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1. INTRODUCTION

Paraunitary filter banks (PUFBs) can be considered the most
important among multirate systems [1]. This results from
the fact that such filter banks are lossless in addition to guar-
anteeing perfect reconstruction. A clear relation between the
fullband and subband signal energies greatly simplifies the-
oretical considerations, and hence makes PUFBs useful for
applications such as image coding.

The paraunitary property means that the basis func-
tions related to the subbands of a filter bank are orthogo-
nal. However, it is more convenient to work with the anal-
ysis polyphase transfer matrix E(z), which is paraunitary
if EH(z−1)E(z) = cIM , where c is a nonzero constant and
M denotes the number of channels [2]. Thus, instead of
constraining the impulse response coefficients, the usual
way to obtain a PUFB is to compose its polyphase ma-
trix from suitable building blocks. From a different point
of view, the matrix is appropriately factorized. In this way,
other properties of the filter frequency responses can be si-
multaneously imposed, such as linear phase (LP), pairwise-
mirror-image (PMI) symmetry, and regularity. The selec-
tion and arrangement of factorization components are de-
cisive.

Lattice and dyadic-based factorizations of paraunitary
polyphase matrices can be distinguished. The first approach
utilizes Givens (planar) rotations [2]. They are implemented
with the help of a specific structure, whose shape is the reason
for using the name “lattice.” The second technique is based
on Householder reflections and degree-one building blocks,
which are of a different nature [3]. The lattice structures are
more frequently used because the structural imposition of
the above-mentioned additional properties is easier [4–6].

A serious practical problem with the factorizations for
PUFBs is that they lose essential properties in the case of
finite-precision implementation. The only exception is the
two-band lattice structure reported in [7]. These facts are
not widely known because the effects of coefficient quantiza-
tion in PUFBs were studied only in [8]. This is undoubtedly
a consequence of the growing popularity of lifting factor-
izations, which guarantee perfect reconstruction under finite
precision [9, 10]. However, they lead to biorthogonal systems
with a complicated relation between the fullband and sub-
band signal energies.

In this paper, we propose a novel approach to the design
and implementation of four-band PUFBs. It utilizes hyper-
complex number theory, which has not yet been employed in
these areas. Namely, quaternion multipliers are presented as
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alternative paraunitary building blocks, which can be viewed
as generalizations of Givens rotations. The lattice structures
based on them maintain losslessness regardless of coefficient
quantization [11]. Moreover, the one-regularity conditions
can be expressed in terms of the lattice coefficients and thus
satisfied even under finite precision [12].

The limitation of the applicability of the technique to
the case of four channels is undoubtedly a serious disadvan-
tage. However, the proposed solution can be recognized as
an extension of the two-band lossless lattice presented in [7].
Moreover, our development can stimulate further researches
aimed at its generalization, on the one hand, and practical
applications, on the other hand.

The organization of the paper is as follows. In Section 2,
the conventional lattice structures for PUFBs are briefly re-
viewed to provide the necessary background for further dis-
cussion. Losslessness and regularity are approached more
closely, and the effect of coefficient quantization on these
properties is accentuated. Section 3 introduces a quater-
nionic multiplier as an alternative building block for four-
channel PUFBs. In Section 4, quaternionic variants of the
factorizations from Section 2 are derived, as well as the one-
regularity conditions on their coefficients. The advantages of
the proposed solution, related to finite-precision implemen-
tations, are emphasized. The obtained results are exploited
in Section 5, where three representative PUFB design exam-
ples are shown. Finally, some concluding remarks are given
in Section 6.

Notations 1. Column vectors are denoted by lowercase bold-
faced characters, whereas matrices by the uppercase ones.
The notation amn refers to the (m,n) entry of a matrix A. Im
and Jm denote them×m identity and reverse identity matri-
ces, respectively. The superscript T stands for transposition.
Quantization is indicated with Q(·). Three specific vectors
e = [1 0 0 0]T , a = [1 1 0 0]T , and o = [1 1 1 1]T are
helpful. The L2-norm is considered in our discussion.

2. CONVENTIONAL LATTICE STRUCTURES

2.1. Four-channel general PUFB

The most essential issue in lossless system design is how to
obtain anM×M paraunitary polyphase transfer matrix E(z)
of a given McMillan degree [2]. No other properties are re-
quired.

At the first successful attempt to solve this problem [13],
the factorization

E(z) = RN−1 ̂Λ(z)RN−2 ̂Λ(z) · · ·R1 ̂Λ(z)E0 (1)

was used. It contains the delays

̂Λ(z) = diag
(

z−1, IM−1
)

(2)

and orthogonal matrices: a general one, E0, withM(M−1)/2
degrees of freedom, and Ri, i = 1, . . . ,N − 1, constrained to
have M − 1 of these. Both kinds of matrices are commonly
implemented using Givens (planar) rotations, each of which
corresponds to one degree of freedom [2].
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Figure 1: Conventional plane rotation-based lattice structure for
4-channel general PUFB (N = 3).

ForM = 4 andN = 3, the details of this approach, which
is tightly connected with the QR decomposition of a matrix,
are explained in the scheme shown in Figure 1.

2.2. Four-channel LP PUFB

Linear phase responses of a filter bank are necessary to use
symmetric extension to handle the boundaries of finite-
length signals [14]. Therefore, LP PUFBs are very important
from a practical point of view, especially in image process-
ing. For these systems, the best known factorization of the
polyphase transfer matrix assumes M to be an even number
and has the following form [4, 15]:

E(z) = GN−1(z)GN−2(z) · · ·G1(z)E0, (3)

in which

E0 = 1√
2
Φ0Wdiag

(

IM/2, JM/2
)

, (4)

Gi(z) = 1
2
ΦiWΛ(z)W, i = 1, . . . ,N − 1, (5)

where

W =
[

IM/2 IM/2

IM/2 −IM/2

]

, (6)

Λ(z) = diag
(

IM/2, z−1IM/2
)

, (7)

Φi = diag
(

Ui,Vi
)

. (8)

The design freedom is related to the M/2 × M/2 orthogo-
nal matrices Ui and Vi, which are again parameterized using
Givens rotations. ForM = 4 and N = 3, this approach leads
to the structure shown in Figure 2. It should be noted that
a 2× 2 orthogonal matrix corresponds to a single rotation.

A relatively recent result is the simplification of the above
factorization derived in [16]. Namely, for i > 0, Ui can be
replaced with the identity matrix, so that

Φi = diag
(

IM/2,Vi
)

, i > 0, (9)

without affecting the completeness of the factorization.
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Figure 2: Conventional lattice structure for 4-channel LP PUFB (N = 3).
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Figure 3: Conventional lattice structure for 4-channel PMI LP PUFB (N = 3).

2.3. Four-channel PMI LP PUFB

Among LP PUFBs, there are systems with pairwise-mirror-
image symmetric frequency responses [17]. This property
means that the magnitude responses of the pairs of filters
are symmetric with respect to π/2, which can be expressed
in terms of the transfer functions or impulse responses of the
analysis filters as

HM−1−k(z) = ±Hk(−z), (10)

or

hM−1−k(n) = ±(−1)nhk(n), (11)

respectively, where k = 0, . . . ,N − 1 and n = 0, . . . ,L − 1,
assuming that the filters are of length L.

In the case of an even M, PMI symmetry can be easily
obtained by slightly modifying the lattice factorization for LP
PUFBs. Namely, it is sufficient to associate Ui with Vi in (8)
so that

Ui = ΓViΓ, i = 0, . . . ,N − 2, (12)

UN−1 = JM/2VN−1Γ, (13)

where Γ is the diagonal matrix whose diagonal entries are
γmm = (−1)m−1,m = 1, . . . ,M/2.

As the number of the degrees of design freedom is re-
duced, the optimization of filter bank coefficients is easier,
which was the main motivation behind the development of
such systems. Recently, it has been shown how to achieve fur-
ther simplifications [18].

For M = 4 and N = 3, such an approach leads to the
structure shown in Figure 3.

2.4. Construction of synthesis filter bank

To process a signal in subbands, both analysis and synthe-
sis filter banks are needed. In practice, the synthesis compu-
tational scheme is constructed by arranging the inverses of
the components of the factorization of the analysis polyphase
transfer matrix in reverse order. It is noteworthy, however,
that in the paraunitary case, the synthesis filters are simply
the time-reversed version of the analysis ones.

2.5. Coefficient quantization effects

2.5.1. Losslessness

All presented conventional factorizations lose paraunitary
property in the case of coefficient quantization. Even per-
fect reconstruction is not provided by finite-precision lat-
tice structures. This is because a quantized Givens rotation



4 EURASIP Journal on Advances in Signal Processing

matrix, for example,

⎡

⎢

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 Q(cosα) −Q(sinα)
0 0 Q(sinα) Q(cosα)

⎤

⎥

⎥

⎥

⎦

(14)

is not orthogonal as there are two different column norms: 1
and

√

Q2(cosα) +Q2(sinα) �= 1, and only one nonorthog-
onal component is enough to destroy the losslessness of
an entire factorization [8].

2.5.2. Regularity

Coefficient quantization also affects the regularity of a filter
bank. This property is crucial for low bit-rate coding where
subband coefficients are aggressively quantized, as it alle-
viates blocking artifacts [14]. The concept originates from
wavelet theory, where it is a property of scaling functions and
wavelets, critical for smooth signal approximation [19, 20].
However, it is not straightforward to extend the notion to
discrete-time systems, especially to M-band ones in which
M > 2.

For an M-band filter bank, regularity can be defined
as the number of zeros at the mirror (aliasing) frequencies
2kπ/M, k = 1, . . . ,M − 1, of the lowpass filter H0(z). To ob-
tain K degrees of regularity, the polyphase matrix E(z) must
satisfy the condition [6]

dn

dzn

{

E
(

zM
)

[

1 z−1 · · · z−(M−1)
]T }∣

∣

∣

z=1 = cne, (15)

with cn �= 0 for n = 0, . . . ,K − 1. In particular, for the one-
regularity (K = 1) and four bands (M = 4), the above ex-
pression simplifies to

E(1)o = c0e. (16)

It is easy to verify that this is equivalent to have zero magni-
tude responses of all bandpass filtersHk(z), k = 1, . . . ,M−1,
at DC (zero) frequency. Thus a constant input is entirely cap-
tured by the lowpass filter, and there is no leakage to the re-
maining bands, which would cause the checkerboard artifact
in the case of an image coding application [14].

Conventionally, the regularity conditions are expressed in
terms of the angles of the Givens rotations which form a lat-
tice structure [6, 14]. However, such an approach is of lim-
ited practical importance, as quantization of rotation matri-
ces changes the corresponding angles, which destroys regu-
larity. So it is more advantageous to have the regularity con-
ditions expressed directly in terms of lattice coefficients.

3. QUATERNIONS ANDORTHOGONALMATRICES

3.1. Quaternions

Quaternions were discovered by Hamilton [21]. They are hy-
percomplex numbers of the form [22]

q = q1 + q2i + q3 j + q4k, q1, q2, q3, q4 ∈ R, (17)

with one real and three distinct imaginary parts. The imagi-
nary units i, j, and k are related by the following equations:

i2 = j2 = k2 = i jk = −1,
i j = − ji = k, jk = −k j = i, ki = −ik = j.

(18)

They define quaternion multiplication so that

pq = (p1q1 − p2q2 − p3q3 − p4q4
)

+
(

p1q2 + p2q1 + p3q4 − p4q3
)

i

+
(

p1q3 + p3q1 + p4q2 − p2q4
)

j

+
(

p1q4 + p4q1 + p2q3 − p3q2
)

k,

(19)

which is associative and distributive, but noncommutative
(pq �= qp) unless one of the operands is a scalar. This mainly
distinguishes quaternions, as the definitions of other opera-
tions are nothing more than simple extensions of those re-
lated to complex numbers. As examples, we can consider the
addition

p ± q = p1 ± q1 +
(

p2 ± q2
)

i +
(

p3 ± q3
)

j +
(

p4 ± q4
)

k,
(20)

the conjugate

q = q1 − q2i− q3 j − q4k, (21)

and the norm (modulus)

|q| =
√

qq =
√

qq =
√

q21 + q22 + q23 + q24. (22)

The division is defined as the multiplication by the reciprocal

q−1 = q

|q|2 , (23)

which satisfies the identity

qq−1 = q−1q = 1. (24)

The modulus |q| forms the basis for the polar represen-
tation [21]

q1 = |q| cosφ,
q2 = |q| sinφ cosψ,

q3 = |q| sinφ sinψ cos χ,

q4 = |q| sinφ sinψ sin χ,

(25)

where the angles 0 ≤ φ ≤ π, 0 ≤ ψ ≤ π, and 0 ≤ χ < 2π are
the three remaining degrees of freedom. Polar representation
allows us to easily parameterize fixed-modulus quaternions.
In our case, unit quaternions (|q| = 1) are of great impor-
tance.
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Figure 4: Graphical symbols for the quaternion multipliers whose
coefficient q is (a) the left multiplication operand and (b) the right
multiplication operand, respectively.

3.2. Quaternionmultiplicationmatrices

Because quaternions can be identified with four-element col-
umn vectors:

q ⇐⇒ q =
[

q1 q2 q3 q4
]T

, (26)

all operations on hypercomplex numbers can be consistently
represented in vector-matrix notation. We are particularly
interested in multiplication, which can be written in two
equivalent forms as

pq ⇐⇒

⎡

⎢

⎢

⎢

⎣

p1 −p2 −p3 −p4
p2 p1 −p4 p3
p3 p4 p1 −p2
p4 −p3 p2 p1

⎤

⎥

⎥

⎥

⎦

︸ ︷︷ ︸

M+(p)

×

⎡

⎢

⎢

⎢

⎣

q1
q2
q3
q4

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

q1 −q2 −q3 −q4
q2 q1 q4 −q3
q3 −q4 q1 q2
q4 q3 −q2 q1

⎤

⎥

⎥

⎥

⎦

︸ ︷︷ ︸

M−(q)

×

⎡

⎢

⎢

⎢

⎣

p1
p2
p3
p4

⎤

⎥

⎥

⎥

⎦

.

(27)

Thus two different multiplication matrices exist, the left-
M+(·) and right-operandM−(·) one.

In the following discussion, we restrict ourselves to unit
quaternion multiplication matrices. To represent quaternion
multipliers graphically, we also introduce the symbols shown
in Figure 4.

Both matrices are orthogonal as

M±(q)−1 =M±(q)T , (28)

and have determinant +1. Hence, they belong to the 4×4 spe-
cial orthogonal group commonly referred to as SO(4) [23].
They also form groups with respect to multiplication, which
implies the following identities:

M+(qN−1
) · · ·M+(q0

) =M+(qN−1 · · · q0
)

, (29a)

M−(qN−1
) · · ·M−(q0

) =M−(q0 · · · qN−1
)

. (29b)

Another interesting and useful relation is

M±(q)T =M±(q). (30)

From a PUFB perspective, the connections between
quaternion multiplication matrices and arbitrary 4 × 4 or-
thogonal ones are intriguing. To make the paper comprehen-
sive, we have decided to repeat the derivations from [24, 25]

B

q

A
B

q

Figure 5: Structural transformation corresponding to (31).

in a quite large extent, but the emphasis is placed on slightly
different nuances.

3.3. Reduction of a 4× 4 orthogonalmatrix

Theorem 1. Every 4 × 4 orthogonal matrix A can be repre-
sented as the product

A =M±(a) diag(1,B), (31)

where

a = a11 − a21i− a31 j − a41k (32)

and B is a 3× 3 orthogonal matrix.

Proof. As A andM±(a) are both orthogonal,M±(a)TAmust
be orthogonal as well. The quaternion a is constructed so
as to have the inner product of the first columns of A and
M±(a) equal to unity. This is the value of the (1, 1)st element
of M±(a)TA, so all the remaining elements in the first row
and column of this matrix must be zeros. Thus the rest of its
elements forms a 3× 3 orthogonal matrix B.

The corresponding structural transformation is shown in
Figure 5. It should be noted that the reducing ability of unit
quaternion multiplication matrices suggests their tight con-
nections with Givens rotations, which are commonly used
in matrix parameterization via QR decomposition, as it has
been mentioned earlier. One quaternion multiplication is re-
lated to three degrees of freedom and can be treated as a four-
dimensional generalization of a Givens rotation [11].

3.4. Parameterization of a 4× 4 orthogonalmatrix

Theorem 2 (see [24]). For every orthogonal 4 × 4 matrix A,
there exists a unique (up to signs) pair of unit quaternions p
and q such that

A =M+(p)M−(q) =M−(q)M+(p). (33)

Proof. We begin by decomposing the given matrix A ac-
cording to (31) and then deal with diag(1,B). It is known
[25] that the latter matrix can be represented using one unit
quaternion b as

M+(b)M−(b) = diag(1,B), (34)

where

B =

⎡

⎢

⎢

⎣

b21+b
2
2− b23− b24 2

(−b1b4+ b2b3
)

2
(

b1b3+ b2b4
)

2
(

b1b4+b3b2
)

b21− b22+ b23− b24 2
(−b1b2+ b3b4

)

2
(−b1b3+b4b2

)

2
(

b1b2+ b4b3
)

b21− b22− b23+ b24

⎤

⎥

⎥

⎦

.

(35)
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The equations

b21 =
1
4

(

1 + b11 + b22 + b33
)

,

b22 =
1
4

(

1 + b11 − b22 − b33
)

,

b23 =
1
4

(

1− b11 + b22 − b33
)

,

b24 =
1
4

(

1− b11 − b22 + b33
)

,

(36)

b1b2 = 1
4

(

b32 − b23
)

, b1b3 = 1
4

(

b13 − b31
)

,

b1b4 = 1
4

(

b21 − b12
)

, b2b3 = 1
4

(

b12 + b21
)

,

b2b4 = 1
4

(

b13 + b31
)

, b3b4 = 1
4

(

b23 + b32
)

,

(37)

which can be easily derived, allow us to calculate b from B.
This system of equations is overdetermined as the num-

ber of equations exceeds the number of unknowns. To avoid
a contradiction, the equation which gives the bk of a max-
imum absolute value should be selected from among (36).
Then it must be supplemented by the three equations in (37)
which involve bk, to allow us to determine all components
of the quaternion b. It should be noted that the squares at
the left-hand side of (36) make −b an equivalent solution.
Finally, we get the desired factorization

A =M+(a)M+(b)M−(b) =M+(ab)M−(b) (38)

based on the quaternions p = ab and q = b.

It should be emphasized that the matrix product (33) is
commutative, though the product of the related quaternions
is not. The theorem is also true after the transition to−p and
−q.

3.5. Quaternionmultiplier as paraunitary
building block

The parameterization (33) has several advantages which
make quaternion multipliers interesting paraunitary build-
ing blocks.

First of all, a quantized quaternionmultiplicationmatrix,
for example,

⎡

⎢

⎢

⎢

⎣

Q
(

q1
) −Q(q2

) −Q(q3
) −Q(q4

)

Q
(

q2
)

Q
(

q1
) −Q(q4

)

Q
(

q3
)

Q
(

q3
)

Q
(

q4
)

Q
(

q1
) −Q(q2

)

Q
(

q4
) −Q(q3

)

Q
(

q2
)

Q
(

q1
)

⎤

⎥

⎥

⎥

⎦

(39)

still has the same sets of absolute values in all its rows and
columns. So the column norm is constant and is equal to
√

Q(q1)2 +Q(q2)2 +Q(q3)2 +Q(q4)2, and hence the prod-
uct (33) always represents an orthogonal transformation.

Moreover, it is sufficient to hold only 8 real numbers
(2 quaternions) in memory, whereas the direct representa-
tion of the corresponding matrix would require to store all
its 16 entries.

z�1

z�1

z�1

4

4

4

4

p0 q0 q1 q2z�1 z�1

E0
̂Λ(z) R1 ̂Λ(z) R2

Figure 6: Quaternionic lattice structure for 4-channel general
PUFB (N = 3).

The specific structures of quaternion multiplication ma-
trices allow us to perform this operation in 8 real multiplica-
tions, but the algorithm is quite intricate [26].

The possibility of multiplierless implementations is
much more important. They can be realized with distributed
arithmetic or using four-dimensional CORDIC algorithm.
The feasibility of computation parallelization or pipelining
together with the regularity of the layout of a digital circuit
make quaternionic multiplier very attractive for FPGA and
VLSI technologies [27].

4. QUATERNIONIC LATTICE STRUCTURES

4.1. Four-channel general PUFB

Theorem 3 (see [11]). The quaternionic variant of the factor-
ization (1) for a 4-channel general PUFB results from the fol-
lowing substitution:

E′0 =M+(q0
)

M−(p0
)

, (40)

R′i =M±(qi
)

, i = 1, . . . ,N − 1, (41)

where p0 and all qi are unit-norm quaternions.

Proof. Both of the theorems from the previous section, which
concern 4× 4 orthogonal matrices, are exploited. According
to (31), the matrices Ri in (1) can be represented as

Ri =M±(qi
)

diag
(

1,Bi
)

. (42)

Since

diag
(

1,Bi
)

̂Λ(z) = ̂Λ(z) diag
(

1,Bi
)

, (43)

the 3×3 orthogonal matrix Bi can be moved to the preceding
stage and multiplied by Ri−1. The same procedure can be ap-
plied to the resulting orthogonal matrix. Starting from RN−1,
we process the subsequent stages to reach E0 and to apply
(33).

Figure 6 shows the corresponding quaternionic lattice
structure.



M. Parfieniuk and A. Petrovsky 7

z�1

z�1

z�1

4

4

4

4

J2
�

�

q0 p0
1/
�
2

1/
�
2

1/
�
2

1/
�
2

�

�

z�1

z�1

�

�

1/2

1/2

1/2

1/2

p1

�

�

z�1

z�1

�

�

p2
1/2

1/2

1/2

1/2

W Φ0

E0

W Λ(z) W Φ1

G1(z)

W Λ(z) W Φ2

G2(z)

Figure 7: Quaternionic lattice structure for 4-channel LP PUFB (N = 3).

Theorem 4 (see [12]). A four-band general PUFB determined
by (1) in conjunction with (40) and (41) is one-regular if and
only if

p0 = ±1
2
o qN−1 · · · q0, (44)

under the assumption that the left-operand multiplication ma-
trix is used in (41).

Proof. By substituting E(z) with (1) in (16), and then using
(40) and (41), we get

M+(qN−1
) · · ·M+(q0

)

M−(p0
)

o = c0e, (45)

as ̂Λ(1) = I4. A simple analysis of the norms of the factors
in this expression gives the value of c0. It must be ±2 as the
norm of o equals 2, and those of e and the rows/columns of
the quaternion matrices are unity. Hence, by exploiting (29a)
too, we can write

M+(qN−1 · · · q0
)

M−(p0
)

o = ±2e. (46)

This clearly suggests to make p0 constrained, so we use (30)
to obtain

M−(p0
)

o = ±2M+(qN−1 · · · q0)e. (47)

This matrix-vector expression can be interpreted as the
quaternionic equation

op0 = ±2qN−1 · · · q0 (48)

in which p0 is unknown. The left multiplication by o/4 leads
to the solution, or (44).

The above result can be easily adapted to the case of the
right-operandmultiplicationmatrix in (41).We omit this for
brevity reasons.

4.2. Four-channel LP PUFB

Theorem 5 (see [28]). The conventional, presented in Section
2.2, factorization for 4-channel LP PUFBs changes into a
quaternionic alternative when

Φ′
0 =M−(p0

)

M+(q0
)

, (49)

Φ′
i =M−(pi

)

, i = 1, . . . ,N − 1, (50)

αiUi

Vi βi

(a)

Ui = I

Vi βi

(b)

αiUi

Vi �αi

(c)

Figure 8: (a) Conventional, (b) simplified, and (c) quaternionic re-
alizations ofΦi.

are used instead of (8). All pi and q0 are unit quaternions
which have the two last imaginary parts (related to j and k)
zeroed, so they are constrained to be complex numbers in fact.

Proof. Theorem 2 allows us to decompose eachmatrixΦi de-
fined by (8) in the following way:

Φi =M−(pi
)

M+(qi
)

. (51)

The block-diagonal structure ofΦi is inherited by the quater-
nion multiplication matrices and this is the cause of the de-
generation of the corresponding hypercomplex numbers to
the complex ones. It is easy to check that

M+(qi
)

W =WM+(qi
)

, (52)

M+(qi
)

Λ(z) = Λ(z)M+(qi
)

. (53)

Thus M+
(

qi
)

can be moved to the preceding stage Gi−1(z),
which leads to (50). As the product Φi−1M+

(

qi
)

maintains
orthogonality and a block-diagonal structure, the procedure
can be repeated on it. The only exception is at Φ0, which
must be represented using both quaternion multiplication
matrices.

The corresponding lattice structure is shown in Figure 7.
It is noteworthy that by quaternionic factorization, the num-
ber of different coefficients is reduced with respect to the con-
ventional approach [4] and the same as in the simplified vari-
ant derived in [16]. However, the computational complexity
remains unchanged. The differences between the mentioned
realizations ofΦi are explained in Figure 8.
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Figure 9: Quaternionic lattice structure for 4-channel PMI LP PUFB (N = 3).

Theorem 6 (see [12]). A 4-band LP PUFB realized using the
quaternionic approach is one-regular if and only if

q0 = ± 1√
2
p0 · · · pN−1 a. (54)

Proof. As in the case of a general PUFB, the first step is to
expand (16) in accordance with the considered factorization
of E(z). We get

M−(pN−1
) · · ·M−(p0

)

M+(q0
)√

2a = c0e (55)

as WΛ(1)W = 2I4 and Wdiag(I2, J2)o = a. The value of c0
again results from the examination of the norms of the fac-
tors and must be ±2 as the norm of a equals

√
2, while the

remaining ones are unity. Applying (29b), we obtain

M−(p0 · · · pN−1
)

M+(q0
)

a = ±√2e (56)

and see that it is the easiest to make q0 dependent on the
remaining coefficients. The identity (30) allows us to write
the matrix equation

M+(q0
)

a = ±√2M−(p0 · · · pN−1
)

e (57)

and then convert it into the quaternionic equivalent

q0a = ±
√
2p0 · · · pN−1. (58)

The right multiplication by a/2 gives the desired regularity
constraint (54) on q0.

4.3. Four-channel PMI LP PUFB

Theorem 7 (see [28]). The constraints (12)-(13) on the ma-
trices used in the factorization from Section 2.3, for 4-channel
PMI LP PUFBs, can be satisfied by taking

Φ′
i =M−(pi

)

, i = 0, . . . ,N − 2, (59)

Φ′
N−1 =M−(pN−1

)

diag
(

J2Γ, I2
)

, (60)

where Γ = diag(1,−1) and the quaternionic coefficients pi are
restricted to be unit complex numbers.

Proof. In the case of 4 channels, ΓViΓ = VT
i , and so the first

condition (12) necessary to obtain PMI symmetry directly
imposes the form of Φi which coincides with a quaternion
multiplication matrix, because

Φi = diag
(

ΓViΓ,Vi
) = diag

(

VT
i ,Vi

)

︸ ︷︷ ︸

M−(pi)

(61)

if pi is constrained to be a complex number.
The obvious identities JJ = I and J2ViJ2 = VT

i allow
a quaternion multiplication matrix to be extracted also from
ΦN−1 determined by the condition (13). Namely,

ΦN−1 = diag
(

J2VN−1Γ,VN−1
)

= diag
(

VT
N−1,VN−1

)

︸ ︷︷ ︸

M−(pN−1)

diag
(

J2Γ, I2
)

. (62)

The corresponding structure is shown in Figure 9. In the
case of a PMI LP PUFB, by quaternionic factorization the
number of coefficients is decreased with respect to the con-
ventional solution and is the same as in its simplification de-
rived in [18].

Theorem 8 (see [12]). A four-band PMI LP PUFB realized
according to Theorem 7 is one-regular if and only if

pN−1 = ± 1√
2
ap0 · · · pN−2. (63)

Proof. Given the quaternionic factorization, we can expand
(16) into

M−(pN−1
)

diag
(

J2Γ, I2
)

·M−(pN−2
) · · ·M−(p0

)√
2a = c0e.

(64)

The value of c0 results from norm inspection and equals ±2.
Noticing that

diag
(

J2Γ, I2
) = 1

2
M+(a)M−(a), (65)

and utilizing (29b) and (30), we can rewrite (64) as

1
2
M+(a)M−(a)M−(p0 · · · pN−2

)

a = ±√2M−(pN−1
)

e.

(66)
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Then, the transition to quaternions yields

1√
22

aap0 · · · pN−2a = ±pN−1, (67)

and we obtain (63) by conjugating both sides, as aa = 2.

4.4. Robustness to coefficient quantization

All of the developed lattice structures are lossless regard-
less of coefficient quantization. This is because the de-
rived factorizations contain no components which become
nonorthogonal when represented with finite precision. Thus,
the frequency responses of such systems are always power-
complementary [2]:

M−1
∑

k=0

∣

∣Hk
(

e jω
)∣

∣

2 = c2, ∀ω, (68)

though c can deviate from 1. If a compensation of this effect
is desired, c can be calculated as

c2 =
M−1
∑

k=0

∣

∣Hk
(

e jω
)∣

∣

2
∣

∣

∣

∣

ω=0
=

M−1
∑

k=0

∣

∣

∣

∣

∣

L−1
∑

n=0
hk(n)

∣

∣

∣

∣

∣

2

. (69)

and the multiplication by its reciprocal can be easily embed-
ded into the computational scheme.

The plot thickens if regularity is considered because the
quaternion conditioned by the others under (44), (54), or
(63) must be represented accurately. Fortunately, the neces-
sary wordlength is finite and strictly determined by those of
the remaining coefficients. Moreover, any scaling of the coef-
ficient value does not disturb regularity.

To demonstrate that regularity can indeed be easily im-
posed on quaternionic lattice structures, even under finite
precision, the next section shows three design examples. The
obtained filter banks with rational quaternionic coefficients
can be implemented using fixed-point arithmetic, possibly in
multiplierless manner as in [29].

5. DESIGN EXAMPLES

5.1. Coefficient synthesis methodology

The goal was to obtain frequency-selective filter banks with
high coding gains. So, the weighted sum of two criteria was
used as an objective function for optimization.

The first criterion is the stopband attenuation measured
in terms of energy as

εSBE =
M−1
∑

k=0

∫

ω∈Ωk

∣

∣Hk
(

e jω
)∣

∣

2
dω, (70)

whereΩk denotes the stopband of the kth filter and the num-
ber of channels,M, equals 4 in our case.

The second performance criterion is a coding gain de-
fined as

CG = 10 log10
(1/M)

∑M−1
k=0 σ2xk

(

∏M−1
k=0 σ2xk

)1/M , (71)

Table 1: Rational coefficient values for general PUFB.

Coeff. Re Imi Im j Imk Wordlength

p0 −45/128 9/16 −31/128 −5/8 8

q0 −11/16 −1/2 1/16 7/16 5

q1 3/8 1/8 3/4 −1/2 4

where σ2xk are the subband variances. They correspond to the
diagonal elements of the autocorrelation matrix of the trans-
formed signal, Ryy :

σ2xk =
[

Ryy
]

kk. (72)

It can be determined as the product

Ryy = HRxxHT (73)

of the autocorrelation matrix of the input signal, Rxx, and
the transform matrix H formed from the impulse responses
of the filter bank as follows:

[H]kn = hk(L− 1− n), (74)

where k = 0, . . . ,M − 1 and n = 0, . . . ,L− 1.
In our experiments, the matrix Rxx was generated for an

AR(1) input process with unit variance and the correlation
coefficient of 0.95. Such a model is particularly appropriate
only for natural images, and therefore other applications will
require different approaches.

In the synthesis procedures, the quaternion lattice coef-
ficients assumed to be unconstrained in (54) and (63) were
represented in the polar form (25). So the standard Matlab
routines intended for an unconstrained optimization, that
is, fminunc and fminsearch, could be used to search for the
angles that minimize the objective function. Given infinite-
precision coefficients, we carefully converted them into ra-
tionals. This was done intuitively by hand, but the develop-
ment of an advanced algorithm, like that proposed in [29], is
planned.

5.2. Design example 1: 8-tap general PUFB

A 4-channel 8-tap PUFB was designed using the results from
Section 4.1. The synthesized coefficients of quaternionic lat-
tice structure are given in Table 1 and the corresponding
magnitude responses are shown in Figure 10(a). The filter
bank is characterized by a coding gain of 8.1227 dB and
a minimum stopband attenuation of 20 dB, so it can com-
pete with the similar system demonstrated in [10].

The plots allow us to verify that the designed PUFB is
indeed one-regular. It can be easily noticed in Figure 10(a)
that only the lowpass filter has a nonzeromagnitude response
at DC frequency. On the other hand, the zero-pole plot in
Figure 10(b) shows that the lowpass filter has a single zero
in each of that points of the unit circle, which correspond
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Figure 10: Design example of general PUFB: (a) magnitude re-
sponses, (b) zeros of H0(z), and (c) the scaling function and
wavelets.

to the mirror aliasing frequencies. Figure 10(c) demonstrates
the wavelet basis related to the system.

5.3. Design example 2: 12-tap LP PUFB

The second design example demonstrates the usefulness of
the theory developed in Section 4.2. The hypercomplex coef-
ficient values given in Table 2 determine the 12-tap LP PUFB
which has a coding gain of 8.1845 dB. The plots in Figure 11
allow us to evaluate the magnitude responses of the system
and verify its one-regularity. The filters have good frequency
selectivity. For the lowpass and highpass ones, the sidelobes
are below the −35 dB level, whereas for the bandpass filters,
the peak amplitude of the sidelobes is about −20 dB.

Table 2: Rational coefficient values for LP PUFB.

Coeff. Re Imi Im j Imk Wordlength

q0 −231/512 459/1024 0 0 11

p0 −7/8 −3/8 0 0 4

p1 −3/16 15/16 0 0 5

p2 −9/16 −13/16 0 0 5
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Figure 11: Design example of LP PUFB: (a) magnitude responses,
(b) zeros of H0(z), and (c) the scaling function and wavelets.

5.4. Design example 3: 12-tap PMI LP PUFB

The results from Section 4.3 allowed us to design the 12-tap
LP PUFB whose pairwise-mirror-image symmetric magni-
tude responses are shown in Figure 12(a). The coefficients of
the quaternionic lattice are given in Table 3. In spite of de-
creased design freedom and shorter coefficient wordlengths,
the characteristics of the system are very close to those of the
LP filter bank presented above. Namely, the coding gain is
of 8.1699 dB and the levels of the sidelobes are of −31 and
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Table 3: Rational coefficient values for PMI LP PUFB.

Coeff. Re Imi Im j Imk Wordlength

p0 7/8 3/8 0 0 4

p1 3/16 −1 0 0 5

p2 −17/128 43/64 0 0 8
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Figure 12: Design example of PMI LP PUFB: (a) magnitude re-
sponses, (b) zeros of H0(z), and (c) the scaling function and
wavelets.

−20 dB. The reason for this is the similarity of the zero loca-
tions shown in Figure 12(b) to those in Figure 11(b). The dif-
ferences between the wavelet bases are almost unnoticeable.

6. CONCLUSION

The developed quaternionic approach to the design and im-
plementation of four-band PUFBs seems to be very compet-
itive with the conventional techniques. Its unique advantage

is the structural imposition of paraunitary property (lossless-
ness) even with finite-precision arithmetic. It also enables the
straightforward expression of the one-regularity conditions
in terms of the coefficients of the quaternionic lattice struc-
ture, which is also advantageous in fixed-point implementa-
tions. So the solution is especially interesting from a practical
point of view.
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[13] Z. Doǧanata, P. P. Vaidyanathan, and T. Q. Nguyen, “Gen-
eral synthesis procedures for FIR lossless transfer matrices,
for perfect-reconstruction multirate filter bank applications,”
IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 36, no. 10, pp. 1561–1574, 1988.

[14] G. Strang and T. Q. Nguyen, Wavelets and Filter Banks,
Wellesley-Cambridge Press, Wellesley, Mass, USA, 1996.

[15] R. L. de Queiroz, T. Q. Nguyen, and K. R. Rao, “The GenLOT:
generalized linear-phase lapped orthogonal transform,” IEEE
Transactions on Signal Processing, vol. 44, no. 3, pp. 497–507,
1996.

[16] L. Gan and K.-K. Ma, “A simplified lattice factorization for
linear-phase perfect reconstruction filter bank,” IEEE Signal
Processing Letters, vol. 8, no. 7, pp. 207–209, 2001.

[17] T. Q. Nguyen and P. P. Vaidyanathan, “Maximally decimated
perfect-reconstruction FIR filter banks with pairwise mirror-
image analysis (and synthesis) frequency responses,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 36,
no. 5, pp. 693–706, 1988.

[18] L. Gan and K.-K. Ma, “A simplified lattice factorization for
linear-phase paraunitary filter banks with pairwise mirror im-
age frequency responses,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 51, no. 1, pp. 3–7, 2004.

[19] O. Rioul, “Regular wavelets: a discrete-time approach,” IEEE
Transactions on Signal Processing, vol. 41, no. 12, pp. 3572–
3579, 1993.

[20] P. Steffen, P. N. Heller, R. A. Gopinath, and C. S. Burrus, “The-
ory of regular M-band wavelet bases,” IEEE Transactions on
Signal Processing, vol. 41, no. 12, pp. 3497–3511, 1993.

[21] W. R. Hamilton, “On quaternions; or on a new system of imag-
inaries in algebra,” The London, Edinburgh and Dublin Philo-
sophical Magazine and Journal of Science, vol. 25, pp. 489–495,
1844.

[22] I. L. Kantor and A. S. Solodovnikov, Hypercomplex Numbers:
An Elementary Introduction to Algebras, Springer, New York,
NY, USA, 1989.

[23] A. Baker,Matrix Groups: An Introduction to Lie Group Theory,
Springer, London, UK, 2002.

[24] H. G. Baker, “Quaternions and orthogonal 4x4 real matrices,”
Tech. Rep., June 1996, http://www.gamedev.net/reference/
articles/article428.asp.

[25] E. Salamin, “Application of quaternions to computation with
rotations,” Tech. Rep., Stanford AI Lab, Stanford, Calif, USA,
1979.

[26] T. D. Howell and J. C. Lafon, “The complexity of the
quaternion product,” Tech. Rep. TR 75-245, Cornell Univer-
sity, Ithaca, NY, USA, June 1975, http://citeseer.ist.psu.edu/
howell75complexity.html.

[27] M. Parfieniuk and A. Petrovsky, “Implementation perspectives
of quaternionic component for paraunitary filter banks,” in
Proceedings of the International Workshop on Spectral Methods
andMultirate Signal Processing (SMMSP ’04), pp. 151–158, Vi-
enna, Austria, September 2004.

[28] M. Parfieniuk and A. Petrovsky, “Linear phase paraunitary fil-
ter banks based on quaternionic component,” in Proceedings of
International Conference on Signals and Electronic Systems (IC-
SES ’04), pp. 203–206, Poznań, Poland, September 2004.
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