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The synchronization and/or time acquisition problem in the presence of interferences has been strongly studied these last two
decades, mainly to mitigate the multiple access interferences from other users in DS/CDMA systems. Among the available re-
ceivers, only some scarce receivers may also be used in other contexts such as F/TDMA systems. However, these receivers assume
implicitly or explicitly circular (or proper) interferences and become suboptimal for noncircular (or improper) interferences. Such
interferences are characteristic in particular of radio communication networks using either rectilinear (or monodimensional)
modulations such as BPSK modulation or modulation becoming quasirectilinear after a preprocessing such as MSK, GMSK, or
OQAM modulations. For this reason, the purpose of this paper is to introduce and to analyze the performance of second-order
optimal array receivers for synchronization and/or time acquisition of BPSK, MSK, and GMSK signals corrupted by noncircular
interferences. For given performances and in the presence of rectilinear signal and interferences, the proposed receiver allows a
reduction of the number of sensors by a factor at least equal to two.
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1. INTRODUCTION

The synchronization and/or time acquisition problem in the
presence of interferences has been strongly studied these last
two decades, mainly to mitigate the multiple access interfer-
ences (MAI) from other users in DS/CDMA systems. The
available receivers may be implemented from either mono-
antenna [1–7] or multi-antennas [8–12]. Receivers presented
in [9, 12] are analog receivers while the other ones are digi-
tal receivers. Most of the available digital receivers are very
specific of the CDMA context and cannot be used elsewhere,
since they require assumptions such as a spreading sequence
which is repeated at each symbol [1–7], a very large number
of MAI [11], no data on the codes [8, 11] or periodic and or-
thogonal sequences [8]. On the other hand, [5], which does
not require the previous assumptions, assumes interferences
with known delays and spreading sequences, which corre-
sponds to very specific situations. On the contrary, although
assuming orthogonal and periodic codes, maximum likeli-
hood (ML) receivers presented in [10] belong to the family
of the scarce receivers which may be used in other contexts
than DS/CDMA systems such as F/TDMA systems in par-

ticular. These receivers also consider random data modulat-
ing the code and generalize the least square (LS) approach
presented in [8]. However, receivers presented in [10] as-
sume stationary, and then second-order (SO) circular [13]
(or proper [14]) Gaussian interferences. Moreover, they do
not use any of the structure in the latter, although this struc-
ture is perfectly known for interferences generated by the
system itself. In particular, receivers presented in [8, 10] be-
come sub-optimal for SO noncircular (or improper [15]) in-
terferences. This property is characteristic of radio commu-
nication networks using either rectilinear (or monodimen-
sional) modulations, such as amplitude modulation (AM),
amplitude phase shift keying (ASK), binary phase shift key-
ing (BPSK) modulations, or modulations becoming quasi-
rectilinear after a preprocessing such as Minimum Shift Key-
ing (MSK), Gaussian MSK (GMSK), or offset quadrature
amplitude modulations (OQAM) [16]. The BPSK modula-
tion is still of interest for various current wireless systems
[15], whereas MSK and GMSK modulations may be inter-
preted as a BPSK modulation after a simple algebraic opera-
tion of derotation on the baseband signal [17–19]. For these
reasons, the first purpose of this paper is to introduce and to
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analyze the performance of the SO optimal array receiver for
synchronization and/or time acquisition of BPSK signals cor-
rupted by noncircular, and more precisely by rectilinear in-
terferences. This receiver, patented recently [20], implements
an optimal, in an LS sense, widely linear (WL) [21] spatial
filtering of the data followed by a correlation operation with
a training sequence. Extensions of these results to MSK and
GMSK signals [16] are presented at the end of the paper and
constitute the second purpose of this paper.

The first use of WL filters in signal processing has been
reported in [22], the first discussion about their interest for
cyclostationary signals has been introduced in [23, 24] and
the proof of their optimality in SO noncircular context has
been presented in [21, 25, 26]. Since the previous papers, op-
timal WL filtering has raised an increasing interest this last
decade in radio communications for demodulation purposes
(see [17] and references therein). However, up to now and to
our knowledge, despite some works about frequency-offset
estimation in noncircular contexts [27–29], optimal WL fil-
tering has never been investigated for synchronization and/or
time acquisition purposes in noncircular contexts, hence the
present paper. Note that some results of the paper have al-
ready been partially presented in the conference paper [30].

After an introduction of some notations, hypotheses, and
data statistics in Section 2, the SO optimal array receiver
for synchronization and/or time acquisition of a BPSK sig-
nal corrupted by noncircular interferences is presented in
Section 3, where some general interpretations, properties,
and performance of this receiver are described. Some insigths
into the performance of the latter in the presence of one recti-
linear interference are presented and illustrated in Section 4.
Section 5 investigates extensions of the previous results to
MSK and GMSK signals. Finally Section 6 concludes the pa-
per.

2. HYPOTHESES AND PROBLEM FORMULATION
FOR BPSK SIGNALS

2.1. Hypotheses

We consider an array of N narrowband (NB) sensors receiv-
ing the contribution of a BPSK signal and a total noise com-
posed of some potentially SO noncircular interferences and a
background noise. This situation is, for example, character-
istic of a BPSK radio communication network where inter-
ferences correspond to cochannel interferences (CCI) gener-
ated by the network itself. The complex envelope of the useful
BPSK signal is, to within a constant, given by

s(t) =
∑

n

anv(t − nT), (1)

where an = ±1 is the transmitted symbol n, T is the sym-
bol duration, and v(t) is a real-valued pulse-shaped filter
such that rv(t) � v(t) ⊗ v(−t)∗ is a Nyquist filter, that is,
rv(nT) = 0 for n /= 0. Symbols ⊗ and ∗ are the convolu-
tion and the complex conjugation operations, respectively.
Note that rv(t) is the autocorrelation of v(t) and the pre-
vious condition is verified if v(t) is either a raised cosine
pulse-shaped filter or a rectangular pulse of duration T . In

most of radio communication systems, K training symbols
an (0 ≤ n ≤ K − 1) are periodically transmitted among
information symbols for synchronization and/or time ac-
quisition purposes. These K training symbols are known by
the receiver and can be considered as deterministic symbols.
On the contrary, the information symbols are unknown by
the receiver, are random and can be considered as i.i.d sta-
tionary symbols. For example, in a burst transmission, one
training sequence of K symbols jointly with some informa-
tion symbols are transmitted at each burst. Assuming a use-
ful propagation channel with M multipaths, noting x(t) the
vector of the complex envelopes of the signals at the out-
put of the sensors, Te the sample period such that T/Te is
an integer q, sv(kTe) � s(t) ⊗ v(−t)∗/t=kTe and xv(kTe) �
x(t)⊗v(−t)∗/t=kTe the sampled useful signal and observation
vector at the output of the matched filter v(−t)∗, we obtain

xv
(
kTe

) ≈
M−1∑

i=0

μssv
(
kTe − τi

)
hsi + bTv

(
kTe

)
. (2)

In this equation, μs is a real parameter controlling the trans-
mitted amplitude of the useful signal, τi and hsi are the delay
and the channel vector of the useful path i, bTv(kTe) is the
sampled total noise vector at the output of v(−t)∗, which
contains the contribution of interferences and background
noise and which is assumed to be uncorrelated with all the
signals sv(kTe−τi). In a digital radio communication system,
the synchronization function aims at detecting the differ-
ent useful paths (interception) and estimating their delays τi
(time acquisition). For equalization/demodulation purposes,
it aims also at choosing the best sampling time, from the es-
timated power of each detected path, and at optimally po-
sitioning the equalizer with respect to the delays of the de-
tected paths. The synchronization process is thus a joint de-
tection and estimation problem. Of course, the probability
to improve the best sampling time increases with the degree
of data oversampling. In such a context, there is no need to
exactly estimate the delays τi (0 ≤ i ≤ M − 1) and the prob-
lem rather consists, for each useful path i0, to detect the most
powerful sample associated with this path. More precisely,
for each useful path i0, noting loTe the sample time which
is the nearest of τi0, the problem considered in this paper is
both to detect the presence of the useful path i0 and to find
the best estimate of loTe from the sampled observation vec-
tors. Assuming an optimal sampling time for the path i0, the
sampled observation vector considered in practice can then
be written as

xv
(
kTe

) ≈ μssv
((
k − lo

)
Te
)

hs + bTv
(
kTe

)′
. (3)

In this equation, hs is the channel vector of the useful path
i0 and bTv(kTe)′ is the sampled contribution of both the to-
tal noise vector bTv(kTe) and the useful paths different from
i0. Note that bTv(kTe)′ = bTv(kTe) for a useful propagation
channel with no delay spread, which occurs, for example,
for free space propagation (reception from satellite, plane
or unmanned aerial vehicle) or flat fading channels (some
reception situations for urban radio communications). Be-
sides, to simplify the developments of the paper, model (3)
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assumes that the carrier frequency of the useful signal is a pri-
ori known (which is true for cellular networks) or has been
perfectly compensated.

2.2. Second-order statistics of the data

The SO statistics of the data considered in the follow-
ing correspond to the first and second correlation matrix
of xv(kTe), defined by Rx(kTe) � E[xv(kTe) xv(kTe)†]
and Cx(kTe) � E[xv(kTe) xv(kTe)T], respectively, where T
and † correspond to the transposition and transposi-
tion conjugation operation respectively. In a same way,
the first and second correlation matrix of bTv(kTe)
are defined by R(kTe) � E[bTv(kTe) bTv(kTe)†] and
C(kTe) � E[bTv(kTe) bTv(kTe)T], respectively. The first
and second correlation matrix of bTv(kTe)′ are defined
by R(kTe)′ � E[bTv(kTe)′ bTv(kTe)′

†] and C(kTe)′ �
E[bTv(kTe)′ bTv(kTe)′

T] respectively. Note that R(kTe)′ =
R(kTe) and C(kTe)′ = C(kTe) for a useful propagation chan-
nel with no delay spread. Note also that C(kTe) = O (resp.,
C(kTe)′ = O) for all k for an SO circular vector bTv(kTe)
(resp., bTv(kTe)′), where O is the (N×N) zero matrix. Finally
we note πs(kTe) � E[|sv(kTe)|2] the instantaneous power of
the transmitted useful signal for μs = 1. Note that the previ-
ous statistics depend on the time parameter since the consid-
ered useful signal and interferences are cyclostationary, due
to their digital nature.

2.3. Problem formulation

Since the K training symbols an (0 ≤ n ≤ K − 1), which
are periodically transmitted for synchronization purposes,
are known by the receiver, the associated useful samples
sv(nT) = rv(0)an (0 ≤ n ≤ K − 1) are also known by the
receiver. Then, a first way to solve the synchronization prob-
lem consists to find, for each useful path i0, the best estimate,

l̂o, of lo. This can be done by searching for the integers l for
which the known useful samples sv(nT) (0 ≤ n ≤ K − 1)
are optimally estimated, in an LS sense, from the observation
vectors xv((l/q + n)T), 0 ≤ n ≤ K − 1. We solve this prob-
lem in Section 3.1, without any assumptions about the de-
lay spread of the propagation channels, the orthogonality or
the periodicity of the training sequence, contrary to [8, 10].
A second way to solve the synchronization problem consists
to optimally detect each useful path i0. This can be done by
searching for the integers l for which the known useful sam-
ples sv(nT) (0 ≤ n ≤ K − 1) are optimally detected from the
observation vectors xv((l/q + n)T), 0 ≤ n ≤ K − 1. We solve
this problem in Section 3.2 under particular theoretical as-
sumptions, showing off the hypotheses under which the two
ways to solve the synchronization problem are equivalent to
each other.

3. OPTIMAL SYNCHRONIZATION FOR BPSK SIGNALS

It is now well known [17, 21, 25, 26] that the linear filters
are SO optimal for SO circular observations only but be-
come sub-optimal in noncircular contexts for which the SO

optimal filters are WL, weighting linearly and independently
the observations and their complex conjugate. In these con-
ditions, the first way to solve, in the presence of noncircu-
lar interferences, the synchronization problem presented in
Section 2.3 is, for each useful path i0, to search for the opti-

mal integer l, noted l̂o, for which the known useful samples,
sv(nT) = rv(0)an (0 ≤ n ≤ K − 1), are optimally estimated,
in an LS sense, from a WL spatial filtering of the observation
vectors xv((l/q + n)T) (0 ≤ n ≤ K − 1). This gives rise in
Section 3.1 to the optimal LS array receiver, called OPT-LS
receiver, for synchronization of the BPSK useful signal in the
presence of noncircular interferences. This OPT-LS receiver
is shown in Section 3.2 to also correspond, under some the-
oretical assumptions not required in practice, to the array

receiver for which l̂o allows the optimal detection, in terms
of the generalized likelihood ratio test (GLRT) [31], of the
known useful samples, sv(nT) (0 ≤ n ≤ K − 1), from the

observation vectors xv((l̂o/q + n)T) (0 ≤ n ≤ K − 1). An en-
lightening interpretation and some performance of the OPT-
LS receiver are then presented in Sections 3.3 and 3.4, respec-
tively. Note that the results presented in this section are com-
pletely new.

3.1. Presentation of the OPT-LS receiver

Synchronization or time acquisition from OPT-LS receiver
consists to find, for each useful path i0, the integer l, noted

l̂o, which minimizes the LS error, ε̂WL(lTe,K), between the
known samples sv(nT) = rv(0)an (0 ≤ n ≤ K − 1) and their
LS estimation from a WL spatial filtering of the data xv((l/q+
n)T) (0 ≤ n ≤ K − 1). The LS error, ε̂WL(lTe,K), is defined
by

ε̂WL
(
lTe,K

)
� 1

K

K−1∑

n=0

∣∣∣∣sv(nT)− ̂̃w
(
lTe
)†

x̃v

((
l

q
+ n

)
T
)∣∣∣∣

2

,

(4)

where x̃v((l/q + n)T) � [xv((l/q + n)T)T, xv((l/q + n)T)†]T

and where ̂̃w(lTe) � [ŵ1(lTe)T, ŵ2(lTe)T]T is the (2N × 1)
WL spatial filter which minimizes the criterion (4). This filter
is defined by

̂̃w
(
lTe
) = [ŵ1

(
lTe
)T

, ŵ1
(
lTe
)†]T = R̂x̃

(
lTe
)−1

r̂x̃s
(
lTe
)
,

(5)

where the vector r̂x̃s(lTe) and the matrix R̂x̃(lTe) are given by

r̂x̃s
(
lTe
)

� 1
K

K−1∑

n=0

x̃v

((
l

q
+ n

)
T
)
sv(nT)∗, (6)

R̂x̃
(
lTe
)

� 1
K

K−1∑

n=0

x̃v

((
l

q
+ n

)
T
)

x̃v

((
l

q
+ n

)
T
)†

. (7)

Using (5) to (7) into (4), we obtain a new expression of
ε̂WL(lTe,K) given by

ε̂WL
(
lTe,K

) =
[

1
K

K−1∑

n=0

∣∣sv(nT)
∣∣2
]
[
1− ĈOPT-LS

(
lTe,K

)]

= πs
[
1− ĈOPT-LS

(
lTe,K

)]
,

(8)
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where πs � r(0)2 is the input power of the useful BPSK
samples, sv(nT), and ĈOPT-LS(lTe,K) such that 0 ≤ ĈOPT-LS×
(lTe,K) ≤ 1 is given by

ĈOPT-LS
(
lTe,K

)
�
(

1
πs

)
r̂x̃s
(
lTe
)†
R̂x̃
(
lTe
)−1

r̂x̃s
(
lTe
)
. (9)

We deduce from (8) that for each useful path i0, the parame-

ter l̂o locally maximizes the sufficient statistic ĈOPT-LS(lTe,K)
given by (9). As a consequence, the estimated sampled de-
lays of all the useful paths correspond to the sample times lTe

for which ĈOPT-LS(lTe,K) is locally maximum. If the number,
M, of useful paths is a priori known, their estimated sam-
pled delays correspond to the positions of the M maxima
of ĈOPT-LS(lTe,K). However, if M is not known a priori, a
threshold has to be introduced to limit the false alarm rate
(FAR). In these conditions, the estimated sampled delays of
the useful paths correspond to the sample times lTe for which
ĈOPT-LS(lTe,K) is locally maximum and above the threshold.
The approach considered in this Section 3.1 does not require
any assumption about the propagation channels, the interfer-
ences and the training sequence. Thus, in practice, OPT-LS
receiver may be used for synchronization or time acquisition
in the presence of arbitrary propagation channels and inter-
ferences. Note that the receiver presented in [8] for the same
problem, called conventional LS array receiver and noted
CONV-LS receiver in the following, is deduced from a sim-
ilar LS approach but takes into account only a linear spatial
filtering of the data, xv((l/q+n)T) (0 ≤ n ≤ K−1), instead of
a WL one. It gives rise to the conventional sufficient statistic
ĈCONV-LS(lTe,K) such that 0 ≤ ĈCONV-LS(lTe,K) ≤ 1, defined
by

ĈCONV-LS
(
lTe,K

)
�
(

1
πs

)
r̂xs
(
lTe
)†
R̂x
(
lTe
)−1

r̂xs
(
lTe
)
,

(10)

where the vector r̂xs(lTe) and the matrix R̂x(lTe) are defined
by (6) and (7), respectively but where the vector x̃v((l/q +
n)T) is replaced by xv((l/q+n)T). This conventional receiver
is the heart of the interference analyzer described in [32] for
the GSM network monitoring.

3.2. Interpretation of OPT-LS and CONV-LS
receivers in terms of GLRT-based detectors

3.2.1. Theoretical assumptions

In this section, we present the assumptions under which
OPT-LS and CONV-LS receivers for l = lo also correspond
to the GLRT-based receiver for the detection of the known
samples sv(nT) = rv(0)an (0 ≤ n ≤ K − 1) from the
observation vectors xv((lo/q + n)T) (0 ≤ n ≤ K − 1).
Note that these assumptions are theoretical, are not neces-
sarily verified in practical situations and are absolutely not
required in practice to successfully implement the conven-
tional and optimal receivers defined by (10) and (9), respec-
tively. However, these assumptions allow in particular to get
more insights into the situations for which (9) and (10) be-
come optimal from a GLRT-based detection point of view.
Besides, they allow to show off the optimality of (9) and
(10) in the presence of SO noncircular and circular total

noise, respectively. Defining the vector b̃Tv((l/q + n)T) by

b̃Tv((l/q+n)T) � [bTv((l/q+n)T)T, bTv((l/q+n)T)†]T, these
theoretical assumptions correspond to the following.

(A1) The samples b̃Tv((lo/q + n)T), 0 ≤ n ≤ K − 1 are un-
correlated to each other.

(A2) The matrices R((lo/q+n)T) and C((lo/q+n)T) do not
depend on the symbol indice n.

(A3) The matrices R((lo/q + n)T), C((lo/q + n)T) and the
vector hs are unknown.

(A4) The samples bTv((lo/q + n)T), 0 ≤ n ≤ K − 1, are
Gaussian.

(A5) The samples bTv((lo/q + n)T), 0 ≤ n ≤ K − 1, are SO
noncircular.

(A6) The samples bTv((lo/q + n)T) and sv(mT), 0 ≤ n, m ≤
K − 1, are statistically independent.

(A7) The useful propagation channel has no delay spread
(bTv((lo/q + n)T)′ = bTv((lo/q + n)T)).

Note that contrary to [8, 10], no assumption is made about
the correlation properties of the training sequence. (A1)
would only be true for interference propagation channels
with no delay spread as soon as the rectilinear interferences
would be generated by the network itself (internal BPSK in-
terferences) and would be synchronous with the useful signal
to verify the Nyquist criterion. (A2) would be true for cyclo-
stationary interferences with symbol period T , as it would be
the case for internal BPSK interferences. (A4) could not be
verified in the presence of rectilinear interferences and would
be a false assumption allowing to only exploit the SO statis-
tics of the observations from a GLRT approach. (A5) would
be true in the presence of rectilinear interferences in particu-
lar but is generally not exploited in detection problems. (A6)
would always be verified due to the deterministic character
of sv(mT) (0 ≤ m ≤ K − 1) jointly with the zero-mean and
random character of the total noise. Finally, (A7) would be
valid for some particular applications.

3.2.2. GLRT-based receiver for detection

To compute the GLRT-based receiver for detection, we con-
sider the optimal delay loTe and the detection problem with
two hypotheses H0 and H1, where H0 and H1 correspond
to the presence of total noise only and signal plus total noise
into the observation vector xv((lo/q + n)T), respectively. Un-
der these two hypotheses, using (2), (3), and (A7), the vector
xv((lo/q + n)T) can be written as

H1 : xv

((
lo
q

+ n
)
T
)
≈ μssv(nT)hs + bTv

((
lo
q

+ n
)
T
)

,

(11a)

H0 : xv

((
lo
q

+ n
)
T
)
≈ bTv

((
lo
q

+ n
)
T
)
. (11b)

According to the Neyman-Pearson theory of detection [31]
and using (A6), the optimal receiver for detection of sam-
ples sv(nT) from xv((lo/q + n)T) over the training sequence
duration is the likelihood ratio (LR) receiver, which consists
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to compare to a threshold the function LR(loTe,K) defined
by

LR
(
loTe,K

)
� p

[
xv
((
lo/q + n

)
T
)
, 0 ≤ n ≤ K − 1, /H1

]

p
[

xv
((
lo/q + n

)
T
)
, 0 ≤ n ≤ K − 1, /H0

] .

(12)

In (12), p[xv((lo/q + n)T), 0 ≤ n ≤ K − 1, /Hi] (i = 0, 1)
is the conditional probability density of [xv(loTe), xv(loTe +
T), . . . , xv(loTe + (K −1)T)]T under Hi. Using (11) into (12),
and recalling that sv(nT) is a deterministic quantity, we get

LR
(
loTe,K

)
� p[A′]

p[B′]
, (13)

(whereA′ = {bTv((lo/q+n)T) = xv((lo/q+n)T)−μssv(nT)hs,
0 ≤ n ≤ K−1}, and B′ = {bTv((lo/q+n)T) = xv((lo/q+n)T),
0 ≤ n ≤ K − 1}).

Using (A1), (A2), and (A4), expression (13) takes the
form

LR
(
loTe,K

) =
∏K−1

n=0 p[S′n]
∏K−1

n=0 p[D′n]
, (14)

(S′n={bTv((lo/q+n)T)=xv((lo/q+n)T)−μssv(nT)hs/sv(nT),
μshs,R(loTe),C(loTe)}, D′n = {bTv((lo/q + n)T) = xv((lo/q +
n)T)/R(loTe),C(loTe)}).

From (A2), (A4), and (A5), the probability density of

bTv((lo/q+n)T) becomes a function of b̃Tv((lo/q+n)T) given
by [33, 34]

p
[

b̃Tv

((
lo
q

+ n
)
T
)]

� π−N det
[
Rb̃

(
loTe

)]−1/2

× exp
[
−
(

1
2

)
b̃Tv

((
lo
q

+ n
)
T
)†

× Rb̃

(
loTe

)−1
b̃Tv

((
lo
q

+ n
)
T
)]

.

(15)

Using (15) into (14), we obtain

LR
(
loTe,K

) =
∏K−1

n=0 p[E′n]
∏K−1

n=0 p[F′n]
, (16)

(E′n={b̃Tv((lo/q+n)T)= x̃v((lo/q+n)T)−μssv(nT)h̃s/sv(nT),

μsh̃s,Rb̃(loTe)}, F′n = {b̃Tv((lo/q + n)T) = x̃v((lo/q + n)T)/

Rb̃(loTe)}), and h̃s � [hT
s , hs

†]T and where Rb̃(loTe) is defined
by

Rb̃

(
loTe

)
� E

[

b̃Tv

((
lo
q

+ n
)
T
)

b̃Tv

((
lo
q

+ n
)
T
)†]

=
⎛
⎝

R
(
loTe

)
C
(
loTe

)

C
(
loTe

)∗
R
(
loTe

)∗

⎞
⎠ .

(17)

Note that matrix Rb̃(loTe) contains the information about
the potential noncircularity of the total noise through the
matrix C(loTe), which is not zero for SO noncircular total
noise. As, from (A3), μsh̃s and Rb̃(loTe) are assumed to be
unknown, they have to be replaced in (16) by their maxi-
mum likelihood (ML) estimates, giving rise to a GLRT ap-
proach. In these conditions, it is shown in the appendix that
a sufficient statistic for the optimal detection, from a GLRT
point of view, of sv(nT) (0 ≤ n ≤ K − 1) from the obser-
vation vectors xv((lo/q + n)T) (0 ≤ n ≤ K − 1), is, under
the assumptions (A1) to (A7), given by ĈOPT-LS(loTe,K) de-
fined by (9). We deduce from the previous results that, under
the theoretical assumptions (A1) to (A7), not necessarily ver-
ified and not required in practice, the optimal synchroniza-
tion and time acquisition of the useful BPSK signal from the
GLRT approach consists to compute, for each sample time
lTe, the quantity ĈOPT-LS(lTe,K), defined by (9), and to com-
pare it to a threshold. The sampled delays of the useful paths
thus correspond to the sample times lTe which generate lo-
cal maximum values of ĈOPT-LS(lTe,K) among those which
are over the threshold. Thus theoretical assumptions (A1)
to (A7) allow to give conditions of optimality of the OPT-
LS receiver, in the GLRT sense, among which we find the
condition of SO noncircularity of the total noise, valid for
rectilinear interferences in particular. Nevertheless, when at
least one of the assumptions (A1) to (A7) is not verified, as
it may be the case for most practical situations, receiver (9)
is no longer optimal in terms of detection but this does not
mean that it does not work in practice. Note finally that a
similar GLRT approach, but made under the theoretical as-
sumptions (A1bis), (A2), (A3), (A4), (A5bis), (A6) and (A7),
where (A1bis) and (A5bis) are defined by

(A1bis) the samples bTv((lo/q + n)T), 0 ≤ n ≤ K − 1, are
uncorrelated to each other,

(A5bis) the samples bTv((lo/q + n)T), 0 ≤ n ≤ K − 1, are SO
circular,

is reported in [10] and gives rise to the sufficient statistic
ĈCONV-LS(loTe,K) defined by (10). This shows that (10) is di-
rectly related to a (false) circular total noise assumption and
becomes sub-optimal for noncircular total noise.

3.3. Enlightening interpretation

Using (5) into (9) and the fact that sv(nT) = sv(nT)∗ for
BPSK useful signals, it is easy to verify that, whatever the
propagation channel is, the statistic ĈOPT-LS(lTe,K) defined
by (9), which is a real quantity, takes the form

ĈOPT-LS
(
lTe,K

) =
(

1
Kπs

) K−1∑

n=0

yvWL

((
l

q
+ n

)
T
)
sv(nT),

(18)

where yvWL((l/q + n)T) � ̂̃w(lTe)†x̃v((l/q + n)T) =
2 Re[ŵ1(lTe)†xv((l/q + n)T)] is also a real quantity. Expres-
sion (18) shows that the sufficient statistic ĈOPT-LS(lTe,K)
corresponds, to within a normalization factor, to the result
of the correlation between the training sequence, sv(nT), and
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the output, yvWL((l/q + n)T), of the WL spatial filter ̂̃w(lTe)
(5) as it is illustrated in Figure 1.

The filter ̂̃w(lTe) is an estimate of the WL filter w̃(lTe)
which minimizes the time-averaged mean square error
(MSE), εWL(lTe, w̃), over K observation samples, between
sv(nT) and the real output w̃†x̃v((l/q + n)T) = 2 Re×
[w†xv((l/q + n)T)], defined by

εWL
(
lTe, w̃

)
� 1

K

K−1∑

n=0

E
[∣∣∣∣sv(nT)− w̃†x̃v

((
l

q
+ n

)
T
)∣∣∣∣

2]
,

(19)

where w̃ � [wT, w†]T. The filter w̃(lTe) is thus defined
by w̃(lTe) � Rx̃,av(lTe)−1rx̃s,av(lTe) = [w1(lTe)T, w1(lTe)†]T,
where rx̃s,av(lTe) and Rx̃,av(lTe) are defined by

rx̃s,av
(
lTe
)

� 1
K

K−1∑

n=0

E
[

x̃v

((
l

q
+ n

)
T
)
sv(nT)∗

]
, (20)

Rx̃,av
(
lTe
)

� 1
K

K−1∑

n=0

E
[

x̃v

((
l

q
+ n

)
T
)

x̃v

((
l

q
+ n

)
T
)†]

.

(21)

As a consequence, ĈOPT-LS(lTe,K) is, to within a normaliza-
tion factor, an estimate of the expected value of the correla-
tion between the training samples sv(nT) and the outputs of
w̃(lTe), defined by

COPT-LS
(
lTe,K

)

=
(

1
Kπs

) K−1∑

n=0

E
[

w̃
(
lTe
)†

x̃v

((
l

q
+ n

)
T
)
sv(nT)

]

= rx̃s,av
(
lTe
)†
Rx̃,av

(
lTe
)−1

rx̃s,av
(
lTe
)

πs
.

(22)

Considering the detection or time acquisition of the useful

path i0, as long as b̃Tv((l/q + n)T)′ (in (3)) remains un-
correlated with sv(nT), which is in particular the case for a
useful propagation channel with no delay spread, the vector
rx̃s,av(lTe) can be written as

rx̃s,av
(
lTe
) = 1

K

K−1∑

n=0

μsE
[
sv
(((

l − lo
)
Te
)

+ nT
)
sv(nT)∗

]
h̃s.

(23)

This vector is collinear to h̃s and its norm is a function of
(l − lo). In this context, as long as l remains far from lo,
rx̃s,av(lTe), and thus w̃(lTe), remain close to zero, which gen-
erates values of COPT-LS(lTe,K), and thus of ĈOPT-LS(lTe,K),
also close to zero to within the estimation noise due to the
finite length of the training sequence for the latter. As l gets
close to lo, the norm of rx̃s,av(lTe), and thus COPT-LS(lTe,K),
increases and reaches its maximum value for l = lo. In this
case, the useful part of the observation vector x̃v((lo/q+n)T)
and the training sequence sv(nT) are in phase and the filter

w̃(loTe) corresponds to the WL spatial matched filter (SMF)
introduced in [17] and defined by

w̃
(
loTe

) = Rx̃,av
(
loTe

)−1
rx̃s,av

(
loTe

)

= [Rb̃,av

(
loTe

)′
+ μs

2πsh̃sh̃†s
]−1

rx̃s,av
(
loTe

)

= [w1
(
loTe

)T
, w1

(
loTe

)†]T

=
[

μsπs
(
1 + μs2πsh̃

†
s Rb̃,av

(
loTe

)′−1
h̃s

]
Rb̃,av

(
loTe

)′−1
h̃s.

(24)

In (24), Rb̃,av(loTe)′ is defined by (21) with b̃v((lo/q + n)T)′

instead of x̃v((l/q + n)T). The WL SMF is the WL spa-
tial filter which maximizes the output signal-to-interference-
plus-noise ratio (SINR) [17]. Using the previous results,
COPT-LS(loTe), defined by (22) with l = lo, takes the form

COPT-LS
(
loTe

) = SINRy[OPT-LS]

1 + SINRy[OPT-LS]
= μsw̃

(
loTe

)†
h̃s.

(25)

In (25), SINRy[OPT-LS] is the SINR at the output of the WL
SMF, w̃(loTe), defined by the ratio between the time-averaged
powers, over the training sequence duration, of the consid-
ered useful path i0 and of the total noise plus other paths at
the output of w̃(loTe). This SINR can be written as

SINRy[OPT-LS] = μs
2πsh̃†s Rb̃,av

(
loTe

)′−1
h̃s. (26)

A similar reasoning can be done for the CONV-LS receiver

by replacing x̃v((l/q + n)T) and the WL filter ̂̃w(lTe) by
xv((l/q+n)T) and the linear filter ŵ(lTe) = R̂x(lTe)−1r̂xs(lTe),
respectively. Structure of CONV-LS receiver is then depicted
at Figure 2 where yvL((l/q + n)T) � ŵ(lTe)†xv((l/q + n)T),
which is a complex quantity, replaces yvWL((l/q + n)T) ap-
pearing in Figure 1. For l = lo and as long as bTv((l/q+n)T)′

remains uncorrelated with sv(nT), ŵ(lTe) becomes an esti-
mate of the well-known linear SMF, w(loTe), defined by

w
(
loTe

)
� Rx,av

(
loTe

)−1
rxs,av

(
loTe

)

=[Rav
(
loTe

)′
+ μs

2πshshs
†]−1rxs,av

(
loTe

)

=
[

μsπs
(
1+μs2πshs

†Rav
(
loTe

)′−1
hs
)

]
Rav
(
loTe

)′−1
hs.

(27)

In (27), Rx,av(loTe) and Rav(loTe)′ are defined by (21)
with xv((lo/q + n)T) and bv((lo/q + n)T)′ instead of
x̃v((l/q + n)T), respectively, whereas rxs,av(loTe) is defined
by (20) with xv((lo/q + n)T) instead of x̃v((l/q + n)T).
The SMF is the linear spatial filter which maximizes the
output signal-to-interference-plus-noise ratio (SINR) [17]
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x̃v((l/q + n)T)
̂̃w(lTe)

yvWL((l/q + n)T)

∑ ĈOPT-LS(lTe ,K) ≷ βo

sv(nT)
̂̃w(lTe) =

R̂x̃(lTe)−1 r̂x̃s(lTe)

Figure 1: Functional scheme of the OPT-LS receiver.

xv((l/q + n)T)
ŵ(lTe)

yvL((l/q + n)T)

∑ ĈCONV-LS(lTe ,K) ≷ βc

sv(nT)
ŵ(lTe) =

R̂x(lTe)−1 r̂xs(lTe)

Figure 2: Functional scheme of the CONV-LS receiver.

and CCONV-LS(loTe), defined by (22) with w(loTe) instead of
w̃(lTe), takes the form

CCONV-LS
(
loTe

) = rxs,av
(
loTe

)†
Rx,av

(
loTe

)−1
rxs,av

(
loTe

)

πs

= SINRy[CONV-LS]

1 + SINRy[CONV-LS]
= μsw

(
loTe

)†
hs.

(28)

In (28), SINRy[CONV-LS] is the SINR at the output of the
SMF, w(loTe), given by [17]

SINRy[CONV-LS] = μs
2πshs

†Rav
(
loTe

)′−1
hs. (29)

Expressions (25) and (28) show that COPT-LS(loTe) and
CCONV-LS(loTe) are increasing functions of SINRy[OPT-LS]
and SINRy[CONV-LS], respectively, approaching unity for
high values of the latter quantities. Note that for a circu-
lar total noise, SINRy[OPT-LS] = 2SINRy[CONV-LS]. In
the presence of rectilinear interferences, the WL SMF (24)
is shown in [17] to correspond to a classical SMF but for
a virtual array of 2N sensors with phase diversity in addi-
tion to space, angular, and/or polarization diversities of the
true array of N sensors. The SMF (27) discriminates the use-
ful signal and interferences by the direction of arrival (DOA)
and/or polarization (if N > 1) and is able to reject up to N−1
interferences from an array of N sensors. The WL SMF (24)
discriminates the sources by DOA, polarization (if N > 1)
and phase, and is thus able to reject up to 2N − 1 rectilin-
ear interferences from an array of N sensors [17]. It allows in
particular the rejection of one rectilinear interference from

one antenna, hence the single antenna interference cancella-
tion (SAIC) concept described in detail in [17]. In these con-
ditions, the correlation operation between the training se-

quence, sv(nT), and the output, yvWL((lo/q+n)T), of ̂̃w(loTe),
allows the generation of a correlation maxima from a lim-
ited number of useful symbols K , whose minimum value has
to increase when the asymptotic output SINR decreases (see
next section).

3.4. Performance

As it has been discussed in Sections 2.3 and 3, the synchro-
nization problem can be seen either as an estimation or as a
detection problem. Moreover, when the number M of use-
ful paths is not known a priori, a threshold is required to
limit the FAR. For this reason, for each useful path i0, per-
formances of OPT-LS and CONV-LS receivers are computed
in this paper in terms of detection probability of the optimal
delay loTe for a given FAR. The FAR corresponds to the prob-
ability that ĈOPT-LS(loTe,K) (resp., ĈCONV-LS(loTe,K)) gets
beyond the thresholds, βo (resp., βc), under H0, where, for
a given FAR, βo and βc are functions of N , K , the num-
ber and the level of rectilinear interferences into bTv((lo/q +
n)T). Moreover, the probability of detection of the delay
loTe, noted Pd, is the probability that ĈOPT-LS(loTe,K) (resp.,
ĈCONV-LS(loTe,K)) gets beyond the thresholds, βo (resp., βc).
The analytical computation of Pd for a given FAR has been
done in [8, 10] for the CONV-LS receiver but under the
assumption of orthogonal training sequences and Gaussian
and circular total noise. However, in the present paper, the
training sequences are not assumed to be orthogonal and the
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total noise is not Gaussian and not circular in the presence
of rectilinear interferences. For these reasons, the results of
[8, 10] are no longer valid for rectilinear sources whereas
the analytical computation of the true Pd for OPT-LS and
CONV-LS receivers seems to be a difficult task which will be
investigated elsewhere. Nevertheless, for not too small values
of K , we deduce from the central limit theorem that the con-
tribution of the total noise in (18) is not far from being Gaus-
sian. This means that the detection probability Pd is not far

from being related to the SINR, noted ̂SINRc[OPT-LS](K), at
the output of the correlation between the training sequence
sv(nT) and the output yvWL((lo/q + n)T). Using (3) into (18)
for l = lo, we obtain

ĈOPT-LS
(
loTe,K

)

= μs ̂̃w
(
loTe

)†
h̃s

+
(

1
Kπs

)
̂̃w
(
loTe

)† K−1∑

n=0

b̃Tv

((
lo
q

+ n
)
T
)′
sv(nT).

(30)

To go further in the computation of the OPT-LS receiver per-
formance, we assume that assumptions (A1ter), (A2bis), and
(A6bis) are verified, where these assumptions are defined by:

(A1ter) the samples b̃Tv((lo/q + n)T)′, 0 ≤ n ≤ K − 1, are
uncorrelated to each other,

(A2bis) the matrices R((lo/q + n)T)′ and C((lo/q + n)T)′ do
not depend on the symbol indice n,

(A6bis) the samples bTv((lo/q + n)T)′ and sv(mT), 0 ≤ n,
m ≤ K − 1, are statistically independent.

From these assumptions and using the fact that the filter
̂̃w(loTe) is not random over the training sequence duration
(although it is random over several training sequences dura-

tions), the ̂SINRc[OPT-LS](K), defined by the ratio between
the expected value of the square modulus of the two terms of
the right-hand side of expression (30), is given by

̂SINRc[OPT-LS](K) = K ̂SINRy[OPT-LS](K). (31)

In (31), ̂SINRy[OPT-LS](K) is the SINR at the output,

yvWL((lo/q + n)T), of the WL filter ̂̃w(loTe), given, under
(A2bis), by

̂SINRy[OPT-LS](K) = μs2πs
∣∣ ̂̃w
(
loTe

)†
h̃s

∣∣2

̂̃w
(
loTe

)†
Rb̃

(
loTe

)′ ̂̃w
(
loTe

) , (32)

where Rb̃(loTe)′ is defined by (17) with b̃Tv((lo/q + n)T)′

instead of b̃Tv((lo/q + n)T). A similar reasoning can be
done for the CONV-LS receiver under the same assump-
tions, by replacing the real output yvWL((lo/q + n)T) by the
real quantity zvL((lo/q + n)T) � Re[yvL((lo/q + n)T)] �
Re[ŵ(loTe)†xv((lo/q + n)T)]. Noting ̂SINRc[CONV-LS](K),
the SINR at the output of the correlation between the train-
ing sequence sv(nT) and zvL((lo/q + n)T), we obtain

̂SINRc[CONV-LS](K) = K ̂SINRz[CONV-LS](K), (33)

where ̂SINRz[CONV-LS](K) is the SINR in the output
zvL((lo/q + n)T), given, under (A2bis), by

̂SINRz[CONV-LS](K)

= 2μs2πs
∣∣Re

[
ŵ
(
loTe

)†
hs
]∣∣2

ŵ
(
loTe

)†
R
(
loTe

)′
ŵ
(
loTe

)
+Re

[
ŵ
(
loTe

)†
C
(
loTe

)′
ŵ
(
loTe

)∗] .

(34)

Expressions (31) and (33) show that ̂SINRc[OPT-LS](K)

and ̂SINRc[CONV-LS](K), and thus the detection perfor-
mance of the associated receivers, increase with the number
of symbols, K , of the training sequence and with the SINR,
̂SINRy[OPT-LS](K) and ̂SINRz[CONV-LS](K), in the real

part of the output of the filters ̂̃w(loTe) and ŵ(loTe), respec-
tively.

Under (A2bis), as the number of symbols, K , of the

training sequence becomes infinite, ̂SINRy[OPT-LS](K) and
̂SINRz[CONV-LS](K) tend toward the quantities SINRy×
[OPT-LS] � limK→∞ ̂SINRy[OPT-LS](K), defined by (26),

and SINRz[CONV-LS] � limK→∞ ̂SINRz[CONV-LS](K),
defined by

SINRz[CONV-LS] =
2μs2πshs

†R
(
loTe

)′−1
hs

1+Re
[

hs
†R
(
loTe

)′−1
C
(
loTe

)′R
(
loTe

)′−1∗
h∗s /hs

†R
(
loTe

)′−1
hs
]

(35)

respectively. Note that SINRz[CONV-LS] corresponds to
2SINRy[CONV-LS] and to SINRy[OPT-LS] for SO circu-

lar vectors bTv((lo/q + n)T)′(C(loTe)′ = 0). Noting ̂SINRy×
[CONV-LS](K), the SINR at the output, yvL((lo/q + n)T),
of the filter ŵ(loTe), it has been shown in [35], under
an assumption of stationary and Gaussian observations,
that for a given value of SINRy[CONV-LS], it exists a
number Kcy , increasing with 1/SINRy[CONV-LS] such that
̂SINRy[CONV-LS](K) ≈ SINRy[CONV-LS] for K > Kcy .
Results of Table 1, built from empirical computer simula-
tions, show that a similar result seems to also exist in the
presence of rectilinear interferences and seems to also hold

for ̂SINRz[CONV-LS](K) and ̂SINRy[OPT-LS](K). In other
words, it seems to exist numbers Koy and Kcz, increasing
with 1/SINRy[OPT-LS] and 1/SINRz[CONV-LS], respec-
tively, such that

̂SINRc[CONV-LS](K) ≈ KSINRz[CONV-LS] for K > Kcz,
(36)

̂SINRc[OPT-LS](K) ≈ KSINRy[OPT-LS] for K > Koy ,
(37)

which allows a simple description of the approximated per-
formance of both the CONV-LS and OPT-LS receivers from
K and expressions (35) and (26), respectively, provided that
K > Kcz and K > Koy , respectively. Some insights about the
values of Kcy , Kcz and Koy are given in Section 4.
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4. PERFORMANCE OF CONV-LS ANDOPT-LS
RECEIVERS IN THE PRESENCE OF A BPSK
SIGNAL ANDONE RECTILINEAR
INTERFERENCE

4.1. Total noisemodel

To quantify the performance of the previous receivers for the
detection of the useful path i0, we assume that the vector
bTv(kTe)′ is composed of one rectilinear interference, with
the same waveform as the useful path i0, and a background
noise. This interference, which is assumed to be uncorrelated
with the useful path i0, may be generated by the network itself
or corresponds to a decorrelated useful path different from i0.
Under this assumption, the vector bTv(kTe)′ can be written
as

bTv
(
kTe

)′ ≈ j1v
(
kTe

)
h1 + bv

(
kTe

)
, (38)

where bv(kTe) is the sampled background noise vector, as-
sumed zero-mean, stationary, Gaussian, SO circular and spa-
tially white, h1 is the channel impulse response vector of
the interference and j1v(kTe) is the sampled complex enve-
lope of the interference after the matched filtering opera-
tion. Moreover, the matrices R(kTe)′ and C(kTe)′, defined
in Section 2.2, can be written as

R
(
kTe

)′ ≈ π1
(
kTe

)
h1h†1 + η2I ,

C
(
kTe

)′ ≈ π1
(
kTe

)
h1hT

1 .
(39)

In the previous expressions, η2 is the mean power of the
background noise per sensor, I is the (N × N) identity ma-
trix, and π1(kTe) � E[| j1v(kTe)|2] is the power of the in-
terference at the output of the filter v(−t)∗ received by an
omnidirectional sensor for a free space propagation. Finally,
we define the spatial correlation coefficient between the in-
terference and the useful signal, α1s, such that 0 ≤ |α1s| ≤ 1,
by

α1s � h†1 hs
(

h†1 h1
)1/2(

hs
†hs
)1/2 �

∣∣α1s
∣∣e− jψ , (40)

where ψ is the phase of hs
†h1.

4.2. Output SINR computation

The computation of the quantities SINRz[CONV-LS] and
SINRy[OPT-LS] in the presence of one rectilinear interfer-
ence have been done in [17] for demodulation purposes. For
this reason, we just recall the main results of [17] to show off
both the interests of OPT-LS receiver and the limitations of
CONV-LS receiver in the presence of one rectilinear interfer-
ence.

When there is no spatial discrimination between the
sources, that is, when |α1s| = 1, which occurs in particu-
lar for a mono-sensor reception (N = 1), SINRz[CONV-LS]

Table 1:Kcy ,Kcz, andKoz as a function ofN and SINRy[CONV-LS],
SINRz[CONV-LS], and SINRz[OPT-LS], respectively, |RMS[ρ]| =
1 dB, BPSK signals.

N = 1 N > 1

Kcy 1 5N − 6 + (4N − 5.8)/SINRcy

Kcz 2 + 63.3/SINRcz 5N − 6 + (8.2N − 1)SINRcz

Koz 10N − 6 + (7.8N − 4.8)/SINRoz

and SINRy[OPT-LS] can be written, under the assumptions
of the previous sections, as

SINRz[CONV-LS] = 2εs
1 + 2ε1 cos2 ψ

;
∣∣α1s

∣∣ = 1,

SINRy[OPT-LS] = 2εs

[
1− 2ε1

1 + 2ε1
cos2 ψ

]
;

∣∣α1s
∣∣ = 1,

(41)

where εs � (hs
†hs)μs2πs/η2 and ε1 � (h†1 h1)π1(loTe)/η2.

When ψ = π/2+kπ, that is, when the useful path i0 and inter-
ference are in quadrature, the previous expressions are equiv-
alent, maximal, and equal to 2εs, which proves a complete
interference rejection both in the real part of the output of
the SMF, w(loTe), and at the output of the WL SMF, w̃(loTe).
Otherwise, as ε1 becomes infinitely large, SINRz[CONV-LS]
decreases to zero, which proves the absence of interference re-
jection by the SMF, and thus, from (36), the difficulty to de-
tect the useful path i0 in the presence of a strong interference
from the CONV-LS receiver for small values of K . However,
for large values of ε1, SINRy[OPT-LS] can be approximated
by

SINRy[OPT-LS] ≈ 2εs
[
1− cos2 ψ

]
;

ε1 	 1,
∣∣α1s

∣∣ = 1, ψ /= 0 + kπ
(42)

which becomes independent of ε1, which is solely controlled
by quantities 2εs and cos2 ψ and which proves an interfer-
ence rejection by the WL SMF, depending on the parameter
ψ, hence the SAIC capability as long as ψ /= 0 + kπ, that is, as
long as there is a phase discrimination between useful path
i0 and interference. This proves, from (37), the potential ca-
pability of the OPT-LS receiver to detect the useful path i0 in
the presence of a strong rectilinear interference even for small
values of K and despite the fact that |α1s| = 1.

When there is a spatial discrimination between useful sig-
nal and interference (|α1s| /= 1), which occurs in most situa-
tions for N > 1, as ε1 becomes infinitely large, we obtain

SINRz[CONV-LS] ≈ 2εs
[
1− ∣∣α1s

∣∣2]
; ε1 	 1,

∣∣α1s
∣∣ /= 1,

SINRy[OPT-LS] ≈ 2εs
[
1− ∣∣α1s

∣∣2
cos2 ψ

]
;

ε1 	 1,
∣∣α1s

∣∣ /= 1.
(43)

These expressions are maximal, equal to 2εs and the interfer-
ence is completely rejected in both cases when |α1s| = 0, that
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is, when the propagation channel vectors of the interference
and the useful path i0 are orthogonal. Otherwise, these ex-
pressions remain independent of ε1 and are solely controlled
by 2εs, by the square modulus of the spatial correlation co-
efficient between useful i0 and interference and (for OPT-LS
receiver) by the phase difference between the sources. These
results prove an interference rejection by both the SMF and
the WL SMF, but while this rejection is based on a spatial dis-
crimination only in the first case, it is based on both a spatial
and a phase discrimination in the second case. This allows
in particular to reject an interference having the same direc-
tion of arrival and the same polarization as the useful path
i0, which finally allows better synchronization performance
in the presence of rectilinear interferences from the OPT-LS
receiver.

4.3. Computer simulations

We first give some insights into the values of Kcy , Kcz,
and Koy introduced in Section 3.4. Then, we illustrate some

variations of the sufficient statistics ĈCONV-LS(lTe,K) and
ĈOPT-LS(lTe,K) and finally, we compute and illustrate the
variations of the probability of nondetection of the optimal
delay, loTe, by the CONV-LS and OPT-LS receivers, for a
given FAR.

4.3.1. Some insights into the values ofKcy ,Kcz , andKoy

To give some insights into the values of Kcy , Kcz and Koy , we
introduce the quantities

ρcy(K) �
̂SINRy[CONV-LS](K)

SINRy[CONV-LS]
,

ρcz(K) �
̂SINRz[CONV-LS](K)

SINRz[CONV-LS]
,

ρoy(K) �
̂SINRy[OPT-LS](K)

SINRy[OPT-LS]
.

(44)

Note that 0 ≤ ρcz(K) ≤ 1 for circular vectors bTv(kTe)′ only,
whereas 0 ≤ ρcy(K) ≤ 1 and 0 ≤ ρoy(K) ≤ 1 in all cases.
For given scenario of useful signal and total noise, for a given
array of N sensors and a given number of symbols, K , of
the training sequence, we compute M independent realiza-

tions of the filters ŵ(loTe), and ̂̃w(loTe) and then M inde-
pendent realizations of the quantities ̂SINRy[CONV-LS](K),
̂SINRz[CONV-LS](K) and ̂SINRy[OPT-LS](K). From these
M independent realizations and for a given ratio ρvu(K) (v =
c or o, u = y or z) we compute an estimate, �RMS[ρvu(K)], of
the root mean square (RMS) value of ρvu(K), RMS[ρvu(K)],
defined by

�RMS
[
ρvu(K)

]
�
[

1
M

M∑

m=1

ρvu,m(K)2

]1/2

, (45)

where ρvu,m(K) is the realization m of ρvu(K). Consider-
ing that Kcy , Kcz, and Koy correspond to the number of

training symbols K above which |10 log10(�RMS[ρcy(K)])|,
|10 log10(�RMS[ρcz(K)])|, and |10 log10(�RMS[ρoy(K)])|, esti-
mated from M = 100 000 realizations, are below 1 dB, re-
spectively, numerous simulations allow to empirically pre-
dict, for BPSK signals, analytical expressions of Kcy , Kcz, and
Koy as a function of N and the associated asymptotic output
SINR. These expressions are summarized in Table 1 and have
the same structure as those introduced by Monzingo and
Miller [35] for Gaussian observations. Note that when the
number of interferences P becomes such that P ≥ N , expres-
sions related to Kcz in Table 1 may be no longer valid. Oth-
erwise, note that for values of SINRy[CONV-LS](SINRcy),
SINRz[CONV-LS](SINRcz), and SINRy[OPT-LS](SINRoy)
equal to 10 dB, Kcy ≈ 5.4N − 6.6 (N > 1), Kcz ≈ 5.8N − 6.1
(N > 1) and 8.33(N = 1) and Koz ≈ 10.8N − 6.5. These
results show off in particular that (36) and (37) are approxi-
mately valid from a very limited number of training symbols
for small values of N . Besides, for SINRz[OPT-LS] = 0 dB,
Koz ≈ 17.8N − 10.8, which gives Koz ≈ 7 for N = 1, Koz ≈ 25
for N = 2 and which remains very weak values.

4.3.2. Variations of ĈCONV-LS(lTe,K) and ĈOPT-LS(lTe,K)

To illustrate the variations of ĈCONV-LS(lTe,K) and ĈOPT-LS ×
(lTe,K), we consider a mono-sensor reception (N = 1) and
we assume that the useful BPSK path i0, received with a SNR
equal to 5 dB, is perturbed by one BPSK interference having
the same pulse-shaped filter and the same symbol rate and
with an INR equal to 20 dB. The phase difference ψ between
the interference and the useful path i0 is equal to π/4. The
training sequence is assumed to contain K = 64 symbols and
the symbol duration T is such that T = 2Te. To simplify the
simulation, the optimal delay, τi0, is chosen to correspond to
a multiple of the sample period, τi0 = loTe, such that lo = 139
on Figure 3(a). Under these assumptions, Figure 3(a) shows
the variations of ĈCONV-LS(lTe,K) and ĈOPT-LS(lTe,K), re-
spectively, as a function of the delay lTe, jointly with the
threshold, βc and βo, associated with these two receivers, re-
spectively, for a FAR equal to 0.001. Note the nondetection of
the optimal delay loTe from the conventional receiver due to a

poor value of ̂SINRz[CONV-LS](K) equal to−15 dB and the
good detection of this delay from the optimal receiver due

to a better value of ̂SINRz[OPT-LS](K) equal to 4.7 dB. To
complete these results, we consider the previous scenario but
where the phase difference ψ is now an adjustable parame-
ter. In these conditions, Figure 3(b) shows the variations of
ĈCONV-LS(loTe,K) and ĈOPT-LS(loTe,K) as a function of ψ,
jointly with the threshold, βc and βo, associated with these
two receivers, respectively, for a FAR equal to 0.001. Note
the weak value of ĈCONV-LS(loTe,K), almost always below the
threshold, whatever the parameter ψ, preventing the detec-
tion of the useful path i0 from the conventional receiver in
most situations. Note also the values of ĈOPT-LS(loTe,K) be-
yond the threshold as soon as the phase difference ψ is not
too low. This allows in most cases the detection of the useful
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Figure 3:Variations of ĈCONV-LS(lTe,K) and ĈOPT-LS(lTe,K) as
a function of lTe (a), variations of ĈCONV-LS(loTe,K) and
ĈOPT-LS(loTe,K) as a function of ψ (b), K = 64, T = 2Te, one inter-
ference, N = 1, πs/η2 = 5 dB, INR = 20 dB, ψ = π/4, FAR = 0.001.

signal i0 in the presence of a strong rectilinear interference
from the optimal receiver even from N = 1 sensor.

4.3.3. Probability of nondetection for a given FAR

To quantify the performance of CONV-LS and OPT-LS re-
ceivers, we now consider a burst radio communication link
for which a training sequence of K = 64 symbols is transmit-
ted at each burst. The BPSK useful path i0 is assumed to be
corrupted by a BPSK interference with the same waveform
and whose INR is always 20 dB above the SNR. Note that
the interference can be a true interference generated by the
network itself or a decorrelated useful path different from i0.
The array is an ULA of N sensors. The phase and DOA of
both the useful path i0 and interference are independent ran-
dom variables, uniformly distributed on [0, 2π], and are as-
sumed to change randomly at each burst. The performance

20151050−5−10

Eb/N0 (dB)

10−3

10−2

10−1

100

P
n

d

C1

C2

C3C4

O1

O2

O3
O4

(a)

20151050−5−10

Eb/N0 (dB)

10−2

10−1

100

P
n

d

O-M1
O-G1, C-G, C-M

O-G3

O-M3

(b)

Figure 4: Probability of nondetection of CONV-LS (C) and OPT-
LS (O) receivers as a function of SNR, K = 64, T = 2Te, one in-
terference, INR = SNR + 20 dB, phase, DOA and delay random,
FAR = 0.001, 100 000 realizations, BPSK andN = 1, 2, 3, 4 (a), MSK
(M), GMSK (G), N = 1, L = 1, 3 (b).

are evaluated over 100 000 bursts. Under these assumptions,
Figure 4(a) shows the probability of nondetection of the op-
timal delay loTe by the CONV-LS (C) and OPT-LS (O) re-
ceivers as a function of the input SNR, μs2πs/η2, for a FAR
equal to 0.001 and for several values of the number of sen-
sors. Note, for N = 1, the much better performance of the
OPT-LS receiver due to its capability to reject the rectilin-
ear interference by phase discrimination between the sources.
Note, for 2 ≤ N ≤ 4, the better performance reached by the
OPT-LS receiver, due to a better discrimination between the
sources, done jointly by the phase and DOA, and despite of
the fact that the CONV-LS receiver rejects the interference by
a DOA discrimination. Thus, for rectilinear sources, software
may replace sensors for given performances.

Note that when the interference considered previously
corresponds to a useful path different from i0, the detec-
tion performances of the useful path i0 are still given by
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Figure 4(a) as long as the nonuseful path remains decorre-
lated from the useful path i0. As the relative delay between the
two paths decreases toward zero, the correlation between the

two paths increases and the spatial filters ŵ(loTe) and ̂̃w(loTe)
tend to keep the interferent path rather than to reject it. As
a consequence, the power of the interference path tends to
be added to that of the useful path for the detection process,
hence a better detection of the useful path, as it is confirmed
by simulations, nondescribed in the paper.

5. EXTENSION TOMSK ANDGMSK SIGNALS

5.1. Extension

We briefly present in this section the extension of the pre-
vious results to MSK and GMSK modulations while a more
detailed analysis of this problem will be presented elsewhere.
The MSK and GMSK modulations [16] belong to the family
of continuous phase modulation (CPM). It has been shown
in [36] that GMSK modulation can be approximated by a lin-
ear modulation, while MSK is a linear modulation. In such
conditions, the complex envelope of a useful MSK or GMSK
signal takes the form

s(t) ≈
∑

n

jnbn f
(
t − nT − ts

)
. (46)

In (46), the approximated equality becomes a strict equality
for a MSK signal, bn = ±1 are the transmitted symbols if
the latter are differentially encoded in the exact form of the
modulation [19], T is the symbol duration, ts (0 ≤ ts ≤ T) is
the time origin of the useful signal, and f (t) is a real-valued
pulse-shaped filter. This filter corresponds to

f (t) =

⎧
⎪⎨
⎪⎩

cos
(

πt
2T

)
−T ≤ t ≤ T

0 otherwise

⎫
⎪⎬
⎪⎭

(47)

for a MSK modulation whereas it may correspond either to
the main pulse in Laurent’s decomposition [36] or to the one
computed in [19], which generates the best linear approxi-
mation of the GMSK in a least square sense. In both cases the
temporal support of f (t) for a GMSK modulation is about
4T [19]. The derotation operation presented in [18, 19] con-
sists to multiply the signal s(t) by j−t/T , giving rise to the
derotated signal, sd(t), defined by

sd(t) � j−t/T s(t) ≈
∑

n

bn fd
(
t − nT − ts

)
, (48)

where fd(t) � j−(t+ts)/T f (t) is the equivalent pulse shaped fil-
ter of the derotated MSK or linearized GMSK signal. We de-
duce from (48) that sd(t) has the form of a BPSK signal but
with two differences with respect to the latter. The first one
is that fd(t) is no longer a 1/2 Nyquist filter and intersymbol
interference (ISI) will appear after a matched filtering opera-
tion to the filter fd(t). For this reason, the matched filtering
operation to the pulse-shaped filter may not be required for
the synchronization of MSK or GMSK signals. The second
one is that fd(t) is no longer a real function but becomes a

complex function. Thus, derotated MSK and GMSK signals
may be interpreted as a BPSK signal which has been filtered
by a nonideal complex propagation channel. For this reason,
it has been shown in [17] that optimal WL spatial filters be-
come sub-optimal for demodulation or synchronization of
MSK or GMSK sources in the presence of interferences of the
same form and that WL spatio-temporal (ST) filters are re-
quired. The number of taps per ST filter has to increase with
the temporal support of f (t)⊗h(t), where h(t) is the impulse
response of the propagation channel.

ST WL filters with L taps per filter are defined by

yWL,ST

((
l

q
+ n

)
T
)

�
(L−1)/2∑

u=−(L−1)/2

̂̃wu
(
lTe
)†

x̃d

((
l

q
+ n− u

)
T
)

� ̂̃wst
(
lTe
)†

x̃d,st

((
l

q
+ n

)
T
)

(49)

if L is odd and

yWL,ST

((
l

q
+ n

)
T
)

�
L/2−1∑

u=−L/2
̂̃wu
(
lTe
)†

x̃d

((
l

q
+ n− u

)
T
)

� ̂̃wst
(
lTe
)†

x̃d,st

((
l

q
+ n

)
T
)

(50)

if L is even. In these expressions, ̂̃wu(lTe) are (2N × 1) spatial
filters, xd(t) � j−t/Tx(t), x̃d(kTe) � [xd(kTe)T, xd(kTe)†]T,

x̃d,st(kTe) and ̂̃wst(lTe) are (2LN × 1) vectors defined by
x̃d,st(kTe) � [x̃d((k/q + (L − 1)/2)T)T, . . . , x̃d((k/q −
(L − 1)/2)T)T]T and ̂̃wst(lTe) � [ ̂̃w−(L−1)/2(lTe)T, . . . ,
̂̃w(L−1)/2(lTe)T]T, respectively, if L is odd and by x̃d,st(kTe) �
[x̃d((k/q + L/2)T)T, . . . , x̃d((k/q − L/2)T)T]T and ̂̃wst(lTe) �
[ ̂̃w−L/2(lTe)T, . . . , ̂̃wL/2(lTe)T]T, respectively, if L is even.

The vector ̂̃wst(lTe) minimizes the LS criterion (4) where
yvWL((l/q + n)T) = ̂̃w(lTe)†x̃v((l/q + n)T) is replaced by
yWL,ST((l/q + n)T). In these conditions, it is straightforward
to show that for MSK and GMSK signals, an LS approach us-
ing WL ST filters gives rise to (9) but with x̃d,st((l/q + n)T)
instead of x̃v((l/q + n)T).

5.2. Performance

To compute and illustrate the performance of the OPT-LS re-
ceiver for MSK and GMSK signals, we consider the scenario
of Figure 4(a) where BPSK sources have been replaced by ei-
ther MSK (M) or GMSK (G) sources and we limit the analysis
to the one sensor case (N = 1). For the OPT-LS receiver, we
choose L = 1 or L = 3 taps whereas only 1 tap is chosen for
the CONV-LS receiver. Under these assumptions, Figure 4(b)
shows the probability of nondetection of the optimal delay
loTe by the CONV-LS and OPT-LS receivers as a function of
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the input SNR, μs2πs/η2, for a FAR equal to 0.001. Note the
poor performance of both CONV-LS receiver and OPT-LS
receiver for L = 1 and the good performance of OPT-LS re-
ceiver for L = 3 for both modulations, showing off the ca-
pability of the OPT-LS receiver to do SAIC for both MSK
and GMSK signals provided ST WL filters are used. Note fi-
nally the better performance of the OPT-LS receiver for MSK
signals due to a smaller time support of the pulse-shaped fil-
ter. More insights about optimal values of L, partially given
in [17] for channels with no delay spread, will be discussed
elsewhere whatever the delay spread of the channel.

6. CONCLUSION

It has been shown in this paper that taking into account the
noncircularity property of rectilinear interferences may dra-
matically improve the performance of both mono- and mul-
tichannels receivers for the synchronization of a BPSK signal
in a radio communication network using this modulation.
This result also holds for other rectilinear modulations such
as AM or ASK modulations. For such signals and noncircular
interferences, the optimal receiver, called OPT-LS receiver,
has been shown to implement an optimal, in an LS sense,
WL spatial filtering of the data followed by a correlation op-
eration with a training sequence. Conditions, not required
in practice, under which this optimal receiver becomes opti-
mal for detection, in terms of GLRT approach, have also been
given. A simplified performance analysis of both the conven-
tional and the optimal receiver has been presented, allowing
to prove in particular the ability of OPT-LS receiver to do sin-
gle antenna interference cancellation and to show a decrease
of the number of sensors for given performances. Besides,
new analytical results about the convergence of the SINR at
the output of both the SMF and the WL SMF, implemented
from a training sequence, has been deduced from simula-
tions. Extensions of the main results of the paper to both
MSK and GMSK modulations have been briefly presented at
the end of the paper. High performance of the OPT-LS re-
ceiver for these modulations have been obtained jointly with
its capability to implement SAIC provided ST WL filters are
used instead of spatial ones.

APPENDIX

It is shown in this appendix that expression (9) for l = lo is
a sufficient statistic for the optimal detection, in the GLRT
sense, of the known signal sv(nT) (0 ≤ n ≤ K − 1) from the
observation vectors xv((lo/q+n)T) (0 ≤ n ≤ K−1), assuming
that assumptions (A1) to (A7) are verified. To this aim, let
us first compute the ML estimates of μsh̃s and of Rb̃(loTe)
under H1 and H0, respectively. To do so, let us consider the

likelihood of the parameters sv(nT) (0 ≤ n ≤ K − 1), μsh̃s,
Rb̃(loTe) under H1, observing x̃v((lo/q+n)T) (0 ≤ n ≤ K−1).
Under the previous assumptions, this likelihood, L1(loTe,K),
can be written as

L1
(
loTe,K

)
� p

[
G′
]

(A.1)

(whereG′ = {x̃v((lo/q+n)T) = μssv(nT)h̃s+b̃Tv((lo/q+n)T)/

sv(nT),μsh̃s, Rb̃(loTe), 0 ≤ n ≤ K − 1}). Under the previous
assumptions (A1) to (A7), expression (A.1) can be written as

L1
(
loTe,K

) =
K−1∏

n=0

p
[
J ′n
]

(A.2)

(where J ′n = {b̃Tv((lo/q+n)T) = x̃v((lo/q+n)T)−μssv(nT)h̃s/

sv(nT), μsh̃s, Rb̃(loTe)}), and p[b̃Tv((lo/q + n)T)] is defined
by (15). Using (15) into (A.2) and taking the logarithm of
L1(loTe,K), we obtain

Log
[
L1
(
loTe,K

)]

= −NKLog(π)−
(
K

2

)
Log

(
det

[
Rb̃

(
loTe

)])

−
(

1
2

) K−1∑

n=0

[
x̃v

((
lo
q

+ n
)
T
)
− μssv(nT)h̃s

]†

× Rb̃

(
loTe

)−1
[

x̃v

((
lo
q

+ n
)
T
)
− μssv(nT)h̃s

]
.

(A.3)

Using the fact that |sv(nT)|2 = r(0)2 � πs, it is then straight-

forward to show that the ML estimate, μ̂s
̂̃hs, of μsh̃s, that is,

the estimate μ̂s
̂̃hs which maximizes (A.3) is given by

μ̂s
̂̃hs =

(
1

Kπs

) K−1∑

n=0

x̃v

((
lo
q

+ n
)
T
)
sv(nT)∗. (A.4)

Replacing μsh̃s by μ̂s
̂̃hs into (A.3), it is well known [8, 10] that

the ML estimate, R̂b̃1(loTe), of Rb̃(loTe) under H1, that is, the

matrix R̂b̃1(loTe) which maximizes (A.3) is given by

R̂b̃1

(
loTe

) = 1
K

K−1∑

n=0

[
x̃v

(
lo
q

+ n
)
T
)
− sv(nT)μ̂s

̂̃hs

]

×
[

x̃v

((
lo
q

+ n
)
T
)
− sv(nT)μ̂s

̂̃hs

]†
.

(A.5)

In a similar way, it is straightforward to show that the ML
estimate, R̂b̃0(loTe), of Rb̃(loTe) under H0 is given by

R̂b̃0

(
loTe

) = 1
K

K−1∑

n=0

x̃v

((
lo
q

+ n
)
T
)

x̃v

((
lo
q

+ n
)
T
)†

.

(A.6)

On the other hand, using (A.5) into (A.3), we obtain, under
H1,

K−1∑

n=0

[
x̃v

((
lo
q

+ n
)
T
)
− sv(nT)μ̂s

̂̃hs

]†
R̂b̃1

(
loTe

)−1

×
[

x̃v

((
lo
q

+ n
)
T
)
− sv(nT)μ̂s

̂̃hs

]

= K Tr
[
R̂b̃1

(
loTe

)−1
R̂b̃1

(
loTe

)] = NK.

(A.7)
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In a similar way, we obtain, under H0,

K−1∑

n=0

xv

((
lo
q

+ n
)
T
)†

R̂b̃0

(
loTe

)−1
xv

((
lo
q

+ n
)
T
)

= K Tr
[
R̂b̃0

(
loTe

)−1
R̂b̃0

(
loTe

)] = NK.

(A.8)

Then, using (15) into (14), replacing Rb̃(loTe) by R̂b̃0(loTe)

under H0, μsh̃s by μ̂s
̂̃hs and Rb̃(loTe) by R̂b̃1(loTe) under H1

and using (A.7) and (A.8), it is straightforward to show that
the likelihood receiver, LR(loTe,K), defined by (12), takes the
form

LR
(
loTe,K

) =
(

det
[
R̂b̃0

(
loTe

)]

det
[
R̂b̃1

(
loTe

)]

)K

, (A.9)

where det(A) means determinant of matrix A. Moreover, we
deduce from (A.4), (A.5), and (A.6) that

R̂b̃1

(
loTe

)

= R̂b̃0

(
loTe

)− πs
(
μ̂s
̂̃hs
)(
μ̂s
̂̃hs
)†

= R̂b̃0

(
loTe

)1/2[
I − πsR̂b̃0

(
loTe

)−1/2(
μ̂s
̂̃hs
)

× (μ̂s ̂̃hs
)†
R̂b̃0

(
loTe

)−†/2]
R̂b̃0

(
loTe

)†/2
,

(A.10)

where R̂b̃0(loTe)1/2 is a square root of R̂b̃0(loTe) such

that R̂b̃0(loTe) = R̂b̃0(loTe)1/2R̂b̃0(loTe)†/2, R̂b̃0(loTe)†/2 �
(R̂b̃0(loTe)1/2)†, R̂b̃0(loTe)−†/2 � (R̂b̃0(loTe)−1/2)†. Taking the
determinant of the two sides of (A.10) and using the fact that
det[I − uu†] = 1− u†u, we obtain

det
[
R̂b̃1

(
loTe

)]

= det
[
R̂b̃0

(
loTe

)][
1− πs

(
μ̂s
̂̃hs
)†
R̂b̃0

(
loTe

)−1(
μ̂s
̂̃hs
)]
.

(A.11)

Using (A.11) into (A.9) we finally obtain

LR
(

xv
)(
loTe,K

) =

⎛
⎜⎝

1
[
1− πs

(
μ̂s
̂̃hs
)†
R̂b̃0

(
loTe

)−1(
μ̂s
̂̃hs
)]

⎞
⎟⎠

K

(A.12)

which shows that a sufficient statistic for the optimal detec-
tion of the known signal sv(nT) (0 ≤ n ≤ K − 1) from the
observations xv((lo/q+n)T) (0 ≤ n ≤ K −1), assuming (A1)
to (A7), is given by

ĈOPT-LS
(
loTe,K

) = πs
(
μ̂s
̂̃hs
)†
R̂b̃0

(
loTe

)−1(
μ̂s
̂̃hs
)

=
(

1
πs

)
r̂x̃s
(
loTe

)†
R̂x̃
(
loTe

)−1
r̂x̃s
(
loTe

)
.

(A.13)
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