [14].

Lemma 2. For tr(RT) = 1, the ergodic capacity is maximized
when δi = 1/N , i = 1 · · ·N .

The proof is straightforward and can be obtained by sym-
metry argument.

Lemma 2 shows that the best case is when the channel is
indeed uncorrelated, that is, RT = (1/N)IN . Now the ques-
tion is what transmit strategy can be used when the channel
is correlated. Our focus here is to devise a linear transmission
strategy to maximize the ergodic capacity when the transmit
correlation matrix is not identity.

In wireless communications, this question is also appeal-
ing from another point of view. Here, we assume that we just
know the transmit correlation matrix RT at the transmitter
and do not have information of the channel matrix H. This
assumption becomes more important in wireless channels
where the channel changes very fast (i.e., fast fading chan-
nels), since it is difficult, or sometimes impossible to acquire
instantaneous channel response, H, at the transmitter. On
the other hand, transmit correlation matrix (or any other
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second-order statistics) of the channel changes much slowly
compared to instantaneous channel response, H. Therefore,
it is possible in fast fading environment to obtain an accu-
rate transmit correlation matrix at the transmitter. Some-
times in the related literature, such information is called
partial channel information. In state-of-the-art communi-
cations systems, these types of channel information become
more and more important as we are interested in transmit-
ting information to high-speed mobile units.

Our objective through this paper is to apply an M ×M
linear transformation (precoding)W over information sym-
bols s to get anM×1 transmit vector x, that is, x =Ws, under
the power constraint. The precoding matrix is selected such
that a performance metric (e.g., the ergodic capacity) is op-
timized. We assume that the transmitter is just informed of
the transmit correlation matrix RT . We treat the flat-fading
channel in this section and the frequency-selective fading
cases in the next section.

2.3. Precoder design

We assume that the receiver has the perfect channel informa-
tion but the transmitter knows only spatial and path correla-
tionmatrices. Our objective is to design the precodingmatrix
W to maximize the ergodic capacity for a given total trans-
mit power. Applying precoding matrix, the ergodic capacity
of the MIMO system in a frequency-flat fading channel can
now be written as

C = E
[
log2

(
det
(
IM +

1
Nσ2n

WHHHHW
))]

. (12)

Note that the power constant P in (7) is now considered in
the elements of precoder matrix, and hence a power con-
straint is applied to its entries, that is, tr{WWH} ≤ P. Get-
ting expectation from the log-function in (12) is very hard (if
not impossible). By applying Jensen’s inequality [15] to log-
det function, that is, E{log[det(A)]} ≤ log[det(E{A})], we
can derive an upper bound on the ergodic capacity as

C ≤ CUB = log2

(
detE

(
IM +

1
Nσ2n

WHRH/2
T GHGR1/2

T W
))

,

(13)

whereH has been substituted from (3).

Lemma 3. The optimum precoding matrix for frequency-flat
fading channel is directly related to the eigenvector matrix of
transmit correlation matrix RT and can be written as W =
ΦΣ1/2Γ, where Φ is the eigenvector matrix of RT , Σ is a diago-
nal matrix called power loading matrix whose entries should be
computed for optimality, and Γ is an arbitrary unitary matrix.

Proof. By taking the expectation in (13) and eigendecompo-
sitionsWWH = ΨΣΨH and RT = ΦΔΦH , we obtain

C ≤ CUB = log2

(
det
(
IM +

κ

σ2n
ΨΣΨHΦΔΦH

))
, (14)

where κ is a constant that can be calculated by taking the ex-
pectation of the components of G. Our aim is to findW that
maximizes (14) under the power constraint, that is,

max log2

(
det
(
IM +

κ

σ2n
ΨΣΨHΦΔΦH

))
s.t. tr(Σ) ≤ P.

(15)

Note that tr{WWH} ≤ P will directly result in tr{Σ} ≤ P. Us-
ing Hadamard’s inequality [16], the above optimization can
be achieved when the argument of the determinant is a di-
agonal matrix. To this end, we should have Ψ = Φ. In other
words, the singular matrix of the precoder matrix should be
the same as the singular matrix of transmit correlation ma-
trix. Therefore, the precoder structure can be written as

W = ΦΣ1/2Γ, (16)

where Γ is an arbitrary unitary matrix that has no effect on
the system performance, and therefore can be set to iden-
tity for simplicity and Σ (the eigenvalue matrix of W) is the
power loading matrix that should be optimized.

By substituting (16) into (13), the optimization problem
can be rewritten as

max
Σ

log2

(
det
(
I +

κ

σ2n
ΣΔ
))

s.t. tr(Σ) ≤ P, (17)

with the following solution for elements of Σ:

σi =
[
v − σ2n

κδi

]+
, i = 0 :M − 1, (18)

where [x]+ = max[0, x] for a scalar x, σi and δi are the di-
agonal entries of Σ and Δ, respectively and v is the constant
determined by the power constraint. At the optimum point,
the power inequality tr{Σ} ≤ P becomes equality.

In fact, the precoder changes the eigenvalues of the chan-
nel to optimize the ergodic capacity. The new eigenvalues
of the product of the channel matrix and precoder matrix
are σiδi, i = 0 · · ·M − 1 (instead of δi). Precoder tends to
increase the larger eigenvalues compared to small eigenval-
ues and increase the eigenvalue spread of the product matrix
HW. Therefore, δi > δj results in σi > σj . This power alloca-
tion process is known as waterpouring in which the precoder
pours more power to stronger eigenvalues (or eigenmodes)
and allocates less to weaker ones.

3. FREQUENCY-SELECTIVE FADING CHANNEL

3.1. Systemmodel

We consider a transmission system with M transmit and N
receive antennas in a frequency-selective fading channel. Be-
cause of the delay spread in the frequency-selective fading
channel, the received signal is a function of the input signal at
different time instants. The frequency-selective fading chan-
nel can be modeled as an L-tap FIR filter shown in Figure 1,
and each tap denotes a resolvable channel path represented
by an N ×M matrixHl, l = 0, . . . , (L− 1).
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Figure 1: Frequency-selective MIMO channel model.

Consider a transmitted block of K +L vectors of sizeM×
1, organized as a long (K + L)M × 1 vector, where K is an
arbitrary value, s(k) = [s(k(K +L)), . . . , s(k(K +L)+K +L−
1)]T . At the receiver, we eliminated the first L vectors of size
N × 1 to remove the interblock interference (IBI), and stack
K remaining received vectors of size M × 1 to form a long
KM×1 vector, y(k) = [y(k(K +L)+L), . . . , y(k(K +L)+K +
L− 1)]T ,

y(k) = H · s(k) + n(k), (19)

where n(k) = [n(k(K+L)+L), . . . ,n(k(K+L)+K+L−1)]T is
the long KM× 1 vector of K subsequent noise vectors of size
M × 1, and H is the NK ×M(K + L) block-Toeplitz channel
matrix:

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

HL−1 HL−2 · · · H0 0 · · · 0
0 HL−1 HL−2 · · · H0 · · · 0
...

...
...

...
...

...
...

0 · · · HL−1 HL−2 · · · H0 0
0 · · · 0 HL−1 HL−2 · · · H0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (20)

The N ×M matrixHl(k) represents the spatial response cor-
responding to the resolvable channel path l, l = 0, 1, . . . ,L−1,
at the instant k. Its entry, hnm(k) is the complex-valued ran-
dom gain from themth transmit to nth receive antennas over
the effective path l at the instant k, assumed to be unchanged
during a frame transmission. Assuming that the receive cor-
relation matrix is identity for all paths, the channel path ma-
trixHl(k) can be written as

Hl(k) = Gl(k)R
1/2
T ,l , l = 0 : L− 1. (21)

Note that the spatial correlationmatrix is a function of trans-
mit antennas (such as antenna spacing and antenna pat-
tern) and channel physical characteristics (angular spread
and power angular spread). The former parameter is the
same for all paths while the latter is different from one path
to another. This results in different channel path transmit
correlation matrices RT ,l, l = 0 · · ·L − 1. We assume that
the power of the lth path has been considered in the diago-
nal entries of its spatial correlation matrix RT ,l. Due to the
different delays between L effective paths, (20) can provide
a frequency-selective fading MIMO channel model, while
each individual Hl(k) just represents a frequency-flat fading
MIMO channel.

The block-Toeplitz channel matrix in (20) can be written
as

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

H
HE
HE2

...
HEK−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= (IK ⊗H
) ·

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

IM(K+L)

E
E2

...
EK−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= (IK ⊗H
) · E,

(22)

where ⊗ stands for Kronecker product, the N × M(K + L)
matrix H = [HL−1,HL−2, . . . ,H0, 0, . . . , 0] is the first row of
H in (20), and IK is the K × K identity matrix. The M(K +
L)×M(K +L) matrix E is a column switching matrix and has
the following structure:

E =
[
0M(K+L−1)×M IM(K+L−1)

IM 0M×M(K+L−1)

]

, (23)

where 0M(K+L−1)×M and 0M×M(K+L−1) are theM(K+L−1)×M
and M ×M(K + L − 1) zero-matrices, respectively. We can
verify the following properties of Ei, i = 0, 1, . . . ,K − 1.

(i) Ei can be obtained by applying column switching in an
identity matrix, and Ei(Ei)T = I. Therefore, the eigen-
values of I and Ei have the same absolute values, and
det(Ei) = ±1.

(ii) For an arbitrary M(K + L) ×M(K + L) matrix A that
can be eigendecomposed as A = UΛUH and AEi =
U1Λ1UH

1 , it follows that Λ1 = Λ and U1 = UEi.

From the above properties, (21), and (22), the channel model
can be written as

H = (IK ⊗GR1/2
T

)
E = (IK ⊗G

)(
IK ⊗ R1/2

T

)
E, (24)

where G = [GL−1,GL−2, . . . ,G0, 0, . . . , 0] is an N ×M(K + L)
matrix whose elements Gl’s are N × M matrices with i.i.d.
zero-mean complex Gaussian entries and 1/2 variance per
dimension. The remaining entries are zero, that is, 0N×M
denotes an N × M zero matrix. Furthermore, RT is the
M(K + L) ×M(K + L) transmit correlation matrix with the
following structures:

RT =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

RT ,L−1
RT ,L−2 0

. . .
RT ,0

0

0
. . .

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (25)

where RT ,l is the M ×M transmit correlation matrix associ-
ated with the lth channel path as defined in (21).

3.2. Effect of correlation

The following lemma sheds some light on the effect of
transmit correlation matrices on the ergodic capacity of
frequency-selective MIMO channel.
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Lemma 4. The upper bound on ergodic capacity of a frequen-
cy-selective channel is a function of a matrix representing the
sum of the eigenvalue matrices of spatial correlation matrices
of different paths, Λ =∑L−1

i=0 (Ei)T diag(Δl)Ei.
Starting by the mutual information equation for frequency-

selective channel [17–19], write

I(s; y) = 1
P
log
[
det
(
IM(K+L) +

P

NKσ2n
H

H
H
)]

. (26)

Subsequently, for sufficiently large P, the ergodic capacity of a
frequency-selective fading channel is

C = E
{
I(s; y)

} = 1
P
E
{
log
[
det
(
IM(K+L) +

P

NKσ2n
H

H
H
)]}

.

(27)

Using the eigenvalue decomposition RT = diag(ΦlΔlΦ
H
l ), l =

0, . . . , (L− 1), and (24) forH, one obtains

H
H
H = E

T(
IK ⊗GH diag

(
Φl
)
diag

(
Δl
)
diag

(
ΦH

l

)
G
)
E

∼ E
T(
IK ⊗GH diag

(
Δl
)
G
)
E,

(28)

since diag(ΦH
l )G ∼ G and GH diag(Φl) ∼ GH . The ergodic

capacity of a frequency-selective fading channel in (27) can now
be rewritten as

C ≈ 1
P
E
{
log
[
det
(
IM(K+L)

+
P

NKσ2n
E
T(
IK ⊗GH diag

(
Δl
)
G
)
E
)]}

.

(29)

By using Jensen’s inequality and taking the expectation, derive
an upper bound on (29) as

C ≤ CUB

= 1
P
log2 detE

{
IM(K+L)

+
P

NKσ2n
E
T(
IK ⊗GH diag

(
Δl
)
G
)
E
}

= 1
P
log2 det

(
IM(K+L) +

P

Kσ2n
E
T(
IK ⊗ diag

(
Δl
))
E
)
.

(30)

The right-hand side matrices in (30) can be multiplied, and
hence it can be written as the sum of K products:

C ≤ CUB= 1
P
log2 det

(

IM(K+L)+
P

Kσ2n

L−1∑

i=0

(
Ei
)T

diag
(
Δl
)
Ei
)

,

(31)

where Ei (i = 0 · · ·L−1) denote the column-shifted versions of
E defined in (23). Therefore, the upper bound on ergodic capac-
ity of a frequency-selective channel is a function of the sum of
eigenvalue matrices of spatial correlation matrices of different
paths, that is, Λ =∑L−1

i=0 (Ei)T diag(Δl)Ei.

Lemma 4 shows the importance of the eigenvalues of the
spatial correlationmatrices (of different paths in a frequency-
selective fading channel) in the upper bound on ergodic ca-
pacity, and hence in ergodic capacity itself. The exact analysis
of the effect of eigenvalue matrices on the ergodic capacity
is however not easy. Nevertheless, generally, when the cor-
relation matrices are such that matrix Λ is a scaled identity
matrix, the most convenient case is of course when there is
no spatial correlation for different paths, that is, when all the
eigenvalues are one (Δl = (1/M)IM , (l = 0 · · ·L − 1)), yet
we can also find other cases that correlation matrices are not
identity but the ergodic capacity of the channel is maximized.

3.3. Precoder design

Our objective in this subsection is to find the optimal pre-
coder matrix W, to maximize the ergodic capacity in (27)
for frequency-selective channel based on the partial chan-
nel knowledge of only the spatial correlation matrices RT ,l

(l = 0 · · ·L − 1) available at the transmitter. Recall that the
precoding matrix at the transmitter is only needed to recom-
pute over a long interval whenever the spatial correlationma-
trices are changed. This point makes this precoder suitable
for the channels with fast fading.

Lemma 5 specifies the structure of the precoder in this
case.

Lemma 5. The M(K + L) ×M(K + L) linear precoding ma-
trix W that maximizes the ergodic capacity of a frequency-
selective fading channel of (24) is a block diagonal matrix
W = diag(Wi), with (K + L) optimal M ×M matrices Wi =
ΦiΣ

1/2
i Γi, where Γi’s areM×M arbitrary unitary matrices, Σi’s

are diagonal matrices, and Φi’s are theM ×M unitary matri-
ces resulting from eigendecomposition of transmit correlation
matrices RT ,l’s, l = 0, 1, . . . , (L− 1).

Proof. Based on (27), the ergodic capacity of the system using
the precoder can be written as

C = 1
P
E
{
log2 det

(
IM(K+L) +

P

NKσ2n
WHH

H
HW

)}
.

(32)

Following the same steps as in the previous case, we can de-
rive the upper bound on ergodic capacity as

C ≤ CUB = 1
P
log2 det

(
IM(K+L) +

P

Kσ2n
RTΨΣΨH

)
, (33)

where RT is defined in (25), and RT =
∑K−1

l=1 (El)TRTEl. Note
that RT is also a block diagonal matrix.

Considering that RT = diag(ΦiΔiΦ
H
i ), i = 0, 1, . . . , (K +

L−1), and using det(I+AB) = det(I+BA), one can findΨ =
diag(Φi), i = 0, 1, . . . , (K + L − 1). Therefore, the precoding
matrix can be written as

W = diag
(
Φi
)
Σ1/2Γ

= diag(ΦiΣ
1/2
i Γi

)
, i = 0, 1, . . . , (K + L− 1),

(34)
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Figure 2: Precoder structure for a frequency-selective fading chan-
nel with L independent effective paths.

where Γi is an arbitrary unitarymatrix that can be set to iden-
tity for simplicity. Therefore, the transmit precoding matrix
W is also a block diagonal matrix with (K+L) optimalM×M
matrices Wi = ΦiΣ

1/2
i Γi, where Φi is one diagonal block of

the eigenvector matrix of RT =
∑K−1

l=1 (El)TRTEl.

Lemma 5 shows the structure of the optimal precoder
matrix in this case. Applying this precoder matrix changes
the eigenvalues of the correlation matrices of the channel
from (Ei)T diag(Δl)Ei, (i = 0 · · ·L−1) to Σi(Ei)T diag(Δl)Ei,
(i = 0 · · ·L − 1). It remains to find the diagonal entries of
the multiplier matrices Σi’s (i = 0 · · ·L − 1) to modify the
eigenvalues in order to achieve the maximum upper bound
on ergodic capacity in (33), that is,

max
Σ

log2 det
(
IM(K+L) +

P

Kσ2n
diag

(
Δi
)
Σ
)

s.t. tr(Σ) : constant.
(35)

Solving (35) results in the following relation:

σi =
[

ν−
(

P

Kσ2n
δ(imodM)

)−1]+
, i = 1, 2, . . . ,M(L + K),

(36)

where σi’s (called power loading coefficients) and δi’s are the
diagonal entries of Σ and Δi, respectively, and v is the con-
stant determined by the power constraint. The waterpouring
equation in this case is a function of Δi the eigenvalue ma-

trices of RT = diag(ΦiΔiΦ
H
i ), i = 0, 1, . . . , (K + L − 1). In

other words, these equations are not directly related to trans-
mit correlation matrix RT defined in (25).

In other words, the precoding matrix for a frequency-
selective fading channel with L independent effective paths
is block diagonal. Therefore, the corresponding structure can
be decoupled into (K+L)M×M precoders for frequency-flat
fading channels as shown in Figure 2. Δ blocks in the pre-
coder structure are just time delays. The construction of the
(K + L) precoders requires to solve the eigendecomposition
of an M(K + L) × M(K + L) matrix RT , or equivalently L
different transmit correlation matrices of sizeM ×M.

4. NUMERICAL RESULTS

At first, we investigate the effect of eigenvalues of spatial cor-
relation matrix on ergodic capacity of a frequency-selective
channel. We consider a system with two receive antennas
(N = 2) and different number of transmit antennas and
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Figure 3: Performance comparison in partially correlated channels.
C
ap
ac
it
y
(b
ps
/H

z)

SNR (dB)

Frequency-selective, no precoding
Frequency-selective, with precoding
Frequency-flat, no precoding
Frequency-flat, with precoding
Frequency-flat, uncorrelated

0

2

4

6

8

10

12

14

16

−15 −10 −5 0 5 10 15 20 25 30

Figure 4: Performance comparison in fully correlated channels.

channel paths (i.e., M = 2, 4 and L = 2, 4). Figure 5 shows
the ergodic capacity of the system for different eigenvalue
spreads (λmax/λmin): 1 (no correlation), 2 (partial correla-
tion), and ∞ (full correlation). The results clearly indicate
that the capacity decreases with an increase in eigenvalue
spread of the spatial correlation matrices.

Figure 6 compares the change in the eigenvalue spread
of specific channels after applying linear precoding for
different numbers of transmit antennas in frequency-flat
and frequency-selective channels with two paths. Precoder
increases the eigenvalue spread in the sense that it increases
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Figure 5: Ergodic capacity with different eigenvalue spreads and
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Figure 6: Eigenvalue spread before and after applying precoding.

large eigenvalues (magnifies the strong eigenmodes) while it
decreases small eigenvalues (weakens the weak eigenvalues)
in order to improve ergodic capacity. The function of the
precoders in changing the eigenvalues of spatial correlation
matrices is also clear from (18) and (36).

Next, we investigate the precoder performance in two dif-
ferent cases of spatial correlation at the transmit and receive
sides:

(i) partial spatial correlation, that is, with eigenvalue
spread close to unity, and full-rank correlation matri-
ces,

(ii) full spatial correlation, that is, with very large eigen-
value spread, and rank-deficient spatial correlation
matrices.

As an illustrative example, we consider a MIMO system
with 2 transmit and 2 receive antennas (M = N = 2) in
both frequency-flat and frequency-selective fading channels.
The frequency-selective fading channel under consideration
is represented by a 2-path model (L = 2). Furthermore, we
assume that the channel paths are temporally uncorrelated.

Figures 3 and 4 illustrate the achievable capacity curves.
For benchmark purpose, the capacity curve of an uncorre-
lated frequency-flat fading channel is also included. In both
cases, precoders designed for frequency-flat and frequency-
selective fading channels offer noticeable increases in the er-
godic capacity of the system. In the case of partially cor-
related channel, the curves are closer to the uncorrelated
frequency-flat fading case. On the other hand, the precoders
perform better when the channels are highly spatially corre-
lated.

5. CONCLUDING REMARKS

We investigated the importance of eigenvalues of spatial cor-
relation matrices on the ergodic capacity of frequency-flat
and -selective MIMO channels. We showed that the ergodic
capacity depends greatly on the eigenvalue distribution of
spatial correlation matrices. In other words, knowing the
eigenstructure of correlation matrices at the transmitter is
very important to enhance the capacity of the system. Based
on this fact, we first investigated the effect of eigenvalues
distribution of spatial and path correlation matrices on the
capacity of frequency-flat and -selective channels. Next, we
introduced a linear scheme known as linear precoding that
can enhance the ergodic capacity of the channel by chang-
ing the eigenstructure of the channel by applying a linear
transformation. We derived the structures of precoders us-
ing eigenvalue decomposition and linear algebra techniques
in both cases and show their similarities from an algebraic
point of view. Simulations showed the ability of this tech-
nique to change the eigenstructure of the channel, and hence
to enhance the ergodic capacity considerably.
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