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approach is finally exposed in several areas: image multiscale decomposition, image restoration, image segmentation, and image
enhancement, through biomedical materials and visual imaging applications.
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1. INTRODUCTION

In its broad acceptation [1], the notion of processing an im-
age involves the transformation of that image from one form
into another. The result may be a new image or may take the
form of an abstraction, parametrization, or a decision. Thus,
image processing is a large and interdisciplinary field which
deals with images. Within the scope of the present article,
the term image will refer to a continuous or discrete (includ-
ing the digital form) two-dimensional distribution of light
intensity [2, 3], considered either in its physical or in its psy-
chophysical form.

1.1. Fundamental requirements for an image
processing framework

In developing image processing techniques, Stockham [1]
has noted that it is of central importance that an image pro-
cessing framework must be physically consistent with the
nature of the images, and that the mathematical rules and
structures must be compatible with the information to be

processed. Jain [4] has clearly shown the interest and power
of mathematics for image representation and processing.
Granrath [5] has recognized the important role of human
visual laws and models in image processing. He also high-
lighted the symbiotic relationship between the study of im-
age processing and of the human visual system. Marr [6]
has pointed out that, to develop an effective computer vision
technique, the following three points must be considered:
(1) what are the particular operations to be used and why?
(2) how the images can be represented? and (3) what imple-
mentation structure can be used? Myers [7] has also pointed
out that there is no reason to persist with the classical linear
operations, if via abstract analysis, more easily tractable or
more physically consistent abstract versions of mathematical
operations can be created for image and signal processing.
Moreover, Schreiber [8] has argued that image processing is
an application field, not a fundamental science, while Gon-
zalez and Wintz [9] have insisted on the value of image pro-
cessing techniques in a variety of practical problems.
Therefore, it can be inferred from the above brief dis-
cussion and more generally from a careful reading of the
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specialized literature that an image processing framework
must satisfy the following four main fundamental require-
ments [10]: (1) it is based on a physically (and/or psy-
chophysically) relevant image formation model, (2) its math-
ematical structures and operations are both powerful and
consistent with the physical nature of the images, that is, with
the image formation and combination laws, (3) its opera-
tions are computationally effective, or at least tractable, and
(4) it is practically fruitful in the sense that it enables to de-
velop successful applications in real situations.

1.2. Theimportant role of human vision in
image processing

The important role that human visual perception shall or
should play in image processing has been recognized for a
long time [5, 6]. Although numerous papers have been pub-
lished on the modeling and operationalization of different vi-
sual laws and characteristics, it must be noticed that in prac-
tice the integration of visually-based computer modules in
image processing softwares and artificial vision systems still
remains relatively poor [11]. Indeed, there exists a large gap
between, on one hand, the strong ability of human vision to
perform difficult perceptual tasks, such as pattern recogni-
tion or image correlation, and on the other hand, the weak-
ness of even sophisticated algorithms to successfully address
such problems [12]. The first reason is that computer vision
remains a hard problem since the human vision system is
complex and still remains partially unknown or not known
enough [12]. The second reason is that a lot of human visual
treatments are not available in operational and implementa-
tional forms allowing their processing to be performed by a
computer.

Most conventional processors consider little the influ-
ence of human visual psychology [11, 13], and more gen-
erally the human visual perception theories [14]. For exam-
ple, computer vision uses very little and almost nothing of
the Gestalt theory [15, 16] results, mainly due to the fact
that this theory is essentially qualitative and thus does not
offer quantitative laws that allow mathematical operations
to be defined and computationally implemented [17]. Al-
though, some authors have addressed the difficult problem of
defining unified frameworks that involve and integrate sev-
eral laws, characteristics, and models of human visual per-
ception (e.g., [6, 18]), the way towards an efficient unifica-
tion, allowing a full understanding of visual processing, will
be long and hard. The purpose of the present paper is to con-
tribute to progress in that direction.

1.3. The logarithmic image processing (LIP) approach

In the mid 1980’, an original mathematical approach called
logarithmic image processing (LIP) has been introduced by
Jourlin and Pinoli [19, 20] as a framework for the representa-
tion and processing of nonlinear images valued in a bounded
intensity range. A complete mathematical theory has been
developed [21-23]. It consists of an ordered algebraic and
functional framework, which provides a set of special opera-
tions: addition, subtraction, multiplication, differentiation,

integration, convolution, and so on, for the processing of
bounded range intensity images.

The LIP theory was proved to be not only mathemati-
cally well defined, but also physically and psychophysically
well justified (see [22] for a survey of the LIP physical and
psychophysical connections). Indeed, it is consistent with the
transmittance image formation laws [20, 24], the multiplica-
tive reflectance image formation model, the multiplicative
transmittance image formation model [10, 25, 26], and with
several laws and characteristics of human brightness percep-
tion [22, 27, 28]. The LIP framework has been compared
with other abstract-linear-mathematical-based approaches
showing several theoretical and practical advantages [10].

1.4. The general adaptive neighborhood image
processing (GANIP) approach

The image processing techniques using spatially invariant
transformations, with fixed operational windows, give effi-
cient and compact computing structures, with the conven-
tional separation between data and operations. However,
these operators have several strong drawbacks, such as re-
moving significant details, changing the detailed parts of
large objects, and creating artificial patterns [29].

Alternative approaches towards context-dependent pro-
cessing have been proposed with the introduction of
spatially-adaptive operators, where the adaptive concept re-
sults from the spatial adjustment of the window [30-33].
A spatially-adaptive image processing approach implies that
operators will no longer be spatially invariant, but must vary
over the whole image with adaptive windows, taking locally
into account the image context.

An original approach, called general adaptive neighbor-
hood image processing (GANIP), has been recently intro-
duced by Debayle and Pinoli [34-36]. This approach allows
the building of multiscale and spatially adaptive image pro-
cessing transforms using context-dependent intrinsic opera-
tional windows. With the help of a specified analyzing crite-
rion and general linear image processing (GLIP) frameworks
[10, 25, 37, 38], such transforms both perform a more sig-
nificant spatial analysis, taking intrinsically into account the
local radiometric, morphological or geometrical characteris-
tics of the image, and are consistent with the physical and/or
physiological settings of the image to be processed [39-41].

1.5. Theproposed LANIP (LIP + GANIP) framework

The general adaptive neighborhood image processing (GA-
NIP) approach is here specifically introduced and ap-
plied together with the logarithmic image processing (LIP)
framework. The so-called logarithmic adaptive neighbor-
hood image processing (LANIP = LIP + GANIP) will be
shown to be consistent with several human visual laws
and characteristics such as intensity range inversion, sat-
uration characteristic, Weber’s and Fechner’s laws, psy-
chophysical contrast, spatial adaptivity, morphological sym-
metry property, multiscale analysis. Combining LIP and
GANIP, the proposed logarithmic adaptive neighborhood
image processing (LANIP) framework satisfies four main
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fundamental requirements that are needed for a relevant hu-
man perception-based framework (Section 1.1). It is based
on visual laws and characteristics, (2) its mathematical struc-
tures and operations are both powerful and consistent with
the psychophysical nature of the visual images, (3) its oper-
ations are computationally effective, and (4) it is practically
fruitful in the sense that it enables to develop successful ap-
plications in real situations.

1.6. Applications of the LANIP framework
to biomedical, materials, and
visual imaging

In this paper, practical application examples of the LANIP,
more particularly in the context of biomedical, materials,
and visual imaging, are exposed in the field of image mul-
tiscale decomposition, image restoration, image segmenta-
tion, and image enhancement, successively. In order to eval-
uate the proposed approach, a comparative study is so far as
proposed, between the LANIP-based and the classical oper-
ators. The results are achieved on a brain image, the “Lena”
visual image, a metallurgic grain image, a human endothelial
cornea image, and a human retina vessels image.

1.7. Outline of the paper

First, the logarithmic image processing (LIP) framework is
surveyed through its initial motivation and goal, mathemati-
cal fundamentals and addressed application issues. A detailed
summary of its connections with the human brightness per-
ception is exposed. Secondly, the general adaptive neighbor-
hood image processing (GANIP) approach is introduced and
its connections to human brightness perception are intro-
duced. Then, the logarithmic adaptive neighborhood im-
age processing (LANIP) is introduced by combining the LIP
framework with the GANIP framework. Next, practical ap-
plication examples are illustrated on biomedical, materials,
and visual images. Finally, in the concluding part, the main
characteristics of the LANIP approach are summarized and
the objectives of future work are briefly exposed.

2. LIP: LOGARITHMICIMAGE PROCESSING

2.1. Initial motivation and goal

The logarithmic image processing (LIP) approach was origi-
nally developed by Jourlin and Pinoli and formally published
in the mid-1980s [19, 20, 23] for the representation and pro-
cessing of images valued in a bounded intensity range. They
started by examining the following (apparently) simple prob-
lem: how to add two images? They argued that the direct
usual addition of the intensity of two images is not a satis-
factory solution in several physical settings, such as images
formed by transmitted light [42—44] or the human bright-
ness perception system [45—47], and in many practical cases
of digital images [48, 49]. For the two first non- (classi-
cally) linear physical image settings, the major reason is that
the usual addition + and scalar multiplication X operations

are not consistent with their combination and amplification
physical laws. Regarding digital images, the problem lies in
the fact that a direct usual sum of two intensity values may
be out of the bounded range where such images are valued,
resulting in an unwanted out-of-range. From a mathematical
point of view, the initial aim [19, 20, 23] of developing the
LIP approach was to define an additive operation closed in
the bounded real number range [0, M), which is mathemat-
ically well defined, and also physically consistent with con-
crete physical (including the psychophysical aspects) and/or
practical image settings [21, 22]. Then, the focus was to in-
troduce an abstract ordered linear topological and functional
framework.

2.2. Mathematical fundamentals

In developing the LIP approach, Jourlin and Pinoli [19, 20,
23] first argued that, from a mathematical point of view,
most of the classical or less classical image processing tech-
niques have borrowed their basic tools from functional anal-
ysis. They further argued that these tools realize their full effi-
ciency when they are put into a well-defined algebraic struc-
ture, most of the time of a vectorial nature. In the LIP ap-
proach, images are represented by mappings, called gray tone
functions and denoted by f,g,... defined on the spatial do-
main D and valued in the positive real number set [0, M),
called the gray tone range. The elements of [0, M) are called
gray tones. Thereafter, the set constituted by those gray tones
functions extended to the real number set (—oo, M), struc-
tured with a vector addition, denoted by A, a scalar multi-
plication, denoted by A, and the opposite, denoted by A,
defines a vector space [23].

Those LIP basic operations are directly defined as follows
[25, 26]:

vVf,ges ng:f+g—%,
A
VfeSVieR )L&sz—M(l—%), (1)

~Mf
v S, = —.
The opposite operation A allows the difference between two
gray tone functions f and g, denoted by f A g, to be defined
as
f-g
=M= 2

fog=M; — g (2)
In addition to abstract linear algebra, the ordered sets theory
plays a fundamental role within the LIP approach. Indeed,
it has been shown [23] that this set of extended gray tone
functions is an ordered vector space with the classical order
relation >. The modulus of a gray tone function f is then
denoted by | f|s and defined by

[f itf=o,
|f|s_{Af iff <o, (3)
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In fact, it has been proved [23] that the order relation in-
duces the topological structuring of the LIP framework. Such
a result is of fundamental importance and explains why the
modulus notion is of great interest, since it gives a math-
ematical meaning to the physical “magnitude” within the
LIP approach. However, the LIP mathematical framework
is not only an ordered vectorial structure. Algebraic and
functional extensions have been developed allowing pow-
erful concepts and notions operating on special classes of
gray tone functions to be defined: metrics, norms, scalar
product, differentiation, integration, convolution [50], cor-
relation [51], and also the specific LIP Fourier and LIP
wavelet transformations [52]. These fundamental aspects of
the LIP approach will not be exposed in the present arti-
cle and the interested reader is invited to refer to the pub-
lished articles and thesis for detailed developments [23, 25,
51, 53].

2.3. Application issues

During the last twenty years, successful application examples
were reported in a number of image processing areas, for
example, background removing [24, 54], illumination cor-
rection [55, 56], image enhancement (dynamic range and
sharpness modification) [57-62], image 3D-reconstruction
and visualization [63, 64], contrast estimation [27, 28, 65,
66], image restoration and filtering [54, 56, 67, 68], edge de-
tection and image segmentation [65, 69-72], image multi-
scale decomposition [73, 74], image data compression [75,
76], and color image representation and processing [77-79].

2.4. LIPversus general linearimage processing (GLIP)

From an image processing point of view, the LIP framework
appears as an abstract-linear-mathematical-based approach
and belongs to the so-called general linear image processing
(GLIP) family [10]. Therefore, it has been compared with
the classical linear image processing (CLIP) approach (e.g.,
see [9, 49]), the multiplicative homomorphic image processing
(MHIP) approach [1, 80, 81], the log-ratio image processing
(LRIP) approach [82-84], and the unified model for human
brightness perception [18], showing its mathematical, physi-
cal, computational, and practical characteristics and advan-
tages [10, 25, 27, 58, 67, 85]. Interested readers are invited to
refer to [10] for a detailed report of the comparative study of
the MHIP, LRIP, and LIP approach.

2.5. Connections of the LIP model with several
properties of the human brightness
perception

The LIP approach has been proved [20, 25, 28, 58, 59, 67, 86]
to be consistent with several properties of the human visual
system, because it satisfies the brightness range inversion and
the saturation characteristic, Weber’s and Fechner’s laws, and
the psychophysical contrast notion. This section aims at sur-
veying these connections.

2.5.1. Intensity functions

In the context of human brightness perception, a gray tone
function f(x, y) corresponds to an incident light intensity
function F(x, y) through the following relationship [20]:

F(x,y):M(l—M), (4)

Fmax

where Fpay is the saturating light intensity level, called the
“upper threshold” [45] or the “glare limit” [48] of the hu-
man visual system. Thus, a gray tone function f(x, y) corre-
sponds to an intensity function F(x, y) valued in the positive
bounded real number range (0, Fiax]-

In fact, the definition (4) of a gray tone function in the
context of human brightness perception is nothing else than
a normalized intensity function in an inverted value range.
Indeed, contrary to the classical convention, the gray range
is inverted in the LIP model, since the gray tone 0 designates
the total whiteness, while the real number M represents the
absolute blackness. This will now be justified and explained.

2.5.2. Theintensity range inversion

The limits of the interval [0, M) have to be interpreted as fol-
lows: the value 0 represents the “upper threshold” or “glare
limit” (i.e., the saturating light intensity level Fyax), whilst
the value M corresponds to the physical complete darkness
(i.e., the light intensity level 0). Indeed, it is known [87, 88]
that the eyes are sensitive to a few quanta of light photons.
The brightness range inversion of the gray tone range [0, M)
(0 and M representing, respectively, the white and black val-
ues) has been first justified in the setting of transmitted light
imaging processes: the value 0 corresponds to the total trans-
parency and logically appears as the neutral element for the
mathematical addition [19, 20]. This brightness range in-
version also appears valid in the context of the human vi-
sual perception. Indeed, Baylor et al. [89, 90] have shown
through physiological experiments on monkeys that, in com-
plete darkness, the bioelectrical intensity delivered by the
retinal stage of the eyes is equal to a mean constant value.
They have also established that the increase of the incident
light intensity produces a decrease (and not an increase) of
this bioelectrical intensity. Such a property physically justi-
fies the brightness range inversion in the LIP model in the
context of human visual perception.

2.5.3. Thesaturation characteristic

A lot of the LIP model mathematical operations are stable
in the positive gray tone range [0, M), which corresponds to
the light intensity range (0, Fnax] (see Section 2.5.1). This im-
portant boundedness property allows to argue that the LIP
model is thus consistent with the saturation characteristic
of the human visual system, as also noted by Brailean et
al. [27, 67, 85]. Indeed, it is known [45, 46] that the human
eyes, beyond a certain limit (i.e., the “upper threshold”), de-
noted Fp,y in the present article, cannot recognize any fur-
ther increase in the incident light intensity.
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2.54. Weber’s law

The response to light intensity of the human visual system is
known to be nonlinear since the middle of the 19th century,
when the psychophysician Weber [91] established its visual
law. He argued that the human visual detection depends on
the ratio, rather than the difference, between the light inten-
sity values F and F + AF, where AF is the so-called “just no-
ticeable difference,” which is the amount of light necessary to
add to a visual test field of intensity value F such that it can
be discriminated from a reference field of intensity value F
(45, 46]. Weber’s law is expressed as

AF
where W is a constant called Weber’s constant [45, 92].
It has been shown [20, 67, 86] that the LIP subtraction
A is consistent with Weber’s law. Indeed, choosing two light
intensity values F and G, the difference of their correspond-
ing gray tones f and g, using the definitions (2) and (4), is
given by
) =)
=M =M .
eaf =M - ©)

If the light intensity values F and G are just noticeable, that
is, G = F + AF, then the gray tone difference, denoted A f,
yields

Af = —M% = —MW. 7)
Thus, the constancy is established (the minus sign coming
from the brightness range inversion in the LIP model). How-
ever, the value of Weber’s constant depends on the size of
the detection target [93, 94], and only holds for light inten-
sity values larger than a certain level [95], and is known to
be context-dependent [96]. Although other researchers have
criticized or rejected Weber’s law (see Krueger’s article [96]
and related open commentaries for a detailed discussion),
this does not limit the interest of the LIP approach in the con-
text of human visual perception. Indeed, the consistency be-
tween the LIP subtraction and Weber’s law established in (6),
(7) means that in whatever situation Weber’s law holds, the
LIP subtraction expresses it. In fact, the LIP model is consis-
tent with a less restrictive visual law than Weber’s law, known
as Fechner’s law.

2.5.5.  Fechner’s law

A few years after Weber, Fechner [97] explained the nonlin-
earity of human visual perception as follows [45, 96]: in or-
der to produce incremental arithmetic steps in sensation, the
light intensity must grow geometrically. He proposed the fol-
lowing relationship between the light intensity F (stimulus)
and the brightness B (sensation):

AF
AB = k?, (8)

where AF is the increment of light that produces the incre-
ment AB of sensation (brightness) and k is a constant. The
Fechner law can then be expressed as

F
Bk (),

t F, min (9)
where k" is an arbitrary constant and Fp, is the “absolute
threshold” [96] of the human eye, which is known to be very
close to the physical complete darkness [87, 88]. Fechner’s
law can be equivalently expressed as

E )+k’1n<Fm“), (10)

max F min

Bzym(

where Fp, is the “upper threshold” (or “glare limit”) of the
human eye.

In this article, the relationships (8) and (9) or (10) will be
called the discrete Fechner law and the continuous Fechner
law, respectively. It has been shown [19, 22, 67] that the LIP
subtraction is consistent with the discrete Fechner law. This
result is easy to obtain since formulas (8) and (9) are equiva-
lent. The LIP framework is also consistent with the continu-
ous Fechner law [59].

In fact, the Fechner approach was an attempt to find a
classical linear range for the brightness (light intensity sen-
sation) with which the usual operations “+” and “X” can be
used, whilst the LIP model defines specific operations acting
directly on the light intensity function (stimulus) through
the gray tone function notion.

2.5.6. The psychophysical contrast

Using the LIP subtraction operation (2) and the modulus no-
tion (3), Jourlin et al. [28] have proposed in the discrete case
(i.e., with the spatial domain D being a nonempty discrete
set in the Euclidean space R?) a definition of the contrast be-
tween the gray tones f and g of two neighboring points:

C(f,g) = max(f,g)A min(f,g). (11)

An equivalent definition [25, 51, 86] which allows subse-
quent mathematical operations to become more tractable is
given by

C(f,8) = 1frgls (12)

where | - [ is the positive gray tone valued mapping function,
called modulus in Section 2.2 and defined by (3).

It was shown [28, 86] that definition (12) is consistent
with Weber’s and discrete Fechner’s laws. Indeed, the contrast
between the gray tones f and g of two neighboring points is

) oy fgle
C(f.g) =1fnrgls _MMfmin(]W%,g) M

|G~ Flg
max(F,G)’
(13)

where G and F are the corresponding intensity values given
by (using (4)):
) > F max (1 -

). (14)

<[

6= Fun1-

is
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For two just noticeable intensity values F and G, the consis-
tency with Weber’s law is then shown by using the formulas

(7), (8):

|AF|g

F =MW. (15)

C(f.g) =M
In fact, it has been proved [86] that the LIP contrast defi-
nition coincides with the classical psychophysical definition
[45, 55, 90], since selecting the first equality in (15) yields

|AF g

F (16)

C(f.g) =M
which is a less restrictive equation than (15), and is related
to discrete Fechner’s law, instead of Weber’s law. Therefore,
the LIP subtraction and modulus notion are closely linked to
the classical psychophysical definition of contrast, which ex-
presses the (geometric and not arithmetic) difference in in-
tensity between two objects observed by a human observer.
Starting with the psychophysically and mathematically well-
justified definition (12), Jourlin et al. [28] have shown that
the LIP model permits the introduction of the contrast defi-
nition in the discrete case. Pinoli [86] has extended this work
in the continuous case.

2.5.7.  Other visual laws and recently reported works

The classical literature describing human brightness re-
sponse to stimulus intensity includes many uncorrelated re-
sults due to the different viewpoints of researchers from dif-
ferent scientific disciplines (e.g., physiology, neurology, psy-
chology, psychophysics, optics, engineering and computer
sciences). Several human visual laws have been reported and
studied, for example, Weber’s law [45, 91, 95], Fechner’s
law [45, 97, 98], DeVries-Rose’s law [95, 99-102], Stevens’
law [45, 103—-105], and Naka-Rushton’ law [106—108] (see
Krueger’s article [96] and related open commentaries for
a detailed study in the field of psychophysics and Xie and
Stockham’s article [18] for a discussion in terms of image
processing in the context of human vision). Some authors
tried to relate some of these human visual laws, for exam-
ple, see [109, 110]. Some other authors proposed modified
or unified human visual laws, for example, see [18, 111, 112].

Recently, reported modern works [113-116] suggest that
instead of logarithmic scaling, the visual response to a stim-
ulus intensity takes the form of a kind of sigmoidal curve:
a parabola near the origin and approximately a logarithmic
function for higher values of the input. Therefore, it can be
only argued that the LIP approach is consistent with We-
ber’s and Fechner’s laws, and thus appears as a powerful and
tractable algebraic mathematical and computational frame-
work for image processing in the context of human visual
perception under the logarithmic assumption.

Image representation in the domain of local frequen-
cies is appropriate and has strong statistical grounds [117—
119] and remarkable biological counterparts [120-122].
Weber-Fechner-Stevens (and other authors) luminance non-
linearities are a particular (zero frequency) case of the more
general non-linear wavelet-like behavior [120, 121, 123, 124].

Nevertheless, the mathematical introduction of a wavelet
transformation within a function vector space is based on an
integral operation and thus on an addition operation (+ be-
comes A within the LIP framework). This is of key impor-
tance since from a mathematical point of view, the setup of
additive operation is the starting point for the definition of
the Fourier and the wavelet transformations. Therefore, the
LIP framework enables to define logarithmic wavelet trans-
formations [52] whose behavior is adapted to the human vi-
sual system.

3. GANIP: GENERAL ADAPTIVE NEIGHBORHOOD
IMAGE PROCESSING

In the so-called general adaptive neighborhood image pro-
cessing (GANIP) approach which has been recently intro-
duced [34, 41], a set of general adaptive neighborhoods
(GAN:Ss set) is identified according to each point in the im-
age to be analyzed. A GAN is a subset of the spatial domain
D constituted by connected points whose measurement val-
ues, in relation to a selected criterion (such as luminance,
contrast, thickness, curvature, etc.), fit within a specified ho-
mogeneity tolerance. Then, for each point to be processed,
its associated GANs set is used as adaptive operational win-
dows of the considered transformation. It allows to define
operators for image processing and analysis which are adap-
tive with spatial structures, intensities, and analyzing scales
of the studied image [34].

3.1. General adaptive neighborhood (GAN) paradigm

In adaptive neighborhood image processing (ANIP) [125,
126], a set of adaptive neighborhoods (ANs set) is defined for
each point within the image. Their spatial extent depends on
the local characteristics of the image where the seed point is
situated. Then, for each point to be processed, its associated
ANss set is used as spatially adaptive operational windows of
the considered transformation.

The AN paradigm can spread over a more general case,
in order to consider the radiometric, morphological or geo-
metrical characteristics of the image, allowing a more con-
sistent spatial analysis to be addressed and to develop oper-
ators that are consistent with the physical and/or physiolog-
ical settings of the image to be processed. In the so-called
general adaptive neighborhood image processing (GANIP)
[34, 35, 41], local neighborhoods are identified in the image
to be analyzed as sets of connected points within a specified
homogeneity tolerance in relation with a selected analyzing
criterion such as luminance, contrast, orientation, thickness,
curvature, and so forth; see [35]. They are called general for
two main reasons. First, the addition of a radiometric, mor-
phological, or geometrical criterion in the definition of the
usual AN sets allows a more significant spatial analysis to be
performed. Second, both image and criterion mappings are
represented in general linear image processing (GLIP) frame-
works [10, 25, 37, 38] using concepts and structures coming
from abstract linear algebra, in order to include situations
in which signals or images are combined by processes other



J.-C. Pinoli and J. Debayle

than the usual vector addition [10]. Consequently, operators
based on such intensity-based image processing frameworks
should be consistent with the physical and/or physiological
settings of the images to be processed. For instance, the log-
arithmic image processing (LIP) framework (Section 2) with
its vector addition A and its scalar multiplication A has
been proved to be consistent with the transmittance image
formation model, the multiplicative reflectance image for-
mation model, the multiplicative transmittance image for-
mation model, and with several laws and characteristics of
human brightness perception.

In this paper, GANIP-based operators will be specifi-
cally introduced and applied together with the LIP frame-
work, because of its superiority among the GLIP frameworks
(Section 2.4).

3.2. General adaptive neighborhoods (GANs) sets

The space of criterion mappings, defined on the spatial do-
main D and valued in a real number interval E, is represented
in a GLIP framework, denoted by C, structured by its vecto-
rial operations ®, ©,and ©.

For each point x € D and for an image f, the general
adaptive neighborhoods (GANSs), denoted by V. o (x), are in-
cluded as subsets within D. They are built upon a criterion
mapping h € C (based on a local measurement such as lumi-
nance, contrast, thickness, ..., related to f), in relation with
a homogeneity tolerance mo belonging to the positive inten-
sity value range E* = {t € E | t > 0}.

More precisely, the GAN V. o (x) is a subset of D which
fulfills the two following conditions:

(i) its points have a criterion measurement value closed to
that of the seed (the point x to be processed):

Vye V,’;O(x) [h(y)oh(x) |, < mo; (17)

(ii) itis a path-connected set [127] (according to the usual
Euclidean topology on D < R?),

where | - | is the vector modulus given by (3).

In this way, for a point x, a range of tolerance mq is
first computed around h(x) : [h(x) © mo,h(x)®@mo]. Sec-
ondly, the inverse map of this interval gives the subset {y €
D; h(y) € [h(x)©mo, h(x)®@mo ]} of the spatial domain D.
Finally, the path-connected component holding x provides
its GAN set V#‘O (x).

The general adaptive neighborhoods (GANs) are then
defined as

V (mo,h,x) € E* X CxD
(18)
Vo () = Ch 1100 © my hix) @ my ) (%),

where Cx(x) denotes the path-connected component [127]

measurement value

h(x)

\

[h(x) Ama,h(x)Ama]l point line

FIGURE 1: One-dimensional computation of a general adaptive
neighborhood set V!, (x) using the LIP framework. For a point x, a
range of tolerance m is first computed around h(x). Secondly, the
inverse map of this interval gives a subset of the 1D spatial domain.
Finally, the path-connected component holding x provides its loga-
rithmic adaptive neighborhood (LAN = LIP + GAN) set V. A (x).

(according to the usual Euclidean topology on D < R?) of
X < D containing x € D.

Figure 1 gives a visual impression, on a 1D example, of
the computation of a GAN set defined in the LIP framework,
that is to say with the A and A as GLIP vectorial operations.

Figure 2 illustrates the GAN set of a point x on an elec-
trophoresis gel image f provided by the software Micro-
morph computed with the luminance criterion h; (that is to
say with h; = f) or the contrast (in the sense of [28, 86])
criterion h; (defined by (30)). In practice, the choice of the
appropriate criterion results from the specific kind of the ad-
dressed imaging situation.

These GAN sets satisfy several properties such as reflexiv-
ity, increasing with respect to m¢ (nesting property), equal-
ity between iso-valued neighbors points, addition invariance
and multiplication compatibility [34, 35].

To illustrate the nesting property, the GAN sets of four
initial points are computed on the “Lena” image (Figure 3)
with the luminance acting as analyzing criterion and dif-
ferent values of the homogeneity tolerance m. These GANs
are built within the classical linear image processing (CLIP)
framework, that is to say with the usual operations + and —.

Figure 3 shows that the GAN sets are, through the ana-
lyzing criterion and the homogeneity tolerance, nested and
spatially adaptive relating to the local structures of the stud-
ied image, allowing an efficient multiscale analysis to be per-
formed.

3.3. Connections of the GANIP framework with human
brightness perception

The purpose of this section is to discuss the connections
of the GANIP approach to human brightness perception,
namely, the spatial adaptivity, the multiscale adaptivity, and
the morphological symmetry property which are known to
be spatial abilities of the human visual system.
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(d) Seed point x

(e) Vi (x)

(c) hx contrast

() Vi3 (x)

FIGURE 2: Original electrophoresis gel image (a). The adaptive neighborhood set for the seed point highlighted in (d) is, respectively, homo-
geneous in (e) and (f), according to the tolerance m = 10 and m, = 30, in relation to the luminance criterion (b) or to the contrast criterion

(c).

(a) Criterion: luminance

(b) GAN sets

(c) Color table linked to ho-
mogeneity tolerances m

FiGUre 3: Nesting of GAN sets of four seed points (b) using the luminance criterion (a) and different homogeneity tolerances: m =
5,10, 15,20, and 25 encoded by the color table (c). The GANs are nested with respect to m. Following the color table (c), a GAN set de-
fined with a certain homogeneity tolerance m could be represented by several tinges of the color associated to its seed point. For instance,
the GAN set of the point highlighted in the hairs of Lena for m = 25 is represented by all the points colored with all tinges of yellow.

3.3.1. Spatial adaptivity

Generally, images exhibit a strong spatial variability [128]
since they are composed of different textures, homogeneous
areas, patterns, sharp edges, and small features. The impor-
tance of having a spatially adaptive framework is shown by
the failure of stationary approaches to correctly model im-
ages, especially when dealing with inverse problems such as
denoising or deblurring. However, taking into account the
space-varying characteristics of a natural scene is a difficult
task, since it requires to define additional parameters. The
GANIP approach has been built to be spatially-adaptive by
means of an analyzing criterion h that could be selected,
for example, as the luminance or the contrast of the image
to be studied. Therefore, it can be argued that the GANIP

approach is closely related to the visual spatial adaptivity
which is known to be an ability of the human visual system.

3.3.2.  Multiscale adaptivity

A multiscale image representation such as pyramids [129],
wavelet decomposition [130] or isotropic scale-space [131],
generally takes into account analyzing scales which are global
and a priori defined, that is to say based on extrinsic scales.
This kind of multiscale analysis possesses a main drawback
since an a priori knowledge, related to the features of the
studied image, is consequently required. On the contrary,
an intrinsic multiscale representation such as anisotropic
scale-space [132] takes advantage of scales which are self-
determined by the local image structures. Such an intrinsic
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decomposition does not need any a priori information and
is consequently much more adapted to vision problems: the
image itself determines the analyzing scales. The GANIP
framework is an intrinsic multiscale approach, that is, adap-
tive with the analyzing scales. Indeed, the different structures
of an image, seen at specific scales, fit with the GANs V/ o (x)
with respect to the homogeneity tolerance m¢o, without any a
priori information about the image. A more specific study on
the comparison between extrinsic and intrinsic approaches is
exposed in [34].

The advantage of GANIP, contrary to most multiscale de-
composition, is that analyzing scales are automatically deter-
mined by the image itself. In this way, a GANIP multiscale
decomposition, such as that proposed in [40], saves signifi-
cant details while simplifying the image along scales, which
is suitable for segmentation.

3.3.3.  Morphological symmetry property

Visually meaningful features are often geometrical, for ex-
ample, edges, regions, objects [13]. According to the Gestalt
theory [15, 133], “grouping” is the main process of the hu-
man visual perception [16, 17, 134, 135]. That means when-
ever points or group of points (curves, patterns, etc.) have
one or several characteristics in common, they get grouped
and form a new larger visual object called a gestalt [17]. This
grouping processes are known as grouping laws (in fact, rules
or heuristics are more suited terms instead of law): proxim-
ity, good continuation, closure, and so forth, and symme-
try which is indeed an interesting property used by the hu-
man visual system for pattern analysis [13, 136-139]. In the
GANIP framework, the GANs adaptive structuring elements
used for the morphological analysis of an image are chosen to
be autoreflected (21) or symmetric (see Remark 2), accord-
ing to the analyzing criterion h. This symmetry condition
is more adapted to image analysis for topological and visual
reasons [36]. It is important to note that this symmetry prop-
erty is of morphological nature and not only of a geometri-
cal nature (i.e., a simple mirror symmetry [13]) that suits the
way human visual system performs a local “geodesic” (and
not Euclidean) shape analysis [140, 141].

4. LANIP: LOGARITHMIC ADAPTIVE NEIGHBORHOOD
IMAGE PROCESSING

The so-called logarithmic adaptive neighborhood image
processing (LANIP) is a combination of the GANIP and
the LIP frameworks. In this way, the GANs are specifi-
cally introduced in the LIP context with its A, A, and A
vectorial operations. Therefore, LANIP-based mean, rank
(Section 4.1) or morphological (Section 4.2) operators will
be defined with those logarithmic adaptive neighborhoods
(LANs) {Vf,‘1A (x)}x as operational windows.

4.1. LANIP-based mean and rank filtering

Mean and rank filtering are simple, intuitive, and easy to
implement methods for spatially smoothing images, that is,

reducing the amount of intensity variation between one pixel
and the next one. They are often used to reduce noise effects
in images [9, 142].

The idea of mean filtering is simply to replace the gray
tone of every point in an image with the mean (“average”)
gray tone of its neighbors, including itself. This has the effect
to eliminate point values which are unrepresentative of their
surroundings. Mean filtering is usually thought of as a con-
volution filter. Like other convolutions it is based on an op-
erational window, which represents the shape and size of the
neighborhood to be slided within the image when calculat-
ing the mean. Often an isotropic operational window is used,
as a disk of radius 1, although larger operational windows
(e.g., disk of radius 2 or more) can be used for more severe
smoothing. (Note that a small operational window can be ap-
plied more than one time in order to produce a similar—but
not identical—effect as a single pass with a large operational
window.)

Rank filters in image processing sort (rank) the gray tones
in some neighborhood of every point following the ascend-
ing order, and replace the seed point by some value k in the
sorted list of gray tones. When performing the well-known
median filtering [142], each point to be processed is deter-
mined by the median value of all points in the selected neigh-
borhood. The median value k of a population (set of points
in a neighborhood) is that value for which half of the popu-
lation has smaller values than k, and the other half has larger
values than k.

So, the LANIP-based mean and rank filters are intro-
duced by substituting the classical isotropic neighborhoods,
generally used for this kind of filtering, with the (anisotropic)
logarithmic adaptive neighborhoods (LANs).

4.2. LANIP-based morphological filtering

The origin of mathematical morphology (MM) stems from
the study of the geometry of porous media [143]. The mathe-
matical analysis is based on set theory, integral geometry, and
lattice algebra. Its development has been characterized by a
cross-fertilization between applications, methodologies, the-
ories, and algorithms. It leads to several processing tools in
the aim of image filtering, image segmentation and classifi-
cation, image measurements, pattern recognition, or texture
analysis [144].

The proposed LANIP-based mathematical morphology
approach is introduced by using the LANSs set to define adap-
tive structuring elements. In the presented paper, only the flat
MM (i.e., with structuring elements as subsets in R?) is con-
sidered, though the approach is not restricted and can also
address the general case of functional MM (i.e., with func-
tional structuring elements) [35].

The space of images from D into R, denoted by I, is pro-
vided with the partial ordering relation < defined in terms of
the usual ordering relation < of real numbers:

V(f,g9) el f=<g< (VxeDf(x)=<gx). (19

Thus, the partially-ordered set (I, <), still named I, is a com-
plete lattice [145].
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FIGURE 4: Representation of a logarithmic adaptive neighborhoods
(LANS) structuring element Rl (x).

4.2.1. LAN structuring elements

To get the morphological duality (adjunction) between
erosion and dilation, reflected (or transposed) structuring
elements (SEs) [145], whose definition is mentioned below,
shall be used. The reflected subset of A(x) < D, element of a
collection {A(z)},ep, is defined as

A(x) = {ze D; x € A(2)}. (20)

The notion of autoreflectedness is then defined as fol-
lows [145]: the subset A(x) < D, element of a collection
{A(2)};ep, is autoreflected if and only if

A(x) = Ax), (21)
that is to say: for all (x, y) € D> x € A(y) © y € A(x).

Remark 1. The term autoreflectedness is used instead of sym-
metry which is generally applied in the literature [145], so
as to avoid the confusion with the geometrical symmetry.
Indeed, an autoreflected subset A(x) < D belonging to
{A(2)}zep is generally not symmetric with respect to the
point x.

Spatially adaptive mathematical morphology using adap-
tive SEs which do not satisfy the autoreflectedness condi-
tion (21) has been formally proposed by [146] and prac-
tically used in image processing [147, 148]. Nevertheless,
while autoreflectedness is restrictive from a strict mathemat-
ical point of view, it is relevant for topological, visual, mor-
phological, and practical reasons [36]. From this point, au-
toreflected adaptive structuring elements are considered in
this paper. Therefore, as the LAN sets V) _(x) are not autore-
flected [34], it is necessary to introduce adaptive structuring
elements (ASEs), denoted by {Ri‘,1A (x)}xep- They are defined
while satisfying the GAN paradigm and the autoreflectedness
condition

YV (mpa,h,x) € Ef xCxD

R;, ()= U AV}, (@) |x €V}, (o))

zeD

(22)

Those adaptive SEs are anisotropic and self-defined with
respect to the criterion mapping h. They satisty several

roma By (x1) Rﬁ'nA(x4)

Rl (x3)

X1
X4

By (x2)

X3 X2

D

Figure 5: Example of adaptive R!, and nonadaptive B, structur-

ing elements with three values both for the homogeneity tolerance
parameter mx, and for the disks radius . The shapes of B, (x;) and
B, (x,) are identical and {B,(x)}, is a family of homothetic sets for
each point x € D. On the contrary, the shapes of R/, (x3) and
Rl , (x4) are dissimilar and {R,,, (x)}, is not a family of homo-
thetic sets.

properties such as symmetry, reflexivity, increasing, and geo-
metric nesting with regard to ma, translation invariance and
multiplication compatibility with regard to A, ... [34].

Figure 5 compares the shape of usual SEs B,(x) as disks
of radius r € R™ and adaptive SEs Rf’n (x) as sets self-defined
with respect to the criterion mapping h and the homogeneity
tolerance ma € E*.

Remark 2. Autoreflectedness is argued to be more adapted to
image analysis from both topological and morphological rea-
sons. In fact, it allows a morphological symmetric neighbor-
hood system R, (x) to be defined at each point x belonging
to D. Topologically, it means that if x is in the neighborhood
of y atlevel m (x € Rﬁm(y)), then y is as close to x as x is
closeto y (y € R’,’nA (x)). In terms of metric, this is a required
condition to define a distance function d, starting from all
the R, (), satisfying the symmetry axiom: d(x, y) = d(y,x)
[149]. Indeed, symmetry is needed to introduce a nonde-
generate topological metric space (the authors are currently
working on topological approaches with respect to the GAN
paradigm).

The next step consists in defining adaptive elementary
operators of mathematical morphology in the aim of build-
ing adaptive filters.

4.2.2. LAN elementary morphological operators

The elementary dual operators of adaptive dilation and ero-
sion are defined accordingly to the flat ASEs R", (x). The for-
mal definitions are given as follows: for all (ma,h, f,x) €
E* x CxIxD,

Dy, (f)x) = sup f(w),

WER&‘,,A (x)

h _ .
En, (f)(x) = wezlelhi(x)f(w)'

(23)
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Next, the lattice theory allows to define the most elemen-
tary (adaptive) morphological filters [145]. More precisely,
the adaptive closing and opening are, respectively, defined as
forall (ma,h, f,x) € E* Xx Cx1XD,

Cr, (f)(x) =D}, o En, (f)(x),
Ok (f)(x) = Ep, o Db (f)(x).

Moreover, with the “luminance” criterion (h = f), the adap-
tive dilation and erosion satisfy the connectedness [150] con-
dition which is of great morphological importance:

f— Dh.(f)
f— Eh.(f)

Vma € EY <[ are connected operators.
(25)
Remark 3. An operator ¢ : I — I is connected if and only if

fG) = fy) = ¢(f)x)
=o(f)(y).

V f €1 V(x,y) neighbors

(26)

This property is an overwhelming advantage compared
to the usual ones which fail to this connectedness condition.
Besides, it allows to define several connected operators built
by composition or combination with the supremum and the
infimum [150] of these adaptive elementary morphological
operators, as adaptive closings and openings. Thus, the op-
erators OC!, = O C! and CO! = Ch OF , called
adaptive opening-closing and adaptive closing-opening, re-
spectively, are (adaptive) morphological filters [151], and in
addition, connected operators with the luminance criterion.

4.2.3. LAN sequential morphological operators

The families of adaptive morphological filters {O’,ﬁm}mA>O
and {C}L}, ., are generally not ordered collection. Never-
theless, such families, practically fruitful in multiscale image
decomposition, are built by naturally reiterating adaptive di-
lation or erosion. Explicitly, adaptive sequential dilation, ero-
sion, closing and opening, are, respectively, defined as for all
(ma,p,h, f,x) € E¥XNXCXIXD,

D}, (f)(x) =D} o...oDl (f)(x),

p times

B () =Ek o oEl (f)(x),
|

Jon (27)
Conap(Hx) = Ep, o Dy o () (),
O p () = Dl @ B (),
The morphological duality of Dﬁ}m,p and E’;%p provides, so

among other things, the two sequential morphological filters
h h
Ch.pand Op . .
Moreover, these last ones generate an ordered collection

of operators: for all (ma,h) € E* x C,

(1) {o
() {C

h . .
"’A’P}PZ , is a decreasing sequence,

h . . .
,,,A)P}‘D2 , Is an increasing sequence.

Such filters will be used in a real application situation
(Section 5.1).

4.3. Implementation issues

From a computational point of view, the algorithms of the
proposed LANIP-based operators are built in two steps. First,
the LAN sets are computed and stored in random access
memory (RAM). Some properties [36] are used to save mem-
ory and reduce computation time. Second, the operators are
run with the stored LAN sets. In this way, LAN sets are com-
puted one time even for advanced operators, such as com-
posed morphological filters.

Compared to the classical transformations where the op-
erational windows are fixed-shape and fixed-size for all the
points of the image, the computation of the LANSs sets, which
depends on several characteristics such as the selected crite-
rion or the considered GLIP framework, increases the run-
ning time of those adaptive operators.

5. APPLICATION ISSUES FOCUSED ON BIOMEDICAL,
MATERIALS, AND VISUAL IMAGING

LANTIP-based processes are now exposed and applied in the
field of image multiscale decomposition, image restoration,
image segmentation and image enhancement on practical
application examples more particularly focused on biomedi-
cal, materials, and visual imaging.

The detection of metallurgic grain boundaries, endothe-
lial corneal cells, cerebrovascular accidents (CVA) and vascu-
lar network of a human retina are investigated, successively.

5.1. Image multiscale decomposition

This application addresses the detection of cerebrovascular
accidents (CVA). A stroke or a cerebrovascular accident oc-
curs when the blood supply to the brain is disturbed in some
way. As a result, brain cells are starved of oxygen causing
some cells to die and leaving other cells damaged. A mul-
tiscale representation of a brain image f is built with an
LANIP-based decomposition process using adaptive sequen-
tial openings Oy, , (Figure 6), using the LANs structuring
elements with the criterion mapping f and the homogeneity
tolerance ma = 7. Several levels of decomposition are ex-
posed: p = 1,2,4,6,8, and 10 (see Section 4.2.3). The main
aim of this multiscale process is to highlight the stroke area,
in order to help the neurologist for the diagnosis of the kind
of stroke, and/or to allow a robust segmentation to be per-
formed.

These results show the advantages of spatial adaptivity
and intrinsic multiscale analysis of the LANIP-based oper-
ators. Moreover, the detection of the stroke area seems to be
reachable at level p = 10, while accurately preserving its spa-
tial and intensity characteristics which are needed for a ro-
bust segmentation.
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(a) Original f
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FI1GURE 6: Detection of cerebrovascular accidents. A decomposition process (b)—(g) is achieved with the LAN-based morphological sequential
openings applied on the original image (a). The detection of the stroke area seems to be reachable at level p = 10.

5.2. Image restoration

Most of the time, image filtering is a necessary step in im-
age preprocessing, such as restoration, presegmentation, en-
hancement, sharpening, brightness correction, and so forth.
The LANIP filtering allows such transformations to be de-
fined. This section addresses the image restoration area with
a concrete application example in visual image denoising.

The adaptive filters using the elementary LANs work well
if the processed images are noise free or a bit corrupted [35,
41].

In the presence of impulse noise, such as salt and pepper
noise or uniformly distributed noise, the LANs need to be
combined so as to provide efficient filtering operators. In-
deed, the elementary LAN of a corrupted point by such a
noise does not generally fit to the “true” region of which it
belongs, for any homogeneity tolerance value ma .

Consequently, a specific kind of LANS, called the com-
bined logarithmic adaptive neighborhoods (C-LANs) and de-

noted by Z,J;A (+), are introduced so as to enable images cor-
rupted by such a kind of noise to be restored. They are
built by combination (i.e., with the set union) of the LANs

i +(»)}yep using the luminance criterion. Explicitly, the
C-LANs are defined as follows: for all (ma, f,x) € E*xX{XD,

U (Vi) AV (x) <8,
Z,{M (x) = 1 yeBi(»)
VéA (x) otherwise,

(28)

where B (x) refers to the disk of radius 1 (due to the punctual
spatial characterization of the noise) centered to x and A(X)
to the area of X.

The parameter t, that acts like the radius of an equivalent
disk, has been visually tuned to 0.6. A specific study should be
lead in order to find an automatic way of picking this param-
eter (probably linked to the percentage of damaged points in
the image). These C-LANSs allow to detect the “true” neigh-
borhood of a corrupted point x, with the help of the area

value of its LAN V,ﬁA (x).

The basic example of Figure 7 illustrates the ability of the
C-LANSs to represent the expected neighborhood of a cor-
rupted point.

Remark 4. 1t is possible to introduce other combined LANs
relating to the kind of noise [35].

Several operators, based on these C-LANSs, could be in-
troduced. Figure 8 illustrates a restoration process using me-
dian filtering. The classical median filter Med, using a disk of
radius r and the adaptive filters using LANs (V — Med$y(+))
and C-LANs (Z — MedS,(+)) with the luminance criterion
and the parameter value 20 as homogeneity tolerance are
applied on the “Lena” image g which is corrupted by a uni-
formly distributed impulse noise.

The results show the necessity to combine the W-LANSs so
as to perform a significant filtering. In addition, the median
filter using the C-LANSs supplies a better result than the usual
median filter using an isotropic disk. Indeed, the edges are
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(a) Original image f with a
black noisy point x located in-
side the white rectangle itself

(b) The LAN Vj,, (x) of the
corrupted point x is the point

(c) The C-LAN Z}, . (x) of the
corrupted point x is the white
rectangle

FiGure 7: Image (a) contains a black point x (gray-tone 0) inside the white rectangle (gray-tone 255). The point x visually appears as
corrupted by an impulse noise. For ma < 255 and 7 * > > 1, the LAN VyﬁA (x) of the noisy point x is the point itself (b), while its C-LAN

z » (x) is the whole rectangle (c). In this way, adaptive median filtering in presence of impulsive noise should be more accurate using the

C-LANSs.

(c) Med; (g)

(e) Z-Med5,(g)

F1GURE 8: Image restoration. Image (a) is corrupted with a 10% uniformly distributed impulse noise (b). Median filtering is used to filter
the noisy image: usual filtered image (c) with a disk of radius 1 as operational window, adaptive median filtered image (d) with V5,(-) LANs

and adaptive filtered image (e) with szo( -). The most efficient denoising is supplied by the C-LANs filter.

damaged with the classical approach (blur around the eyes
and the hairs), contrary to the LANIP one.

5.3. Image segmentation

The segmentation of an intensity image can be defined by
its partition (in fact the partition of the spatial domain D)
into different connected regions, relating to a homogeneity
condition [142].

In this paper, the segmentation process is based on a
morphological transformation called watershed [152] and a
LANTIP-based decomposition process. It will be illustrated on
the boundaries detection both in a human corneal endothe-
lial image and in a metallurgic grains image.

5.3.1.  Human corneal endothelium

The cornea is the transparent surface in front of the eye.
Ex vivo controls are done by optical microscopy on corneal
cells before grafting. That image acquisition system gives gray
tones images (a part is proposed in Figure 9(a)) which are
segmented, for example by the SAMBA software [153], into
regions representing cells. These ones are used to compute
statistics in order to quantify the corneal quality before trans-
plantation.

The authors proposed an LANIP-based approach to seg-
ment the cornea cells (Figure 9(d)). The process is achieved
by the alternating closing-opening morphological using the
LAN sets, followed by a watershed transformation, denoted
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(c) W(CO4(f))

(d) w(col(f)

FIGURE 9: Segmentation of human endothelial cornea cells (a). The process achieved by the LANIP-based morphological approach (d) pro-
vides better results (from the point of view of ophthalmologists) than the SAMBA software (b) or the correspondent classical morphological

approach (c).

by W. The result is compared with the correspondent usual
approach (Figure 9(c)). Another comparison is proposed
with the SAMBA software, whose process consists in thresh-
olding, filtering, and skeletonization (Figure 9(b)) [153]. The
parameters m and r of the adaptive and classical morpho-
logical filters have been tuned to visually provide the best
possible segmentation.

The detection process achieved by the LANIP-based mor-
phological approach provides better results (from the point
of view of ophthalmologists) than the SAMBA software or
the correspondent classical morphological approach. These
results highlight the spatial adaptivity of the LANIP-based
operators, contrary to the usual morphological ones. A more
specific study should be investigated for this promising cells
detection process.

5.3.2.  Metallurgic grain boundaries detection

A real example in the field of image segmentation is pre-
sented here (Figure 10) on a metallurgic grain boundaries
image, in presence of a locally small change in scene illumi-
nation. The goal of the application is to detect the bound-
aries of the grains. Several methods, addressing this prob-
lem, have ever been exposed. For example, Chazallon and
Pinoli [154] proposed an efficient approach based on the

residues of alternating sequential filters. Nevertheless, the
method still has few drawbacks for complex images: its in-
ability to remove some artifacts and to preserve disconnected
grain boundaries. On the whole, the published methods need
most of the time advanced processes and metallographically
pertinent and tractable a priori knowledges, requiring expert
intervention.

In this application example, a simple segmentation
method resulting from two steps is proposed:

(1) a decomposition process, through nonadaptative and
LANIP-based closing-openings, is applied on the orig-
inal image,

(2) the watershed transformation is then computed on
these segmentation functions.

This approach does not require a gradient operator. Indeed,
seeing that the crest lines of the original image fit with the
narrow grain boundaries, the watershed transformation, de-
noted by W, is directly computed on filtered images (pro-
cessed with closing-openings) in order to avoid an over-
segmentation seen in Figure 10(e).

A comparison between the LANIP-based approach and
the corresponding classical one is performed through the fil-
tering process.
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(1) W(COp(f)

(d) COs(f)

(j) COd(f)

(m) W(CO%(f) (n) W(COL(f))

FIGURE 10: Segmentation of a real metallurgic grain boundaries (a) image. Pyramidal segmentation of the original (a) image. First, the origi-
nal image is decomposed using classical (b)—(d) and adaptive LANIP-based (i)—(k) closing-openings. Second, the watershed transformation,
denoted by W, is computed on the decomposed images, achieving the images (f)—(h) and (1)—(n), for the nonadaptive and LANIP approach,
respectively. The original image is decomposed so as to avoid an over-segmentation (e). The adaptive approach provides a well-accepted

segmentation reached for the homogeneity tolerance ma = 23.

Note that CO, (resp., col, » ) represents the usual closing-
opening (resp., the adaptive closing-opening using the disk
of radius r centered in x, denoted by B,(x)) as usual SE
(resp., using the ASEs {R;J;A (x)}xep, computed with the “lu-
minance” criterion).

For each approach, three parameters have been fixed: r =
1,2, 3 for the radius of usual SEs, and m = 10,20, 30 for the
homogeneity tolerance of adaptive SEs.

The LANIP approach overwhelmingly overcomes the
usual nonadaptive one, achieving a much better segmenta-
tion of the original image, with the visually expected result
reached for ma = 23. Indeed, these connected LAN fil-
ters do not damage the grain boundaries and well smooth
the image inside the grains due to the spatial adaptivity
of the GANIP approach. The uneven illumination condi-
tions are robustly addressed by the LIP approach showing its
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connections with the psychophysical settings of the image,
contrary to the usual frameworks. Consequently, the com-
bination of the GANIP and the LIP, that is to say LANIP, is
needed to robustly address this application.

5.4. Image enhancement

Image enhancement is the improvement of image quality
[9, 142], wanted, for example, for visual inspection or for
machine analysis. Physiological experiments have shown that
very small changes in luminance are recognized by the hu-
man visual system in regions of continuous gray tones, and
not at all seen in regions of some discontinuities [1]. There-
fore, a design goal for image enhancement often is to smooth
images in more uniform regions, but to preserve edges. On
the other hand, it has also been shown that somehow de-
graded images with enhancement of certain features, for ex-
ample, edges, can simplify image interpretation both for a
human observer and for machine recognition [1]. A second
design goal, therefore, is image sharpening [142].

In this paper, the considered image enhancement tech-
nique is an edge sharpening process: the approach is simi-
lar with unsharp masking [155] type enhancement where a
high pass portion is added to the original image. The con-
trast enhancement process is realized through the roggle con-
trast [144], whose operator «, is defined as follows: for all
(f,x,r) € I xD xR,

D, (f)(x) ifDy(f)(x) — f(x)
Kk (f)(x) = < fx)—E(f)x),  (29)
E.(f)(x) otherwise,

where D, and E, denote the classical dilation and erosion,
respectively, using a disk of radius r as structuring element.

This (nonadaptive) toggle contrast will be compared with
the adaptive LIP toggle contrast, using a “contrast” criterion.
This transformation requires a “contrast” definition which is
introduced in the digital setting of the LIP framework [28]
(see [86] for the continuous setting): the LIP contrast at a
point x € D of an image f € I, denoted by C(f)(x), is
defined with the help of the gray values of its neighbors in-
cluded in a disk V(x) of radius 1, centered in x:

C(f)(x)

A
1 .
w2 e S A min (100, /()

(30)

where ZA and # denote the sum in the LIP sense, and the
cardinal symbol, respectively.

Consequently, the so-called adaptive toggle LIP contrast

. . C
is the transformation ;cm(Af), where C(f) and ma represent

the criterion mapping and the homogeneity tolerance within

the LIP framework (required for the LANs definition), re-
spectively, for all (f,x,ma) € I X D X E*,
DS (f)x) it DS (F)x) - f(x)

< f0) = Enl ())0),
E,i(Af)( f)(x) otherwise,

kol (f)(x) =

(31)

where Do/ and E,Cn(f ! denote the adaptive dilation and adap-
tive erosion, respectively, using ASEs computed on the crite-
rion mapping C( f) with the homogeneity tolerance ma.

Figure 11 exposes an illustration example of image en-
hancement through usual and adaptive toggle contrast. The
process is applied on a real image acquired on the retina of a
human eye.

This image enhancement example confirms that the LA-
NIP operators are more effective than the corresponding
classical ones. Indeed, the adaptive toggle LIP contrast per-
forms a locally accurate image enhancement, taking into
account the notion of contrast within spatial structures of
the image. Consequently, only the transitions are sharpened
while preserving the homogeneous regions. On the contrary,
the usual toggle contrast enhances the image in a uniform
way. Thus, the spatial zones around transitions are rapidly
damaged as soon as the filtering becomes too strong.

6. CONCLUSION AND FUTURE WORKS

In this paper, the logarithmic adaptive neighborhood im-
age processing (LANIP) framework has been presented and
applied in several image processing areas: image multi-
scale decomposition, image restoration, image segmenta-
tion, and image enhancement. The LANIP approach is
a combination of the logarithmic image processing (LIP)
[21] and the general adaptive neighborhood image pro-
cessing (GANIP) [34] frameworks: LANIP = LIP + GA-
NIP. The consistency of the LANIP framework with the
human brightness perception has been shown through its
connections with several visual laws ans characteristics: in-
tensity range inversion, saturation characteristic, Weber’s
and Fechner’s laws, psychophysical contrast, spatial adap-
tivity, multiscale adaptivity, morphological symmetry prop-
erty. The application issues focused on biomedical, mate-
rials, and visual imaging have enabled to illustrate in the
same time the practical relevance and the visual consis-
tency of the LANIP approach as applied on real applica-
tion examples. The LANIP approach is technically built
upon an analyzing criterion based on a local measurement
such as the luminance or contrast as presented and illus-
trated in Sections 3 and 5. However, as noted in this pa-
per, other analyzing criterion mappings than luminance and
contrast may be used as (local measurement of) orienta-
tion, thickness, curvature, shape, and so on [35]. There-
fore, analyzing maps associated to the image(s) to be stud-
ied are or may be available for each criterion allowing
their detailed multiscale adaptive nonlinear radiometric,
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FiGURre 11: Image enhancement through the toggle contrast process. The operator is applied on a real (a) image acquired on the retina of a
human eye. The enhancement is achieved with the usual toggle contrast (¢)—(f) and the LANIP-based toggle LIP contrast (g)—(j). Using the
usual toggle contrast, the edges are disconnected as soon as the filtering becomes too strong. On the contrary, such structures are preserved

and sharpened with the LANIP filters.

geometric, morphological or textural representation, pro-
cessing and analysis to be performed. The authors are ac-
tually working on theses aspects, particularly on four of
them (orientation, thickness, curvature, and shape) that are
closely connected to human brightness perception in accor-
dance with the Gestalt Theory, especially concerning the vi-
sual grouping process [15, 137]. Moreover, the authors wish
to investigate the statistical perspectives of the LANIP-based
filters.
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