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This paper presents lossless compression schemes for ECG signals based on neural network predictors and entropy encoders.
Decorrelation is achieved by nonlinear prediction in the first stage and encoding of the residues is done by using lossless entropy
encoders in the second stage. Different types of lossless encoders, such as Huffman, arithmetic, and runlength encoders, are used.
The performances of the proposed neural network predictor-based compression schemes are evaluated using standard distortion
and compression efficiency measures. Selected records from MIT-BIH arrhythmia database are used for performance evaluation.
The proposed compression schemes are compared with linear predictor-based compression schemes and it is shown that about
11% improvement in compression efficiency can be achieved for neural network predictor-based schemes with the same quality
and similar setup. They are also compared with other known ECG compression methods and the experimental results show
that superior performances in terms of the distortion parameters of the reconstructed signals can be achieved with the proposed
schemes.
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1. INTRODUCTION

Any signal compression algorithm should strive to achieve
greater compression ratio and better signal quality without
affecting the diagnostic features of the reconstructed signal.
Several methods have been proposed for lossy compression
of ECG signals to achieve these two essential and conflict-
ing requirements. Some techniques such as the amplitude
zone time epoch coding (AZTEC), the coordinate reduction
time encoding system (CORTES), the turning point (TP),
and the fan algorithm are dedicated and applied only for the
compression of ECG signals [1] while other techniques, such
as differential pulse code modulation [2–6], subband cod-
ing [7, 8], transform coding [9–13], and vector quantization
[14, 15], are applied for a wide range of one-, two-, and three-
dimensional signals.

Lossless compression schemes are preferable to lossy
compression schemes in biomedical applications where even
the slight distortion of the signal may result in erroneous di-
agnosis. The application of lossless compression for ECG sig-
nals is motivated by the following factors. (i) A lossy com-
pression scheme is likely to yield a poor reconstruction for a

specific portion of the ECG signal, which may be important
for a specific diagnostic application. Furthermore, a lossy
compression method may not yield diagnostically acceptable
results for the records of different arrhythmia conditions. It
is also difficult to identify the error range, which can be toler-
ated for a specific diagnostic application. (ii) In many coun-
tries, from the legal point of view, reconstructed biomedi-
cal signal after lossy compression cannot be used for diag-
nosis [16, 17]. Hence, there is a need for effective methods
to perform lossless compression of ECG signals. The loss-
less compression schemes proposed in this paper can be ap-
plied to a wide variety of biomedical signals including ECG
and they yield good signal quality at reduced compression
efficiency compared to the known lossy compression meth-
ods.

Entropy encoders are used extensively for lossless text
compression but they perform poorly for biomedical sig-
nals, which have high correlation between adjacent sam-
ples. A two-stage lossless compression technique with a lin-
ear predictor in the first stage and a bilevel sequence coder
in the second stage is implemented in [2] for seismic data.
A method with a linear predictor in the first stage and an
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arithmetic coder in the second stage is reported in [18] for
seismic and speech waveforms.

Summaries of different ECG compression schemes along
with their distortion and compression efficiency perfor-
mance measures are reported in [1, 14, 15]. A tutorial dis-
cussion of predictive coding using neural networks for image
compression is given in [3]. Several neural network archi-
tectures, such as multilayer perceptron, functional link neu-
ral network, and radial basis function network, were inves-
tigated for designing a nonlinear vector predictor for im-
age compression and it was shown that they outperform the
linear predictors since the nonlinear predictors can exploit
higher-order statistics while the linear predictors can exploit
only second-order statistics [4].

Performance comparison of several classical and neural
network predictors for lossless compression of telemetry data
is presented in [5]. Huffman coding and its variations are
described in detail in [6] and basic arithmetic coding from
the implementation point of view is described in [19]. Im-
provements on the basic arithmetic coding by using only a
small number of multiplicative operations and utilizing low-
precision arithmetic are described in [20] which also dis-
cusses a modular structure separating the coding, model-
ing, and probability estimation components of a compres-
sion system.

In this paper, we present single- and two-stage compres-
sion schemes with multilayer perceptron (MLP) trained with
backpropagation learning algorithm as the nonlinear predic-
tor in the first stage followed by Huffman or arithmetic en-
coders in the second stage for lossless compression of ECG
signals. To the best of our knowledge, ECG compression with
nonlinear predictors such as neural networks as a decorrela-
tor in the first stage followed by entropy encoders for com-
pressing the prediction residues in the second stage has not
been implemented yet. We propose for the first time, com-
pression schemes for ECG signals involving neural network
predictors and different types of encoders.

The rest of the paper is organized as follows. In Section 2,
we briefly describe the proposed predictor-encoder combi-
nation method for the compression of ECG signals along
with single- and adaptive-block methods for training the
neural network predictor. Experimental setup along with the
description of the selected database records are discussed in
Section 3 followed by the definition of performance mea-
sures used for evaluation in Section 4. Section 5 presents the
experimental results and Section 6 shows the performance
comparison with other linear predictor-based ECG compres-
sion schemes, using selected records fromMIT-BIH arrhyth-
mia database [21]. Conclusions are stated in Section 7.

2. PROPOSED LOSSLESS DATA
COMPRESSIONMETHOD

2.1. Description of themethod

The proposed lossless compression method is illustrated in
Figure 1.

The above lossless compression method is implemented
in two different ways, single- and two-stage compression
schemes.

In both schemes, a portion of the ECG signal samples
is used for training the MLP until the goal is reached. The
weights and biases of the trained neural network along with
the network setup information are sent to the receiving end
for identical network setup. The first p samples are also sent
to the receiving end for prediction, where p is the order
of prediction. Prediction is done using the trained neural
network at the transmitting and receiving ends simultane-
ously. The residues are generated at the transmitting end,
by subtracting the predicted sample values from the target
values. In the single-stage scheme, the generated residues
are rounded off and sent to the receiving end, where the
reconstruction of original samples is done by adding the
rounded residues with the predicted samples. In the two-
stage schemes, the rounded residues are further encoded with
Huffman/arithmetic/runlength encoders in the second stage.
The binary-coded residue sequence generated in the second
stage is transmitted to the receiving end, where it is decoded
in a lossless manner using the corresponding entropy de-
coder.

The MLP trained with backpropagation learning algo-
rithm is used in the first stage as the nonlinear predictor to
predict the current sample using a fixed number, p, of pre-
ceding samples. Employing a neural network in the first stage
has the following advantages. (i) It exploits the high corre-
lation existing among the neighboring samples of a typical
ECG signal, which is a quasiperiodic signal. (ii) It has the in-
herent properties such as massive parallelism, generalization,
error tolerance, flexibility in recall, and graceful degradation
which suits the time series prediction applications.

Figure 2 shows the MLP used for the ECG compres-
sion which comprises an input layer with p neurons, where
p is the order of prediction, a hidden layer with q neu-
rons, and an output layer with a single neuron. In Figure 2,
x1, x2, . . . , xp, represent the preceding samples and x̂(p+1) rep-
resents the predicted current sample. The residues are gener-
ated as shown in (1),

r = [xi − x̂i
]

, i = p + 1, p + 2, . . . , v, (1)

where v is the total number of input samples, xi is the original
sample value, and x̂i is the predicted sample value.

The inputs and outputs for a single hidden layer neu-
ron are as shown in Figure 3. The activation functions used
for the hidden layer and the output layer neurons are hy-
perbolic tangent and linear functions, respectively. The out-
puts of the hidden and output layers represented as outh j and
outo, respectively, are given by (2) and (3),

Outh j = tansig
(

Neth j
) =

[

2
1 + exp

(− 2Neth j
)

]

− 1,

(2)

where Neth j =
∑p

i=1wijxi + bj , j = 1, . . . , q,

Outo = purelin
(

Neto
) = Neto, (3)
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Figure 1: Lossless compression method: (a) transmitting end and (b) receiving end.
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Figure 2: MLP used as a nonlinear predictor.
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∑q
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′
j + b′, q is the number of hidden
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Figure 3: Input and output of a single hidden layer neuron.

tests. It was found that the architectural configuration of
4-7-1 with 4 input neurons, 7 hidden layer neurons, and 1
output layer neuron yields the best performance results.With
this, we need to send only 35 weights (28 hidden layer and 7
output layer weights) and 8 biases for setting up an identical
network configuration at the receiving end. Assuming that
32-bit floating-point representation is used for the weights
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and biases, it requires 1376 bits. The MLP is trained with
Levenberg-Marquardt backpropagation algorithm [22]. The
training goal is to achieve a value of 0.0001 for the mean-
squared error between the actual and target outputs. When
the specified training goal is reached, the underlying major
characteristics of the input signal are stored in the neural net-
work in the form of weights.

The residues generated after prediction are encoded ac-
cording to the probability distribution of the magnitudes of
the residue sequence with Huffman or arithmetic encoders
in the second stage. If Huffman or arithmetic coding is used
directly without nonlinear predictor in the first stage, the fol-
lowing problems may arise. (i) Huffman or arithmetic cod-
ing does not remove the intersample correlation that exists
among the neighboring samples of the semiperiodic ECG
signal. (ii) The size of the symbol table required for encoding
of ECG samples will be too large to be used in any real-time
applications.

The histogram of the magnitude of the predicted residue
sequence can be approximated by a Gaussian probability
density function with most of the prediction residue val-
ues concentrated around zero as shown in Figure 4. This fig-
ure shows the magnitude of rounded prediction residues for
about 216 000 samples after the first stage. As the residue sig-
nal has low zero-order entropy compared to the original ECG
signal, it can be encoded with lower average bits per sample
using lossless entropy coding techniques.

Though the encoder and the decoder used at the trans-
mitting and receiving ends are lossless, the overall two-stage
compression schemes can be considered as near-lossless since
the residue sequence is rounded off before encoding.

2.2. Training and bit allocation

Two types of methods, namely, single-block training (SBT),
and adaptive-block training (ABT) are used for training the

MLP [5]. The SBT method, which is used for short-duration
ECG signals, makes the transmission faster since the training
parameters are transmitted only once to the receiving end
to setup the network. The ABT method, which is used for
both short- and long-duration ECG signals, can capture the
changes in the pattern of the input data, as the input sig-
nal is divided into blocks, and the training is performed on
each block separately. The ABT method makes the transmis-
sion slower because the network setup information has to be
sent to the receiving end N times, where N is the number of
blocks used.

To begin with, the neural network configuration and the
training parameters have to be setup identically on both
transmitting and receiving ends. The basic data that have to
be sent to the receiving end in the SBT method are the values
of the weights, biases, and the first p samples where p is the
order of the predictor. If q is the number of neurons in the
hidden layer, the number of weights to be sent is (pq + q),
where pq and q represent the number of hidden and out-
put layer weights, respectively, and the number of biases to
be transmitted is (q + 1), where q and 1 represent the num-
ber of hidden and output layer biases, respectively. For ABT
method, the above basic data have to be sent for each block
after training. The number of samples in each block in the
ABT method is determined empirically.

If the training and the network architectural details are
not predetermined at the transmitting and receiving ends,
the network setup header information have also to be sent
in addition to the basic data. We have provided three head-
ers of length 64 bits each in order to send the network archi-
tectural information (such as the number of hidden layers,
the number of neurons in each hidden layer, and the type of
activation functions for hidden and output layers), training
information (such as training function, initialization func-
tion, performance function, pre- and postprocessing meth-
ods, block size, and training window), and training param-
eters (such as number of epochs, learning rate, performance
goal, and adaptation parameters).

The proposed lossless compression schemes are imple-
mented using two different methods. In the first method, the
values of the weight, bias, and residues are rounded off and
the rounded integer values are represented using 2’s comple-
ment format. The number of bits required for sending the
weight, bias, and residue values are determined as follows:

w = ceil
[

log2(max. absolute weight) + 1
]

,

b = ceil
[

log2(max. absolute bias) + 1
]

,

e = ceil
[

log2(max. absolute residue) + 1
]

,

(4)

where w is the number of bits used to represent each weight,
b is the number of bits used to represent each bias, and e is
the number of bits used to represent each residual sample.

In the second method, the residue values are sent in the
same format as in the first method but the weights and bi-
ases are sent using floating-point representation with 32 or
64 bits. The second method results in identical network se-
tups, at the transmitting and receiving ends.



R. Kannan and C. Eswaran 5

1

1.5

2

2.5

3

3.5

4
C
R

202MLII 203MLII 207MLII 214V1 232V1

MIT-BIH ADB records

PO3
PO4
PO5

(a)

100

120

140

160

180

200

220

240

260

280

300

C
D
R

202MLII 203MLII 207MLII 214V1 232V1

MIT-BIH ADB records

PO3
PO4
PO5

(b)

Figure 5: Compression efficiency performance results on short-duration datasets with different predictor orders: (a) CR and (b) CDR for P
scheme.

For real-time applications, we can use only the predic-
tion stage for compression thereby reducing the overall pro-
cessing time. This compression scheme will be referred to
as the single-stage scheme. For the single-stage compression,
the total numbers of bits needed to be sent with the SBT and
ABT training methods are given in (5) and (7), respectively,

NSBT
1-stage = Nbs + (v − p)e, (5)

where NSBT
1-stage is the number of bits to be sent using SBT

method in single-stage compression scheme, v is the total
number of input samples, p is the predictor order, and e is
the number of bits used to send each residual sample.

Nbs is the number of basic data bits that have to be sent
for identical network setup at the receiving end,

Nbs = (pn) +
(

Nww
)

+
(

Nbb
)

+
(

Nso
)

, (6)

where n is the number of bits used to represent input sam-
ples (resolution), Nw is the total number of hidden and out-
put layer weights, Nb is the total number of hidden and out-
put layer biases, w is the number of bits used to represent
each weight, b is the number of bits used to represent each
bias, andNso is the number of bits used for the network setup
overhead,

NABT
1-stage =

(

NabNbs
)

+
[

v − (Nabp
)]

e, (7)

where NABT
1-stage is the number of bits to be sent using ABT

method in a single-stage compression scheme and Nab is the
number of adaptive blocks.

The total numbers of bits required for the two-stage com-
pression schemes with the SBT and ABT training methods
are given in (8) and (9), respectively,

NSBT
2-stage = Nbs + (v − p)R + Llen, (8)

where NSBT
2-stage is the number of bits to be sent using the SBT

method in two-stage compression schemes, R is the average
code word length obtained for Huffman or arithmetic en-
coding, and Llen represents the bits needed to store Huffman
table information. For arithmetic coding, Llen is zero,

NABT
2-stage =

(

NabNbs
)

+
[

v − (Nabp
)](

R + Llen
)

, (9)

where NABT
2-stage is the number of bits to be sent using ABT

method in two-stage compression schemes.

2.3. Computational time and cost

In the single-stage compression scheme, once the training is
completed at the transmitting end, the basic setup informa-
tion is sent to the receiving end so that the prediction is done
in parallel at both ends. Prediction and generation of residues
can be done in sequence for each sample at the transmit-
ting end and the original signal can be reconstructed at the
receiving end as the residues are received. Total processing
time includes the following time delays: (i) time required for
transmitting the basic setup information such as the weights,
biases, and the first p samples, (ii) time required for perform-
ing the prediction at the transmitting and receiving ends in
parallel, (iii) time required for the generation and transmis-
sion of residues, and (iv) time required for the reconstruction
of original samples.

The computational time required for performing the pre-
diction of each sample depends on the number of multipli-
cation and addition operations required. In this setup, it re-
quires only 28 and 7 multiplication operations at the hidden
and output layers, respectively, in addition to the operations
required for applying the tangent sigmoid functions for the
seven hidden layer neurons and for applying a linear func-
tion for the output layer neuron. One subtraction and one
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Figure 6: Compression efficiency performance results on short-duration datasets with different predictor orders: (a) CR and (b) CDR for
PH scheme, (c) CR and (d) CDR for PRH scheme.

addition operations are required for generating each residue
and each reconstructed sample, respectively. As the process-
ing time involved is not significant, this scheme can be used
for real-time transmission applications once the training is
completed.

The training time depends on the training algorithm
used, the number of samples in the training set, the num-
bers of weights and biases, the maximum number of epochs
or the error goal set, and the initial weights. In the proposed
schemes, Levenberg-Marquardt algorithm [22] is used since
it is considered to be the fastest among the backpropaga-
tion algorithms for function approximation if less numbers
of weights and biases are used [23]. For the ABT method,
4320 and 1440 samples are used for each block during the

training with the first and second datasets, respectively. For
the SBT method, 4320 samples are used during the training
with the second dataset. The maximum number of epochs
and the goal set for both methods are 5000 and 0.0001, re-
spectively.

For the two-stage compression schemes, the time re-
quired for encoding and decoding the residues at the trans-
mitting and receiving ends, respectively, should also be taken
into account.

3. EXPERIMENTAL SETUP

The proposed compression schemes are tested on selected
records from the MIT-BIH arrhythmia database [21]. The
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Figure 7: Compression efficiency performance results on short-duration datasets with different predictor orders: (a) CR and (b) CDR for
PA scheme, (c) CR and (d) CDR for PRA scheme.

records are selected based on different clinical rhythms
aiming at performing the comparison of the proposed
schemes with other known compression methods. The se-
lected records are divided into two sets: 10 minutes of ECG
samples from the records 100MLII, 117MLII, and 119MLII
form the first dataset while 1 minute of ECG samples from
the records 202MLII, 203MLII, 207MLII, 214V1, and 232V1
form the second dataset. The data are sampled at 360Hz
where each sample is represented by 11 bits, packed into
12 bits for storage, over a 10mV range [21].

The MIT-BIH arrhythmia database contains two-
channel ambulatory ECG recordings, obtained usually from
modified leads, MLII and V1. Normal QRS complexes and
ectopic beats are prominent in MLII and V1, respectively.

Since the physical activity causes significant interference in
the standard limb leads for long-term ECG recordings, mod-
ified leads were used and placed in positions so that the
signals closely match the standard limb leads. Signals from
the first dataset represent the variety of waveforms and arti-
facts encountered in routine clinical use since they are chosen
from the random set. Signals from the second dataset rep-
resent complex ventricular, junctional, and supraventricular
arrhythmias and conduction abnormalities [21].

The compression performances of the proposed schemes
are evaluated with the long-duration signals (i.e., the first
dataset comprising 216 000 samples) only for the ABT
method. With the short-duration signals (i.e., second dataset
comprising 21 600 samples), the performances are evaluated
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Figure 8: Compression efficiency performance results for different compression schemes: (a) CR and (b) CDR using ABT on long-duration
dataset, (c) CR and (d) CDR using SBT on short-duration dataset.

for both SBT and ABT methods. For the ABT method, the
samples of the first dataset are divided into ten blocks with
21 600 samples in each block, while the samples of the second
dataset are divided into three blocks with 7200 samples in
each block. For the SBT method, the entire samples of the
second dataset are treated as a single block. The number of
blocks used in ABT, and the percentage of samples used for
training and testing in the ABT and SBT are chosen empiri-
cally.

4. PERFORMANCEMEASURES

An ECG compression algorithm should achieve good recon-
structed signal quality for preserving the diagnostic features

of the signal and high compression efficiency for reducing
the storage and transmission requirements. The distortion
measures, such as percent of root-mean-square difference
(PRD), root-mean-square error (RMS), and signal-to-noise
ratio (SNR), are widely used in the ECG data compression
literature to quantify the quality of the reconstructed sig-
nal compared to the original signal. The performance mea-
sures, such as bits per sample (BPS), compressed data rate
(CDR) in bit/s, and compression ratio (CR), are widely used
to determine the redundancy reduction capability of an ECG
compression method. The proposed compression methods
are evaluated using the above standard measures to per-
form comparison with other methods. Interpretation of re-
sults from different compression methods requires careful
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Figure 9: Results with floating-point and fixed-point representations for the trained weights and biases for P scheme using (a) ABT on long-
and short-duration datasets and (b) SBT on the short-duration dataset. INT, signed 2’s complement for representing the weights and biases.
F32, 32-bit floating point for representing the weights and biases. F64, 64-bit floating point for representing the weights and biases.

evaluation and comparison, since the database used by dif-
ferent methods may be digitized with different sampling fre-
quencies and quantization bits.

4.1. Distortionmeasures

4.1.1. Percent of root-mean-square difference and
normalized PRD

The PRD is the most commonly used distortion measure in
the literature since it has the advantage of low computational
complexity.

PRD is defined as [24]

PRD = 100

√

√

√

√

∑N
n=1
(

x(n)− x̂(n)
)2

∑N
n=1 x2(n)

, (10)

where x(n) is the original signal, x̂(n) is the reconstructed
signal, andN is the length of the window over which the PRD
is calculated.

If the selected signal has baseline fluctuations, then the
variance of the signal will be higher and the PRD will be ar-
tificially lower [24]. Therefore, to eliminate the error due to
DC level of the signal, a normalized PRD denoted as NPRD
can be used [24],

NPRD = 100

√

√

√

√

∑N
n=1
(

x(n)− x̂(n)
)2

∑N
n=1
(

x(n)− x
)2 , (11)

where x is the mean of the signal.

4.1.2. Root-mean-square error

The RMS is defined as [25]

RMS =
√

√

√

∑N
n=1
(

x(n)− x̂(n)
)2

N
, (12)

where N is the length of the window over which reconstruc-
tion is done.

4.1.3. Signal-to-noise ratio and normalized SNR

The SNR is defined as

SNR = 10 log10

[
∑N

n=1 x2(n)
∑N

n=1
(

x(n)− x̂(n)
)2

]

. (13)

The NSNR as defined in [24, 25] is given by

NSNR = 10 log10

[
∑N

n=1
(

x(n)− x
)2

∑N
n=1
(

x(n)− x̂(n)
)2

]

. (14)

The relation between NSNR and NPRD [26] is given by

NSNR = 40− [20 log10(NPRD)
]

dB. (15)
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Figure 10: Results with floating-point and fixed-point representations for the trained weights and biases with PH scheme using (a) ABT and
(b) SBT; and with PRH scheme using (c) ABT and (d) SBT.

The relation between SNR and PRD [26] is given by

SNR = 40− [20 log10(PRD)
]

dB. (16)

4.2. Compression efficiencymeasures

4.2.1. Bits per sample

BPS indicates the average number of bits used to represent
one signal sample after compression [6],

BPS = number of bits required after compression
total number of input samples

. (17)

4.2.2. Compressed data rate in bit/s

CDR can be defined as [15]

CDR =
(

fsBtotal
)

L
, (18)

where fs is the sampling rate, Btotal is the total number of
compressed bits to be transmitted or stored, and L is the data
size.

4.2.3. Compression ratio

CR can be defined as [10]

CR = total number of bits used in the original signal
total number of bits used in the compressed signal

.

(19)
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Figure 11: Results with floating-point and fixed-point representations for the trained weights and biases with PA scheme using (a) ABT and
(b) SBT; and with PRA scheme using (c) ABT and (d) SBT.

5. RESULTS ANDDISCUSSION

We have evaluated the quality and compression efficiency
performances of the following five schemes using ABT and
SBT training methods: (i) single-stage scheme with MLP
as the predictor (denoted as P); (ii) two-stage scheme with
MLP predictor in the first stage and Huffman encoder in the
second stage (denoted as PH); (iii) two-stage scheme with
MLP predictor in the first stage followed by runlength and
Huffman encoders in the second stage (denoted as PRH);
(iv) two-stage scheme with MLP predictor in the first stage
and arithmetic encoder in the second stage (denoted as PA);
(v) two-stage scheme with MLP predictor in the first stage
followed by runlength and arithmetic encoders in the second
stage (denoted as PRA).

5.1. Distortion and compression efficiency
performance results

The values of the distortion measures obtained using the
ABT method on short-duration dataset with a third-order
(PO3), fourth-order (PO4), and fifth-order (PO5) predic-
tor are given in Table 1. It should be noted that the distor-
tion measures remain the same for a particular record, ir-
respective of the type of encoder used in the second stage,
since the residues are losslessly encoded for all the two-stage
schemes.

From Table 1, it can be noted that the quality measures
for all the tested records do not differ significantly with dif-
ferent predictor orders. Hence, the selection of a predictor
order can be based on the compression efficiency measures.
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Table 1: Quality performance results using ABT method on short-duration dataset with different predictor orders.

Distortion measure Predictor order
ABT method on the second dataset

202MLII 203MLII 207MLII 214V1 232V1

PRD (%)
PO3 0.0245 0.0289 0.0288 0.0276 0.0280

PO4 0.0290 0.0288 0.0287 0.0276 0.0279

PO5 0.0289 0.0291 0.0287 0.0276 0.0278

NPRD (%)
PO3 0.4968 0.2789 0.4007 0.2778 0.8830

PO4 0.5884 0.2776 0.3993 0.2781 0.8798

PO5 0.5856 0.2800 0.3985 0.2775 0.8779

SNR (dB)
PO3 72.2123 70.7702 70.8098 71.1824 71.0614

PO4 70.7520 70.8122 70.8424 71.1818 71.0879

PO5 70.7819 70.7343 70.8568 71.1915 71.1128

NSNR (dB)
PO3 46.0771 51.0914 47.9436 51.1245 41.0812

PO4 44.6065 51.1316 47.9740 51.1160 41.1123

PO5 44.6481 51.0572 47.9907 51.1355 41.1313

RMS
PO3 0.2444 0.2888 0.2890 0.2890 0.2891

PO4 0.2894 0.2874 0.2879 0.2893 0.2880

PO5 0.2880 0.2899 0.2873 0.2886 0.2873

Table 2: Quality performance results using ABT and SBT methods with a fourth-order predictor.

Distortion measure
ABT method on the first dataset SBT method on the second dataset

100MLII 117MLII 119MLII 202MLII 203MLII 207MLII 214V1 232V1

PRD (%) 0.0301 0.0337 0.0336 0.0289 0.0289 0.0287 0.0276 0.0281

NPRD (%) 0.8078 0.6044 0.2706 0.5863 0.2787 0.3994 0.2775 0.8863

SNR (dB) 70.4287 69.4474 69.4732 70.7820 70.7820 70.8424 71.1818 71.0259

NSNR (dB) 41.8539 44.3735 51.3534 44.6376 51.0973 47.9718 51.1347 41.0484

RMS 0.2893 0.2888 0.2888 0.2884 0.2886 0.2880 0.2887 0.2901

The values of the corresponding compression efficiency re-
sults obtained using ABT method for all the compression
schemes with different predictor orders are shown in Figures
5–7.

From Figures 5–7, it can be concluded that fourth-
order neural network predictor produces better compression
efficiency results with the selected records for all the two-
stage compression schemes. Hence, with a fourth-order pre-
dictor, we have tested the ABT and SBTmethods on the long-
and short-duration datasets, respectively. The quality per-
formance results obtained with both methods are shown in
Table 2.

The values of the corresponding compression efficiency
measures are shown in Figure 8.

The results shown are calculated by assuming that the
weights, biases, and residues are sent as rounded signed inte-
gers in 2’s complement format.

From Tables 1 and 2, it is observed that the quality per-
formances do not differ significantly for the different records.
Hence, it can be concluded that the proposed methods can
be used for a wide variety of ECG data with different clinical
rhythms andQRSmorphological characteristics. By applying
the ABT and SBT methods on the second dataset, it is also

observed from Tables 1 and 2 that the quality performance
is almost the same for both methods. However, it is clear
from the results shown in Figures 5–8 that SBT has superior
compression performance compared to ABT for short-
duration signals.

From Figures 5–8, it is also observed that the two-stage
compression schemes give better compression performance
results compared to single-stage compression scheme, while
the quality performance results are the same for both meth-
ods. Among the different two-stage compression schemes,
the PH scheme, using MLP predictor in the first stage and
the Huffman encoder in the second stage, gives the best re-
sult.

The average number of bits per sample required for
arithmetic coding is higher compared to Huffman coding
since the prediction of ECG signal yields large number of
residues with different magnitudes and unbiased probabil-
ity distributions. It is also observed that using the runlength
encoding on the prediction residues before applying either
Huffman or arithmetic coding not only increases the com-
plexity, but also results in slight degradation in compres-
sion efficiency performance. This is because of the nature
of the residues which may not be suitable for applying the
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Table 3: ABT method: comparison between the theoretical bounds and the results obtained using Huffman encoder.

Measure
First dataset Second dataset

100MLII 117MLII 119MLII 202MLII 203MLII 207MLII 214V1 232V1

LB 3.5612 3.6906 3.7566 4.2797 4.6881 3.8149 4.0183 3.5036

UB (Gallagher) 3.8057 3.9156 3.9791 4.4784 4.8585 4.0398 4.2129 3.7481

R 3.5955 3.7112 3.7777 4.3119 4.7258 3.8349 4.0557 3.5356

BPS 3.6249 3.7425 3.8087 4.3860 4.8224 3.9237 4.1718 3.6414

Table 4: SBT method: comparison between the theoretical bounds and the results obtained using Huffman encoder.

Measure
Second dataset

202MLII 203MLII 207MLII 214V1 232V1

LB 3.8008 4.7140 3.8390 4.0042 3.4387

UB (Gallagher) 4.0251 4.8751 4.0465 4.1976 3.6857

R 3.8251 4.7344 3.8660 4.0434 3.4697

BPS 3.8550 4.7698 3.8957 4.0733 3.5023

runlength encoding. Furthermore, runlength encoding in-
creases the number of residues to be transmitted to the re-
ceiving end.

The compression efficiency results obtained for the pro-
posed compression schemes using 32- and 64-bit floating-
point representation for weights and biases are compared
with the results obtained using signed 2’s complement rep-
resentation and they are shown in Figures 9–11.

Figures 9–11 confirm that by using 32-bit or 64-bit
floating-point representation for the trained weights and
biases to setup identical network at the receiving end, the
reduction in compression efficiency performance is not sig-
nificant.

5.2. Theoretical bounds and actual results

According to Shannon’s theorem of coding [27], it is impossi-
ble to encode themessages generated randomly from amodel
using less number of bits than the entropy of that model.
Lower and upper bounds of compression rates for Huffman
encoding denoted as Rhuff can be given as follows [27]:

h(p) ≤ Rhuff ≤ h(p) + 1, (20)

where h(p) is the zero-order entropy of the signal.
Gallagher [28] provides the alternative upper bound as

follows:

Rhuff ≤ h(p) + pmax + 0.086, (21)

where Pmax is the maximum probability of a sample.
Tables 3 and 4 give the comparison between the theoret-

ical and actual results for the ABT and SBT methods, respec-
tively. In these tables, R refers to the average code word length
obtained with Huffman encoder, and LB and UB refer to the
lower and upper theoretical bounds, respectively. The R value

is calculated based on the average number of bits required
for sending the residues to the receiving end. The BPS value
is calculated based on R, and the basic data such as weights,
biases, and first p samples to be sent to the receiving end for
identical network setup.

From Tables 3 and 4, we can conclude that the average
code word lengths for the Huffman encoder are much closer
to the theoretical lower bounds, thus obtaining an optimal
compression rate. It can also be noted that the values for the
BPS falls between lower and upper bounds provided by Gal-
lagher [28] for all the records.

5.3. Relationship between themean values and
compression performance

The performance of the proposed compression schemes may
depend upon the characteristics of the input samples also.
Table 5 shows the PRD and CR values and the corresponding
mean values of the records. The mean values are calculated
after subtracting the offset of 1024 from each sample. From
Table 5, it is noted that for most of the records, higher mean
values result in lower PRD and higher CR values. This result
is obtained by treating the first and second datasets indepen-
dently.

5.4. Visual inspection

Figures 12–15 show the original, reconstructed, and the
residue signals, respectively, for about 6 seconds from four
records of the MIT/BIH arrhythmia database.

From the visual inspection of the above figures, it can be
noted that there is a small variation in the magnitude of the
residue signal, irrespective of the fluctuations in the origi-
nal signal, for different records. Hence, it can be concluded
that the proposed compression schemes can be applied for
ECG records with different rhythms and QRSmorphological
characteristics.
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Table 5: Relationship between the mean values of the signal and performance of the proposed compression schemes.

Performance measure
First dataset Second dataset

119MLII 117MLII 100MLII 203MLII 202MLII 207MLII 214V1 232V1

Mean −171.058 −168.792 −63.286 −31.528 −28.417 −23.589 8.495 18.035

PRD (%) 0.034 0.034 0.030 0.029 0.029 0.029 0.028 0.028

CR 3.151 3.206 3.310 2.516 3.100 3.100 2.945 3.426

Table 6: Quality performance results: comparison between NNP- and LP-based compression schemes on short-duration datasets. NNP:
neural network predictor, WLSE denotes weighted least-squares error linear predictor, and MSE denotes mean-square error linear predictor.

MIT-BIH ADB record Type of predictor PRD (%) SNR (dB) NPRD (%) NSNR (dB) RMS

202MLII
NNP 0.0289 70.7820 0.5863 44.6376 0.2884

WLSE 0.0288 70.8231 0.5829 44.6882 0.2867

MSE 0.0287 70.8294 0.5825 44.6944 0.2865

203MLII
NNP 0.0289 70.7820 0.2787 51.0973 0.2886

WLSE 0.0290 70.7574 0.2793 51.0790 0.2892

MSE 0.0290 70.7595 0.2792 51.0810 0.2891

207MLII
NNP 0.0287 70.8424 0.3994 47.9718 0.2880

WLSE 0.0287 70.8496 0.3990 47.9808 0.2876

MSE 0.0289 70.7864 0.4019 47.9176 0.2897

214V1
NNP 0.0276 71.1818 0.2775 51.1347 0.2887

WLSE 0.0276 71.1715 0.2782 51.1137 0.2894

MSE 0.0275 71.2235 0.2765 51.1657 0.2876

232V1
NNP 0.0281 71.0259 0.8863 41.0484 0.2901

WLSE 0.0276 71.1943 0.8696 41.2132 0.2847

MSE 0.0281 71.0393 0.8853 41.0582 0.2898

Table 7: Improvement percentage of NNP-based over LP-based
compression schemes using average CR values.

Compression scheme NNP over WLSE (%) NNP over MSE (%)

PH 9.5324 14.3198

PRH 9.4708 13.4358

PA 8.6865 12.7675

PRA 8.8861 11.1478

6. PERFORMANCE COMPARISONWITH
OTHERMETHODS

6.1. Comparisonwith linear predictor-based
compressionmethods

We have implemented the compression of ECG signals based
on two standard linear predictor (LP) algorithms, weighted
least-squares error (WLSE), and mean-square error (MSE),
for performance comparison with the proposed nonlinear
neural network predictor (NNP)-based ECG compression
schemes. LP algorithms are based on designing a filter that
produces an estimate of the current sample using a linear
combination of the past samples such that the cost function
such as the WLSE or MSE is minimized. The implementa-
tion of WLSE algorithm is based on the adaptive adjustment

of the filter coefficients at each instant of time by minimiz-
ing the weighted sum of the prediction error. The identi-
fied filter coefficients are used to predict the current sam-
ple [29, 30]. The implementation of MSE algorithm is based
on the Levinson-Durbin recursivemethod for computing the
coefficients of the prediction-error filter of order p, by solv-
ing the Wiener-Hopf equations and minimizing the mean-
square prediction error [30]. In both WLSE and MSE algo-
rithms, fourth-order predictor is used to compare with the
fourth-order NNP-based compression schemes. Two-stage
ECG compression schemes are implemented with aWLSE or
MSE predictor in the first stage for performance comparison
with the proposed schemes.

Table 6 shows the quality performance results of NNP-
and LP-based compression schemes using SBT method on
short-duration datasets. It should be noted that the quality
performance results remain the same for a particular record
irrespective of the type of lossless encoder used in the second
stage.

FromTable 6, it can be concluded that there is a small dif-
ference in the quality performance results of NNP- and LP-
based compression schemes for a particular record. Figures
16 and 17 show the comparison of compression efficiency
performance results between NNP- and LP-based two-stage
compression schemes using SBT method on short-duration
datasets.
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Table 8: Record MIT-ADB 100: performance comparison results with different ECG compression methods. PH denotes MLP predictor in
the first stage and Huffman encoder in the second stage. WTDVQ denotes wavelet transform coding using dynamic vector quantization.
OZWC denotes optimal zonal wavelet coding. WHOSC denotes wavelet transform higher-order statistics-based coding. CAB denotes cut
and align beats approach. TSVD denotes truncated singular-value decomposition. WPC denotes wavelet packet-based compression.

Measure
Proposed
scheme (PH)

(WTDVQ)
[15]

(OZWC)
[9]

(WHOSC)
[9]

(CAB)
[10]

(TSVD)
[31]

(WPC)
[32]

PRD (%) 0.0301 6.6 0.5778 1.7399 1.9 9.92 11.58

CR 3.3104 — 8.16 17.51 4.0 77.91 23.61

CDR 108.7474 91.3 — — — 50.8 167.7

BPS 3.6249 — 1.47 0.68 — — —

Table 9: Record MIT-ADB 117: performance comparison results with different ECG compression methods. DWTC denotes discrete wavelet
transform-based coding. FPWCZ denotes fixed percentage of wavelet coefficients to be zeroed. SPIHT denotes set partitioning in hierarchical
trees algorithm. MEZWC denotes modified embedded zero-tree wavelet coding. DSWTC denotes discrete symmetric wavelet transform
coding.

Measure
Proposed
scheme
(PH)

(DWTC)
[11, 12]

(FPWCZ)
[33]

(WTDVQ)
[15]

(SPIHT)
[34]

(TSVD)
[31]

(MEZWC)
[35]

(DSWTC)
[13]

PRD (%) 0.0337 0.473 2.5518 3.6 1.18 1.18 2.6 3.9

NPRD(%) 0.6044 8.496 — — — — — —

CR 3.2064 10.9 16.24 — 8.0 10.0 8.0 8.0

CDR 112.276 — —- 101.6 — — — —
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Figure 12: ABT method: original ECG signal along with the re-
constructed and residue signals of MIT-BIH ADB record 117MLII.
In the reconstructed signal, PRD = 0.0337, NPRD = 0.6044, SNR
= 159.8987, RMS= 0.2888, CR= 3.2064 (PH), BPS= 3.7425 (PH),
and CDR = 112.28 (PH).
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Figure 13: ABT method: original ECG signal along with the re-
constructed and residue signals of MIT-BIH ADB record 119MLII.
In the reconstructed signal, PRD = 0.0336, NPRD = 0.2706, SNR
= 159.9695, RMS= 0.2888, CR= 3.1507 (PH), BPS= 3.8087 (PH),
and CDR = 114.26 (PH).
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Table 10: Record MIT-ADB 119: performance comparison results with different ECG compression methods. ASEC denotes analysis by
synthesis ECG compressor.

Measure
Proposed
scheme
(PH)

(DWTC)
[11, 12]

(FPWCZ)
[33]

(WTDVQ)
[15]

(SPIHT)
[34]

(TSVD)
[31]

(ASEC)
[36]

(CAB)
[10]

(WPC)
[32]

PRD (%) 0.0336 1.88 5.1268 3.3 5.0 6.15 5.48 1.8 19.5

NPRD (%) 0.2706 13.72 — — — — — — —

CR 3.1507 23.0 17.43 — — 36.72 — 4.0 19.65

CDR 114.2614 — — 156.5 183 107.7 189.0 — 201.5
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Figure 14: ABT method: original ECG signal along with the re-
constructed and residue signals of MIT-BIH ADB record 207MLII.
In the reconstructed signal, PRD = 0.0287, NPRD = 0.3993, SNR
= 163.1172, RMS= 0.2879, CR= 3.0583 (PH), BPS= 3.9237 (PH),
and CDR = 117.7111 (PH).

From Figures 16 and 17, it can be noted that NNP-based
two-stage compression schemes yield better compression ra-
tio and compressed data rate compared to the LP-based two-
stage compression schemes for all the tested records. The im-
provement in CR values with NNP compared to LP-based
compression schemes is determined as follows:

CRNNP − CRLP

CRLP
× 100. (22)

The values shown in Table 7 are calculated based on the
average CR value obtained using all the selected records and
it can be observed that the NNP-based schemes result in an
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Figure 15: SBT method: original ECG signal along with the re-
constructed and residue signals of MIT-BIH ADB record 232V1.
In the reconstructed signal, PRD = 0.0281, NPRD = 0.8863, SNR
= 163.5516, RMS= 0.2901, CR= 3.4264 (PH), BPS= 3.5023 (PH),
and CDR = 105.0681 (PH).

improvement of 9.14% and 12.92% on an average compared
to the WLSE and MSE algorithms, respectively.

6.2. Comparisonwith other knownmethods

Among the proposed single- and two-stage compression
schemes, the two-stage compression scheme using the ABT
method and Huffman encoder in the second stage (PH)
yields the best results. The performance of this scheme is
compared with those of other known methods and the re-
sults are given in Tables 8–10.

From Tables 8–10, it is observed that the proposed loss-
less scheme (PH) yields very low PRD (high quality) for all
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Figure 16: Compression ratio (CR) performance results: (a) PH scheme, (b) PRH scheme, (c) PA scheme, and (d) PRA scheme.

the records even though the compression efficiency is in-
ferior to other lossy methods in the literature. Lossy ECG
compression methods usually achieve higher compression
ratios compared to lossless methods at low quality. The pur-
pose of this comparison is to examine the tradeoff between
compression efficiency and quality for an ECG compres-
sion scheme to be used in a particular application. It can be
noted that the proposed schemes can be used in applications
where the distortion of the reconstructed waveform is intol-
erable.

7. CONCLUSIONS

This paper has presented lossless compression schemes us-
ing multilayer perceptron as a nonlinear predictor in the

first stage and different entropy encoders in the second stage.
The performances of the schemes have been evaluated using
selected records from MIT-BIH arrhythmia database. The
experimental results have shown that the compression ef-
ficiency of the two-stage method with Huffman coding is
nearly twice that of the single-stage method involving only
predictor. It is also observed that the proposed ABT and SBT
methods yield better compression efficiency performance for
long- and short-duration signals, respectively. It is shown
that significant improvement in compression efficiency can
be achieved with neural network predictors compared to the
linear predictors for the same quality with similar setup for
different compression schemes. This method yields higher
quality of the reconstructed signal compared to other known
methods. It can be concluded that the proposed method can
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Figure 17: Compressed data rate (CDR) performance results. (a) PH scheme, (b) PRH scheme, (c) PA scheme, and (d) PRA scheme.

be applied to the compression of ECG signals where quality
is the main concern compared to the compression efficiency.
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