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We present a new modified wavelet transform, called the multiadaptive bionic wavelet transform (MABWT), that can be applied
to ECG signals in order to remove noise from them under a wide range of variations for noise. By using the definition of bionic
wavelet transform and adaptively determining both the center frequency of each scale together with the T-function, the problem
of desired signal decomposition is solved. Applying a new proposed thresholding rule works successfully in denoising the ECG.
Moreover by using the multiadaptation scheme, lowpass noisy interference effects on the baseline of ECG will be removed as a
direct task. The method was extensively clinically tested with real and simulated ECG signals which showed high performance of
noise reduction, comparable to those of wavelet transform (WT). Quantitative evaluation of the proposed algorithm shows that
the average SNR improvement of MABWT is 1.82 dB more than the WT-based results, for the best case. Also the procedure has
largely proved advantageous over wavelet-based methods for baseline wandering cancellation, including both DC components and
baseline drifts.
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1. INTRODUCTION

The heart is a hollow muscular organ which through a co-
ordinated muscle contraction generates the force to circulate
blood throughout the body. Each beat of our heart is trig-
gered by an electrical impulse from special sinus node cells
in the atrium. The electrical impulse travels to other parts of
the heart and causes the heart to contract. An electrocardio-
gram (ECG) records these electrical signals. A normal ECG
describes the electrical activity in the heart, and can be de-
composed in characteristic components, named the P, Q, R,
S, and T waves. Each of these components has its own typi-
cal form and behavior and each heart beat traces the familiar
morphology labeled by these peaks and troughs as shown in
Figure 1.

When an electrocardiogram is recorded, it would be con-
taminated with many kinds of noise [1], such as the follow-
ing.

(i) Baseline wandering, which can bemodeled by low pass
noise.

(ii) 50 or 60Hz power-line interference.

(iii) Electromyogram (EMG), which is an electric signal
caused by the muscle motion during effort test.

(iv) Motion artifact, which comes from the variation of
electrode-skin contact impedance produced by elec-
trode movement during effort test.

Since ECG is mostly contaminated with noise, extraction
of pure cardiological indices from noisy measurements has
been one of the major concerns of biomedical signal process-
ing and needs reliable signal processing techniques to pre-
serve the diagnostic information of the recorded signal. For
example, the S-T segment in the ECG signal is used for di-
agnosing ischemia, myocardial infarction and indicating an
imbalance of myocardial oxygen supply. The aim of this pa-
per is to remove common noise caused by motion artifact,
Figure 2(b), and also baseline wandering, Figure 2(c).

Techniques have been proposed to extract the ECG com-
ponents contaminated with the background noise and allow
the measurement of subtle features in the ECG signal. One
of the common approaches is the adaptive filters architecture
which has been used for the noise cancellation of ECGs con-
taining baseline wandering, power line interference, EMG
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Figure 1: A typical human’s ECG signal.

noise, and motion artifacts [2, 3]. Statistical techniques such
as principal component analysis [4], independent compo-
nent analysis [5, 6], and neural networks [7] have also been
used to extract a noise-free signal from the noisy ECG. Over
the past several years, wavelet transform (WT) methods have
also received great deal of attention for denoising of signals
having multiresolution characteristics such as the electrocar-
diogram [8–12].

Besides the above algorithms, baseline wandering re-
moval has been addressed in the literature individually. Base-
line estimation using cubic spline [13], baseline construction
by linearly interpolating between preknown isoelectric levels
estimated from PR intervals [14], linear filtering [15], and
the use of wavelet packets [16] are major approaches in this
field.

Among transform-based methods, bionic wavelet trans-
form (BWT), introduced by Yao and Zhang [17], is mainly
developed and being optimized by the human biosystem
and has showed promising results in speech processing. The
term “bionic” goes back to the fact that BWT was origi-
nally inspired by a biological mechanism which is related
to the human’s biosystem. This idea motivated us to apply
the BWT for processing the electrocardiograms. In this pa-
per we attempted to apply BWT with new modifications to
be properly adjusted for ECG processing, especially for de-
noising applications. The new proposed algorithm employs a
multiadaptation scheme and leaves the multiadaptive bionic
wavelet transform as a novel ECG analyzer.

The paper is organized as follows. Section 2 provides the-
oretical background on the definition of the bionic wavelet
transform. In Section 3 BWT is optimized for ECG sig-
nal analysis with modifying the multiadaptation scheme.
Section 4 focuses on denoising and investigates the multi-
adaptive bionic wavelet transform to be applied to ECG for
denoising and baseline wandering cancellation. Finally, the
simulation results are provided in Section 5 followed by dis-
cussion and conclusions coming in Section 6.
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Figure 2: (a) Normal ECG, (b) noisy ECG, (c) baseline wandered
ECG with its baseline trace.

2. DEFINITION OF BIONICWAVELET TRANSFORM

The wavelet transform comprises the coefficients of the ex-
pansion of the original signal x(t) with respect to a basis
ha,τ(t), each element of which is a dilated and translated ver-
sion of a function h(t), called the mother wavelet, according
to

hτ,a(t) = 1
√|a|h

(
t − τ

a

)
. (1)

Depending on the choice of the mother wavelet appro-
priately, the basis can be orthogonal or biorthogonal. The
wavelet transform coefficients, given by the inner product of
x(t) and the basis functions,

WTx(τ, a) =< x(t), hτ,a(t) >= 1
√|a|

∫

x(t)h∗
(
t − τ

a

)
dt

(2)

comprise the time-frequency representation of the origi-
nal signal. The wavelet transform has good localization in
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Figure 3: (a) MIT-BIH ECG record number 106, (b) time-
frequency representation withWT, (c) the same representation with
BWT.

both frequency and time domains, having fine frequency
resolution and coarse time resolution at lower frequency,
and coarse frequency resolution and fine time resolution at
higher frequency. Since this matches the characteristic of
most signals, it makes the wavelet transform suitable for
time-frequency analysis.

The concept of multiresolution analysis can be extended
from the fixed wavelet mother function to the varying in the
time spread case. This new approach is known as the adaptive
bionic wavelet transform and would be addressed next.

The idea behind the BWT is to replace the constant qual-
ity factor of the wavelet transform with a variable adaptive
quality factor [17]. To do this, one can make changes in the
mother function of the wavelet transform. Satisfying the ad-
missible condition for themother wavelet, the oscillating h(t)
can be represented as

h(t) = h̃(t) exp
(
j2π f0t

)
, (3)

where f0 is the center frequency of h(t) and h̃(t) is its enve-
lope function. Using a T-value, the BWT mother function
would be stated as follows:

hT(t) = 1
T
h̃
(
t

T

)
exp

(
j2π f0t

)
. (4)

The BWT is now defined by the following equation [17]:

BWTx(τ, a) = 1
√|a|

∫

x(t)h∗T

(
t − τ

a

)
dt

= 1
T
√|a|

∫

x(t)h̃∗
(
t − τ

aT

)

× exp
(
− j2π f0

(
t − τ

a

))
dt.

(5)

As can be seen, in contrast to the wavelet transform, both
the amplitude and the time spread of BWT mother function
depend on the T value. For evaluating the T parameter, Yao
and Zhang adopted a general nonlinear form based on a pre-
viously introduced auditory model. This results in the fol-
lowing formula for a function, namely, the T-function:

T(τ + Δτ) =
(

1− G̃1
BWTs

BWTs +
∣
∣BWTx(τ, a)

∣
∣

)−1

×
(
1 + G̃2

∣
∣∂BWTx(τ, a)/∂t

∣
∣
)−1

,

(6)

where G̃1, G̃2, and BWTs are constants, and BWTx(τ, a;h) is
the BWT coefficient at time τ and scale a, and Δτ is the cal-
culation step. Clearly, it is the T-function that brings adap-
tation to the BWT. For detailed information about how the
T-function is derived and the underlying mechanism, the
reader is referred to [18, 19].

3. BIONICWAVELET TRANSFORMOPTIMIZATION
FOR ECG ANALYSIS

According to the definition of BWT, there is a major differ-
ence in resolution of time-frequency span of analyzing win-
dows. In fact, in the WT, for a fixed mother function, all the
windows in a certain scale along the t-axis are fixed and the
window size of the WT varies with the change of analyz-
ing frequency. However, both the time and frequency reso-
lutions can be different in the BWT even in a certain scale.
The adjustment of the BWT resolution in the same scale is
controlled by T-function, which is related to the signal in-
stantaneous amplitude and its first-order differential [17].

Figure 3 shows the time-frequency representation for an
ECG signal with bothWT and BWT. Notice the smoothing in
the BWT representation which is the direct result of windows
changes over certain scales.

It only remains to set the BWT parameters efficiently
so that it can decompose the signal into finite number of
scales and afterwards, determine the most energetic ones,
and choose a global or local threshold. In order to optimize
the BWT parameters we have used a semioptimal method
considering both analytic and morphological aspects of the
analyzed signal. As we are considering ECG signal, we should
be aware of its variability.

Presumably the most important feature for an ECG sig-
nal is the frequency range in which its main components
occur. Although there are some other components like ven-
tricular late potentials (VLPs), we have restricted our interest
on P, Q, R, S, and T. The resulting frequency range is up to
100Hz.
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Let f0 be the initial center frequency of the mother
wavelet. In [17] it has a value equal to 15165.4Hz and as the
scale goes higher and higher, the center frequency will de-
crease in the following way:

fm = f0
qm

, q > 1. (7)

For ECG we do not need such high f0, so we optimized
it simply by running the program for different values of f0
and then minimizing the gradient of error variance by com-
paring the results—numerically and morphologically—with
each other. It has been found that if the center frequency lies
in the range of 360 to 500Hz there would be no much distor-
tion on the analyzed ECG. The reason behind this choice lies
in the fact that to have no aliasing it is preferred to choose
the center frequency of the first scale a value more than ECG
sampling frequency. Here we have chosen f0 = 400 which
yields satisfactory results.

Unlike [17], in our method q is not a global constant,
but for each signal and scale of decomposition it takes a fixed
value which should obey an adaptation procedure. Besides
for every m, that is, in each distinct scale, it is adapted for
different time-frequency windows.More explanation on how
q is determined according to every analyzing window is to
be given in the next section. Other parameters are exactly
the same as what was stated in [20, 21] which used BWT
for speech enhancement and denoising. These constants are
G̃1 = 0.87, G̃2 = 45, and BWTs = 0.8.

Finally, the calculation step is determined due to the sam-
pling frequency. If we let fs be the sampling frequency, then
the step will be Δτ = 1/ fs.

4. APPLICATION TODENOISING AND BASELINE
WANDERING REDUCTION

For investigating the applications of MABWT to ECG sig-
nal, we have restricted our interest on denoising and baseline
wandering reduction. In each of the following sections, we
have proposed modifications to BWT so as to be optimized
for the field of analysis. For baseline wandering elimination,
the goal is optimizing BWT by adopting a multiadaptation
scheme in which the low passed wandering is automatically
removed and there is no need for extra processing on distinct
subbands.

4.1. Denoising

After BWT optimization, the denoising technique illustrated
in Figure 4 is used to reduce the amount of noise contamina-
tion in the ECG signal. In implementation, BWT coefficients
can be easily calculated based on corresponding WT coeffi-
cients by

BWTx(τ, a;T) = K ×WTx(τ, a), (8)

where K is a factor depending on T [18]. Especially, for the
real Morlet function h(t) = e−(t/T0)2 , which is used as the

Denoised
ECG

Noisy
ECG WT

BWT coefficients

K factor

Thresholding

1/K

Inverse WT

Figure 4: Block diagram of the bionic wavelet transform denoising
technique.

mother function in our experiments, K is equal to [21]:
∫ +∞
−∞ e−t2dt

√(
T/T0

)2
+ 1

≈ 1.7725
√(

T/T0
)2

+ 1
. (9)

Here we have used Donoho’s proposed approach for de-
noising including two major categories, hard thresholding
and soft thresholding [10, 22]. Choosing the threshold value
can be determined in many ways. Donoho derived the fol-
lowing formula based on white Gaussian noise assumption:

thr = σ
√
2 log2N , (10)

where thr is the threshold value, N is the length of the noisy
signal, and σ = AMFS /0.6745, with AMFS denoting the
absolute median estimated on the first scale of the bionic
wavelet coefficients.

Knowing the fact that it is the T-function (or the K fac-
tor, equivalently) which results in the adaptive characteristic
of the BWT, it may be a good idea to use the values of the
T-function to come to a new thresholding rule. On the other
hand, it is expected for the BWT coefficients to take small val-
ues in the higher scales of decomposition with regard to (8),
the same as the WT coefficients. Thus it seems to be logic to
use the values of the T-function in lower scales of decom-
position. Combining the above idea with Donoho’s formula
yields the following threshold which is a newmodification of
(10). Let Tfs(i) be the value of T-function in the first step of
computing. The threshold is formulated as

thr = σ
∑

i αiTfs(i)

√
2 log2N. (11)

In fact a weighted average of T-function values in the first
scale of decomposition with the bionic wavelet transform is
added to (10) to get better results. The αi-weights are chosen
with try and error for the algorithm to have the highest per-
formance. But an experimentally right choice is to let the αi
coefficients be a decreasing function.

Yao showed that if the signal and its first-order differen-
tial are continuous, BWT can reconstruct the original signal
without distortion [17]. In the current approach and after
thresholding, the coefficients of BWT are divided byK-factor
followed by an inverse WT transform which reconstructs the
denoised version of the signal.
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4.2. Baseline wandering reduction

Among various methods used for baseline wandering reduc-
tion, an efficient technique was proposed by Park et al. [23].
They presented a wavelet adaptive filter (WAF) which con-
sists of two parts, in the first part the signal is decomposed
into seven subbands and in the second part the seventh low-
est band subsignal is adaptively filtered. But the method suf-
fers from preserving the signal quality, specially in the S-T
segment.

Another approach which has utilized the wavelet pack-
ets to eliminate the ECG baseline wandering was introduced,
which removes the components that are not correlated to
ECG and have such characteristics that are somehow added
to it [16]. But the method does not fully take the advantage
of interbeat correlation of the ECG signal. Hence, baseline
drifts that occur occasionally and cannot be considered to
be an added source to the ECG would not be removed effi-
ciently.

As for the case of BWT, the resolution in the time-
frequency domain can be adaptively adjusted not only by
the signal frequency but also by the signal instantaneous am-
plitude and its first-order differential. Hence, analyzing the
ECG signal in the time-frequency plane of BWT not only has
a good chance to remove the baseline wanderings but also
has promising results preserving the clinical information of
the ECG record.

Since the spectrum of the baseline is below the spectrum
of the ECG signal, therefore its energy concentration in cor-
responding time-scale plane does not change much as the
scale is changed in the binary decomposition tree, but the
energy of the ECG signal decreases as the scale is changed.
Therefore, in the binary tree search we reach a point that the
energy of the ECG signal almost vanishes (no details in that
scale) but we still have considerable energy for baseline wan-
dering.

Using the multiadaptive bionic wavelet transform makes
possible the detection and reduction of ECG baseline wan-
dering in low frequency subsignals. As we mentioned be-
fore the central frequency of each scale is adaptively chosen.
For adaptation purpose, we have used the following criteria
based on the time-frequency representation of the analyzed
signal under the adaptive BWT.

If we suppose that the baseline wandering can be esti-
mated by a sinusoidal function (see Figure 2(c)), the fre-
quency of the sine function can be approximately estimated
using the spectrum of the signal, in which we should seek
for a peak. In most cases the second distinguished peak in
the Fourier transform of the signal corresponds to the wan-
dering frequency. For ECG signals with the baseline wander-
ings which cannot be considered as sinusoidal, the fw esti-
mation is obtained from the time-frequency representation
of the signal. In this case a frequency exists all over the time
which deals with the baseline trace. After determining an es-
timation of the baseline wandering frequency, fw, wemay use
the thresholding rule of (11) for the three consecutive scales,
the one that contains fw, the previous and the next scales. To
evaluate the coefficients of the multiadaptive bionic wavelet
transform we need the value of q. To determine the value of

q we remember the fact that the mean of the baseline wan-
dered ECG and the mean of the baseline corrected ECG have
the maximum distance. Thus we use the maximum distance
(MD) criteria to verify the optimal q for which the distance
between the MABWT coefficients of original signal and the
baseline corrected signal is maximized. We define the MD
criteria as

qopt = argmax
q

{(∣
∣MABWTx(τ, a)

−MABWTx̂(τ, a)
∣∣2
)

(τ,a)∈�m

}
,

(12)

where x and x̂ are the original and processed signals, m is
the scale number (a = 2−m), and �m denotes the analyzing
window of the mth scale which is centered at fw. Solving the
above optimization problem, we will have q for the next scale.
Although q is optimally selected, the number of scales m re-
mains to be determined according to the q value of the previ-
ous scale. In other words, we begin with m = 1. For the first
scale, that is, m = 1, MABWT is computed using an initial
value for q. Then (12) gives the optimum value of q for the
next scale, m = 2. The procedure proceeds iteratively until
the center frequency of the analyzing window, which is de-
fined according to both m and q (refer to (7)), goes beyond
the desired predefined ECG frequency range.

The step by step multiadaptation together with the
adapted T-function (or K-factor) of BWT can cope with the
problem of ECG baseline wandering reduction better than
WT. Furthermore as we have an estimation of fw, the adap-
tation can be used only in three successive scales in which
the mid-scale has the closest center frequency to fw. So the
implementation is possibly time consuming.

5. SIMULATION RESULTS

To show that MABWT is appropriate for ECG denoising we
have used two types of ECG signals, both simulated and real
ones. We used the MIT-BIH arrhythmia database [24] as the
reference for our real signals, all with sampling frequencies,
fs, equal to 360Hz. For the simulated ECGs we have used
the dynamical model which was introduced for generation
of synthetic ECG cardiac signals [25, 26].

The signals were decomposed using MABWT up to 40
scales depending on the different values of q that was opti-
mally selected using (12). We have used Morlet wavelet as
mother wavelet and its support length is chosen as [−4, 4],
and 2.5π is chosen as its oscillatory frequency [21]. For sim-
ulation, we have chosen f0 = 400Hz ( f0 > fs). In addition
we have considered the simplest case for our new threshold-
ing rule, (11). Hence, we have set αi = 1/i.

5.1. Denoising

In order to investigate the performance of various methods,
artificial white Gaussian noises with different variances were
generated and added to the test signals. As mentioned before
two kinds of thresholding methods, hard and soft, were ap-
plied for denoising based on the modified thresholding rule
introduced by (11). Besides, for easier comparison we have
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applied the wavelet-based denoising with Daubechies (db4)
wavelets to each signal and we have shown the results for
both hard and soft thresholdings. Figures 5–7 show some
typical results, considering real and simulated ECG signals
of two general categories, that is, normal and abnormal ones.
One can see that in many cases, hard thresholded signal is
much similar to the soft thresholded ECG, which is due to
the intrinsic smoothness in BWT.

Simulation results provide supportive evidence to claim
that MABWT has some advantages over the traditional WT
for ECG denoising. First, it has higher sensitivity so it is more
probable for WT to have little single noise samples (speckles)
remained. Second, MABWT has a smoothing property with
respect to its resolution variation over the time-frequency
plane, and this is exactly what we are seeking inmany denois-
ing techniques. This is particularly true for real ECGs (see
Figure 6). Furthermore, the effect of the adaptation is clearly
obvious in the first samples of the reconstructed ECGs with
MABWT (refer to Figures 5(e) and 5(f)). But as the adapta-
tion proceeds, the reconstructed signal follows the clean ECG
morphology.

Another field of interest for the proposed multiadap-
tive method is to denoise and reconstruct abnormal signals.
Figure 7(a) shows an ectopic beat among a normal ECG cy-
cle. We have applied the MABWT to the signal and have
shown the results corresponding to hard MABWT (HBWT).
It is clear that the denoised signal is noise-free but cannot fol-
low the ST segment of the ectopic beats, reasonably because
any abnormality corresponds to an abrupt change in the sig-
nal rhythm and consequently the adaptation needs time to
follow this behavior (Figure 7(b)). But fortunately this does
not affect the diagnostic features of the ECG signal such as
the QT or the ST intervals, and the QRS complex.

Since we have used the adaptation in a limited number
of scales, abrupt changes may be tracked not efficiently, but
it can be shown that if the adaptation includes all decom-
position subbands and also the abnormality can be consid-
ered semicyclic, but not necessarily stationary, the MABWT
technique would come over the above problem (refer to
Figure 7(c)).

For evaluating the performance of the proposed BWT we
have used the SNR improvement measure by the means of
the expression:

imp[dB] = SNRoutput− SNRinput

= 10 log

(∑
i

∣∣xd(i)− x(i)
∣∣2

∑
i

∣
∣xn(i)− x(i)

∣
∣2

)

,
(13)

where x denotes the original ECG, xd is the denoised sig-
nal, and xn represents the noisy ECG signal. Figure 8 com-
pares the improvement values between WT and MABWT.
For evaluation, we have chosen first 4096 samples of the
noise freeMIT-BIH record number 100 as our reference ECG
signal. As mentioned before, both hard and soft threshold-
ings have been considered for denoising. One can see that in
lower input SNRs, soft MABWT (SBWT) has a better perfor-
mance and as the input SNR is increased SBWT remains the
best choice with improvements much more than that of WT.
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Figure 5: Typical results of different methods for an input simu-
lated signal of 6 dB. (a) Clean ECG, (b) noisy input signal, (c) WT
(hard), (d) WT (soft), (e) MABWT (hard), and (f) MABWT (soft).
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Figure 6: Typical results of different methods for the MIT-BIH
record 117 with an input SNR of 4 dB. (a) Clean ECG, (b) noisy in-
put signal, (c) WT (hard), (d) WT (soft), (e) MABWT (hard), and
(f) MABWT (soft).
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Figure 7: Denoising results of HBWT applied to an ECG (MIT-BIH
record 119) with ectopic beats. (a) Clean and noisy ECG, (b) HBWT
with 3 levels of adaptation, (c) HBWT with the adaptation applied
to all decomposition levels. The surrounding circles indicate the ST
segment of the ectopic beats.

Moreover, HBWT acts better than hard WT and for SNRs
higher than 8 dB, it passes the soft WT performance. Figure 8
clarifies that for a wide range of input SNRs, the MABWT
improvement (hard or/and soft) has a noticeable difference
to that of WT, especially outstanding for lower SNRs for
which having nearly 2 dB improvement in MABWT is of ma-
jor importance.

In order to have a comparison between the performance
of the proposed method and conventional wavelet-based
ECG denoising schemes, WT and the MABWT were tested
on the database. The results of the SNR improvement for the
input SNR of 5 dB are listed in Table 1.

According to these results the MABWT performance is
always better than the corresponding WT for hard and soft
thresholdings, as was already expected. Although WT and



8 EURASIP Journal on Advances in Signal Processing

−10 −5 0 5 10 15 20
−2
−1
0

1

2

3

4

5

6

7

8

9

Input SNR (dB)

Im
pr
ov
em

en
t
(d
B
)

WT soft
WT hard

BWT soft
BWT hard

Figure 8: WT and MABWT filter output SNR improvement ver-
sus different input SNRs for the first 4096 samples of the MIT-BIH
record number 100.

MABWT always improve the input SNR, MABWT with soft
thresholding has the best overall performance with a max-
imum SNR improvement of 8.2 dB, while the best result of
WT-based approach goes back to 6.6 dB.

5.2. Baseline wandering reduction

We have divided the baseline wanderings into the following
two general categories: DC components affecting the base-
line not to be at zero level, and baseline drift which is a con-
sequence of low frequency interferences. For both cases with
the appropriate choices for the level of decomposition, that
is, number of scales m, and the center frequency f0, remov-
ing baseline wandering would be a direct task. Remember
that we have assigned a fixed value to f0, experimentally. On
the other hand there is an interdependency between m and
q (7) but with the help of the iterative algorithm discussed
in Section 4, there would be only one degree of freedom to
determine the accurate values of the mentioned parameters.
Again it only remains to find q with respect to the optimiza-
tion problem of (12) for m = 2 and continue with the com-
puted value(s) for the next scale(s). To clarify the effective-
ness of the proposed technique, we have chosen real ECG
signals including two classes of baseline wandering simulta-
neously, and we have run the baseline wandering cancellation
algorithm with both WT and MABWT. The results are pro-
vided in Figures 9–11.

Results show that although for the case of wavelet trans-
form the denoised signal is somehow free of the baseline
interference, but the drifts still exist unless applying a low-
pass filtration to the properly selected subband (Figure 9(b)).
Moreover, the thresholding not only affects the baseline but

Table 1:WT andMABWT denoising performance on theMIT-BIH
arrythmia database.

Record
no.

SNR improvement (dB)

WT WT MABWT MABWT

(hard) (soft) (hard) (soft)

100 5.1 6.5 6.4 7.8

101 4.2 5.5 5.3 6.9

103 5.0 6.1 5.8 7.7

105 5.1 6.0 5.8 8.1

112 5.2 6.4 6.1 8.2

113 5.0 6.2 5.9 7.9

115 5.1 6.6 6.3 7.8

116 5.0 6.5 6.4 8.0

117 4.8 6.0 5.8 7.9

119 4.7 5.8 5.6 7.6

122 4.4 5.6 5.2 6.9

123 5.1 6.5 6.4 7.8

200 4.2 5.4 5.3 6.9

201 5.0 5.4 5.5 7.5

202 4.9 5.8 5.7 7.8

205 5.0 5.4 5.5 7.4

209 5.2 6.0 5.9 8.1

210 4.3 5.4 5.3 6.9

212 4.0 5.0 4.8 6.7

213 5.2 6.6 6.4 8.2

219 5.2 6.5 6.3 8.0

220 5.1 6.5 6.4 8.1

221 4.9 6.0 5.9 7.9

230 5.0 5.9 5.6 7.9

233 4.8 5.8 5.5 7.8

Average 4.86 5.98 5.80 7.67

also has destructive effects on the signal morphology, espe-
cially on the ST segment, which is extremely sensitive to noise
and is of great clinical significance (Figure 10(b)). But in the
denoised signal with MABWT, baseline wandering is com-
pletely removed and also a noise-free version of the signal
is obtained without the need for any extra filtering. There
are more with the advantages of MABWT over other base-
line correction techniques. It is capable of eliminating not
only those drifts which could be modeled as additive sources
[16], but also the ones that have no correlation with a pure
ECG. In addition, the method has no destructive effects on
the morphology of the signal and can cope with both normal
and abnormal beats, while previously introduced methods
have problems with these cases [8].

The results are also presented for simulated baseline per-
turbations, as depicted in Figure 12. We have chosen the
MIT-BIH record number 207, which includes bundle branch
blocks, together with ventricular flutter wave. A random
noise of 6.5 dB was added to evaluate the noise reduction
performance of the algorithm, while reducing the baseline
drift. The difference between processed and original signal
is shown for soft thresholding. It shows that WT processed
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Figure 9: Typical results of different methods for baseline correc-
tion in presence of DC components and lowpass interference. (a)
MIT-BIH record 203, (b) result of applying WT, (c) result of apply-
ing MABWT.

signal has its maximum difference on the QRS complexes
and the T waves. In contrast to WT, the processed signal with
BWT, when adapted to the signal, follows its morphology,
leading the difference to be ignored. Consequently, WT can-
not handle precise baseline wander removal, and there is a
significant difference in the amplitude of the fiducial points
of the signal, compared to the original ECG. Hence, there
may be distortions in the locations of the ECG points and
interval features.

6. DISCUSSION AND CONCLUSION

We have presented and validated a newmultiadaptive version
of the bionic wavelet transform and its applications to noise
and baseline wandering suppression in electrocardiograms
combined with modifications of the traditional threshold-
ing rules. The MABWT aims at integrating into the standard
BWT a mechanism that adjusts the center frequency of every
analyzing scale in a signal-adaptive fashion. Moreover, the
value of the T-function, which controls the mother wavelet,
is directly influenced on the threshold to come to an appro-
priate criterion for the denoising approach which uses the
transform coefficients’ information.

To show that BWT improvement is really effective in clin-
ical situations, the method has been validated using several
ECG recordings with a wide variety of wave morphologies
from MIT-BIH arrhythmia database, and also simulated sig-
nals. For denoising purpose, using the MABWT representa-
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Figure 10: Typical results of different methods for baseline wander-
ing cancellation in presence of sinusoidal drifts. (a)MIT-BIH record
228, (b) result of applying WT, (c) result of applying MABWT.
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Figure 11: Typical results of different methods for baseline wan-
dering elimination for a non-correlated baseline artifact. (a) MIT-
BIH record 222, (b) result of applying WT, (c) result of applying
MABWT.
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Figure 12: Simulated baseline perturbation removal and noise re-
duction for an abnormal ECG. (a) MIT-BIH record 207, and the
added baseline trace, (b) differences between WT (dashed line) and
MABWT (solid line) processed signals and the original ECG.

tion of the ECG signal and with the help of the modified
threshold (11) there was an average SNR improvement of
5.80 dB for hard thresholding and 7.67 dB for soft thresh-
olding, corresponding to 0.94 dB and 1.69 dB improvement,
respectively, compared to the WT-based methods, on the as-
sumption of additive white Gaussian noise sources. None of
the more complex test cases result in an improvement less
than 4.8 dB. The MABWT-based denoising, in contrast to
most denosing methods found in the literature, allows taking
the advantage of characteristics of adaptive time-scale anal-
ysis. Hence, there are advantages with the suggested tech-
nique compared to conventional other denoising methods;
there are fewer speckles remaining in the denoised signal,
and the reconstructed signal follows a smoothing behavior.
In contrast to other efficient denoising techniques, abrupt
changes that occur in most abnormal cases would not be
tracked unless the adaptation includes all subbands. Con-
sequently, MABWT is able to outperform other algorithms
and the modified threshold selection rule, which uses the in-
formation of the transform coefficients in the first scale of
decomposition, has a noise reduction ratio well within the
acceptable range.

Also, the proposed MABWT algorithm removes baseline
wandering, while preserving the clinical information and the
morphology of the ECG record. Unlike other baseline correc-
tion schemes, it removes the components of all wandering
classes that are not correlated to ECG and have such char-

acteristics that are somehow added to it, DC components,
and low frequency interfering drifts. Moreover, the proposed
algorithm is also capable of improving signal-to-noise ratio
while eliminating the baseline wandering.

The superior performance of the proposed technique is
a direct result of the multiadaptive scheme, which gives the
opportunity to study different types of noise through the in-
tuitive modification of BWT parameters. Moreover MABWT
can be calculated using WT by adding a K-factor which re-
sults in a fast implementation of the proposed algorithm.

Finally, it should be mentioned that the importance of
the multiadaptive technique goes beyond the single problem
of ECG denoising since it is applicable to every type of data
considering a case-dependent optimization. In fact, once the
time-frequency features of the data are extracted, the prob-
lem obtains an abstract representation on which it is possible
to apply whichever experience matured in MABWT.
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