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We have shown that duct modeling using the generalized RBF neural network (DM RBF), which has the capability of modeling
the nonlinear behavior, can suppress a variable-frequency narrow band noise of a duct more efficiently than an FX-LMS algorithm.
In our method (DM RBF), at first the duct is identified using a generalized RBF network, after that N stage of time delay of the
input signal to the N generalized RBF network is applied, then a linear combiner at their outputs makes an online identification
of the nonlinear system. The weights of linear combiner are updated by the normalized LMS algorithm. We have showed that
the proposed method is more than three times faster in comparison with the FX-LMS algorithm with 30% lower error. Also the
DM RBF method will converge in changing the input frequency, while it makes the FX-LMS cause divergence.
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1. INTRODUCTION

In the recent years, acoustic noise canceling by active meth-
ods, due to its numerous applications, has been in the fo-
cus of interest of many researches. Contrary to the passive
method, it is possible using the active method to suppress or
reduce the noise in a small space particularly in low frequen-
cies (below 500Hz) [1, 2]. Active noise control was intro-
duced for the first time by Paul Lveg in 1936 for suppressing
the noise in a duct [3]. In the active control method by pro-
ducing a sound with the same amplitude but with opposite
phase, the noise is removed. For this purpose, the amplitude
and phase of a noise must be detected and inverted. The de-
veloped systemmust have the adaptive noise control capabil-
ity [3]. In usual manner, an FIR filter is used in ANC whose
weights are updated by a linear algorithm [4, 5]. Using the
linear algorithm of LMS is not possible due to the nonlinear
environment of the duct and the appearing of the secondary
path transfer function H(z). Hence, the FX-LMS algorithm
is presented in which the filtered input noise x′(n) is used as
an input to the algorithm [6, 7]. The notable points in ANC
are as follows.

(i) The duct length and the distance between the system
elements are such that the system becomes causal [8].

(ii) Regarding the speaker response, no decrease will be
obtained in frequencies below 200Hz [2]. Also passive
techniques for reducing the noise in frequencies below
500Hz have not been successful [1, 2]. Therefore, the
ANC systems are used in the range of 200 to 500Hz
and above 500Hz.

The existence of nonlinear effects in ANC complicates the use
of the linear algorithm FX-LMS and similar algorithms. Di-
vergence or slow convergence is among these difficulties. For
this purpose, identification systems with a nonlinear struc-
ture are used where a neural network is among these solu-
tions [9–11]. The radial basis function (RBF) networks are
used in processing temporal signals for radar [12], in the
predictor filter in position estimation from present and past
samples [13], and in adaptive prediction and control [14, 15].
Buffering data, feedback from the output of the system, and
state machines are used in modeling temporal signals. In
time delay RBF neural networks, also, by buffering data [16],
and using the feedback from the output in the recurrent RBF
(RRBF) [17], this work is accomplished.

In the present work a new structure with the generalized
RBF neural network is presented whereby a linear combi-
nation of the outputs of N neural networks causes a time
varying nonlinear system being modeled. Samples x(n) to
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Figure 1: Using the FX-LMS algorithm in a single channel ANC
system.

x(n − N + 1) are fed to N generalized RBF neural networks
and then the linear combination of their outputs is used for
canceling the acoustic noise inside a duct. For precise sim-
ulation of the proposed algorithm and comparison to the
conventional FX-LMS method, the transfer function of the
primary path (the duct transfer function) and the secondary
path must be available, which for this purpose, the informa-
tion given in [18] which is obtained practically is utilized.

Section 2 of this paper concerns the investigation of the
active noise control in a duct and the FX-LMS algorithm.
Section 3 contains a short review of the RBF and general-
ized RBF neural networks. In Section 4, the proposed system
and its application in ANC are presented and in Section 5 the
conclusions are presented.

2. PRINCIPLE OF ACTIVE NOISE CONTROL
IN A DUCT

If we assume the noise propagates in a one-dimensional
form, then it is possible to use a single channel ANC for
noise cancellation. For simulation and implementation of
this system, a narrow duct is used as in Figure 1. According
to Figure 1, the primary noise before reaching to the speaker
is picked up by the input microphone. The system uses the
input signal for generating the noise canceling signal y(n).
The generated sound by the speaker gives rise to a reduc-
tion in the primary noise. The error microphone measures
the remaining signal e(n) which can be minimized using an
adaptive filter which is used for identifying the duct’s transfer
function. Because of using the input and error microphones,
we must consider some functions which are known as the
secondary path effects. In such a system, usually for cancel-
ing the noise, the FX-LMS algorithm, Figure 1, and (1) are
considered [1, 19–21]. The vector x′(n) is a filtered copy of
the vector x(n).

Wn+1 =Wn − μenX
′
n, (1)

where en is the residual signal and Wn = [wn(1),wn(2), . . . ,
wn(M)]T is the weight vector of the estimator of lengthM.
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Figure 2: Structure of an RBF network.

In Figure 1, the c(z) is an estimation ofH(z) which can be
obtained by some offline techniques [22]. The considerable
points in the execution the FX-LMS are the following.

(i) Canceling the broadband noise needs a filter of high
order which increases the duct length [22].

(ii) In order to choose the proper stepsize, we need the
knowledge of statistical properties of the input data
[23, 24].

(iii) To ensure the convergence, the stepsize is chosen small;
hence the convergence speed will be low and the per-
formance will be weak.

(iv) For executing the above algorithm, we need to estimate
the secondary path.

(v) This algorithm is only applicable to a linear controller
and is not either suitable for nonlinear controllers or
it is slow. For modeling the nonlinear behavior of this
system, neural networks can be employed.

3. THE RBF NEURAL NETWORKS

The RBF networks usually have three layers as shown in
Figure 2. The first layer comprises the input nodes, the sec-
ond layer, which is a hidden layer, includes a nonlinear trans-
formation, and the third layer includes the output layer. The
output in terms of the input is given by

Fj(x) =
r∑

i=1
wijϕi

(∥∥x − ci
∥∥, δi), (2)

where Fj(x) is the response of the jth neuron in the input
feature vector x and Wij is the value of the interconnection
weight between the ith neuron in the RBF layer and the jth
neuron in the output layer. ‖x − ci‖ represents the Euclidean
distance and ϕi is the stimulation function of the ith neurons
in the RBF layer which is also called the kernel. The kernel
can be chosen as a simple norm or a Gaussian function or
any other suitable function [25]. In practice it is chosen as a
Gaussian function which in this case F is a Gaussian mixture
function and each neuron in the RBF layer is identified by the
two parameters center ci and width δi.
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Figure 3: Structure of the proposed method.

3.1. The generalized RBF neural network

In this paper, the generalized neural network is used formod-
eling the duct. In this type of RBF, the ϕi(x) function is com-
puted as [25]

ϕi(x) = G
(∥∥x − ci

∥∥) = exp
(
−1
2

(
x − ci

)T∑−1(x − ci
))

,

(3)

where
∑

is the covariance matrix of the input data and ci are
the centers of the Gaussian functions. The optimum weight
vector is obtained as

W = (GTG
)−1

GTd, (4)

where d is the desired value and G is the Green func-
tion which for k inputs x1 to xk and Gaussian centers c =
[c1, . . . , cm], its Green Function is as follows:

G =

⎡
⎢⎢⎢⎢⎢⎢⎣
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)
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...
...
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(
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)
G
(
xk, c2

) · · · G
(
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)

⎤
⎥⎥⎥⎥⎥⎥⎦
, (5)

where xk is the kth learning sample.

4. THE PROPOSED ALGORITHM

The time delay neural network presented in this paper in-
cludes N stages which are illustrated in Figure 3. At first, the
duct is identified by the generalized RBF, GRBF, and then the
results are combined by a linear adaptive filter such as LMS.
Because of changing space with GRBF, obtaining error will
be less than input space or the MSE at Φ-space is smaller
than the input space; so we expect LMS has had smaller er-
ror without converting space. This subject has been proved
in the appendix.

The relation between the output and the input is given in

F =
N∑
j=0

αj · f j
(
x(n− j)

)
,

F =
N∑
j=0

(
αj

m∑
i=1

wiG
(∥∥x(n− j)− ci

∥∥)),
(6)

where N is the number of the delayed input signal samples
and m is the number of the used kernels in the generalized
RBF network. wis are obtained from (4) and αjs are updated
with LMS algorithm according to

An+1 = An − 2μ · Yn · en, (7)

where An = [αn(1),αn(2), . . . ,αn(N)]T , Yn = [ fn(1),
fn(2), . . . , fn(N)]T , and en is the system error which is ob-
tained from subtracting the system output, F from the de-
sired value of the signal, dn at instant n. In noise reduction
problem, and dn is the primary noise which reaches the exci-
tation speaker.

4.1. Applying the proposed algorithm in
active noise canceling

The present network is used to active noise cancel as in
Figure 4. At instant two points are interested in the proposed
system as

(a) deletion of secondary path estimation c(z),
(b) learning the transfer function of GRBF and the linear-

ity of active noise control system using this idea.

In the next subsections duct modeling and noise cancel-
lation are explained.

4.2. Duct system function identification

We begin first by identifying the duct with the GRBF and
the proposed system and then compare them. Equation (3)
is found by fuzzy k-means clustering. In this problem, 4
centers are used. Therefore, 4 Gaussian functions are ob-
tained. Equation (3) is also rewritten in the form of (8). The
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Figure 4: A structure for noise canceling in a duct by the proposed
method.

Gaussian kernels of the GRBF function are computed using
(9), (4.2).

ϕi(x) = G
(∥∥x − ci

∥∥) = exp
(
− 1

2σi

(∥∥x − ci
∥∥2)), (8)

σi =
√√√√∑k1

m=1
(
xm − ci

)2
k1 − 1

, (9)

xm=
{
xk | μik > μjk, j={1, 2, . . . , r} − {i}, k={1, . . . ,N}

}
,

(10)

where μik is the degree of membership of the patterns xk to
the ith group and μjk is the degree of membership to the jth
group. In (4.2), the samples whose degrees of membership
to the ith group are more than other centers are attributed
to that cluster and their standard deviations are considered
as the Gaussian kernel standard deviation. The result of exe-
cuting the generalized RBF on a sinusoidal chirp signal with
a variable frequency of 300 to 305Hz is shown in Figure 5.
As shown in Figure 5(a), the output and the desired value in
response to the narrow band signal has lower error, but this
network is not able to learn the duct output in the broad-
band spectrum of the input signal of Figure 5(b), while the
proposed algorithm gives better results.

Two networks are compared in Figure 6. The error norm
of the proposed algorithm compared to the GRBF in duct
identification is improved 94%. Hence, in identifying a sys-
tem, the proposed system can be utilized. Several reasons can
be mentioned for superiority of this system relative to the
GRBF as follows.

(a) Using a filter bank instead of filter.
(b) Using N buffered samples of data instead of a single

stream of data.
(c) General and local consideration of data, that is,

buffered data.
(d) Increasing the network capacity by increasing the α

coefficient.
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Figure 5: Part of the GRBF output and duct output in response to a
sinusoidal chirp signal with a variable frequency (a) 300 to 305Hz,
(b) 200 to 500Hz.

4.3. Active noise cancellation using
the proposed algorithm

After identifying the duct with the GRBF network, we pro-
ceed canceling the noise in the duct by the structure pre-
sented in Figure 3. The learning curve of the execution result
on variable chirp sinusoid of 300–305Hz for the proposed
network in comparison to the FX-LMS algorithm is given in
Figure 7.

For this purpose, first the duct is identified by the gener-
alized RBF for excitation frequencies of 200 to 500Hz, then
αs are calculated in the proposed network by the normal-
ized LMS (NLMS) algorithm. Higher convergence speed and
lower error for the proposed algorithm in comparison to the
FX-LMS algorithm in Figure 7 are observed. On average, the
convergence speed has been increased 3 times and the final
MSE minimum error is decreased 30%.
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Figure 6: (a) Comparison of the RBF network output and the
proposed algorithm in identifying the duct in response to a sinu-
soidal chirp input of variable frequency 200–500Hz. (b) The learn-
ing curve of the proposed algorithm in duct identification.

5. CONCLUSIONS

The process of canceling the acoustic noise in a duct has a
nonlinear nature. Therefore, linear adaptive filters such as
LMS are not able to actively cancel the noise. Due to the good
tracking capability of the LMS filter in a noisy environment,
the FX-LMS has been presented as a basic method in ANC
which models some what the nonlinear nature of the duct. In
this paper, by modeling the duct using the generalized RBF
neural network, it is possible to suppress the narrow band
variable frequency noise in the duct in a better way than the
FX-LMS method. The proposed method in comparison to
the FX-LMS algorithm is more than three times faster and
has 30% less error. Also, the change in the input frequency
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Figure 7: The learning curve to sinusoidal chirp with variable fre-
quency of 300 to 305Hz for the proposed system and the FX-LMS
algorithm.

causes the divergence, which the proposed method converges
as well.

In the proposed method, first the duct is identified by the
GRBF neural network and using a linear adaptive combiner
at their outputs, online identification of the nonlinear system
becomes possible. The weights of the linear combiner are up-
dated using the normalized LMS algorithm.

APPENDIX

TheoremA.1. Assume thatMSEi = E{e2} is the mean-square
error in the input space, then the MSE at Φ-space will be
smaller than the input space.

Proof. the mapping is according to

Y = Φ(X), (A.1)

where Φ(X) = [ϕ(x, c1),ϕ(x, c2), . . . ,ϕ(x, cK )] and we can
assume that ϕ(x, ci) = exp(−(x − ci)2/2σ2). In simple form
we can write ϕ(x, ci) = exp(−x2). By substituting e(k) =
xm(k) − x(k) in ϕ(x, ci), xm(k) is the actual state of the sig-
nal, then we have

ϕ
(
x(k), ci

)
= exp

(−x(k)2) = exp
(−(xm(k) + e(k)

)2)
= exp

(−xm(k)2) exp (−em(k)2) exp (−2em(k)xm(k)).
(A.2)

Assuming em(k) is small enough, we can betake
exp(−em(k)2) term. Also we know that exp(−xm(k)2) is the
desired output in each dimension at theΦ-space. For simpli-
fication, we substitute y = ϕ(x(k), ci), thus we have

y = ym exp
(−2em(k)xm(k)), (A.3)
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where ym = e(−xm(k)2). The Taylor series expansion of term
exp(−2em(k)xm(k)) is

exp
(−2em(k)xm(k)) ∼= 1− 2em(k)xm(k),

y = ym − 2emxmym = ym − 2emxme−x
2
m = ym − αem.

(A.4)

The term α = 2xme−x
2
m is always smaller than one, or eΦ =

αem, thus we have

MSEΦ = E
{
e2Φ
} = α2E

{
e2
}
,

MSEΦ = α2 MSEi .
(A.5)

The above equation shows that MSEΦ < MSEi or “MSE
in Φ-space is smaller thanMSE in the input space.”
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