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An original algorithm for the detection of small objects in a noisy background is proposed. Its application to underwater objects
detection by sonar imaging is addressed. This new method is based on the use of higher-order statistics (HOS) that are locally esti-
mated on the images. The proposed algorithm is divided into two steps. In a first step, HOS (skewness and kurtosis) are estimated
locally using a square sliding computation window. Small deterministic objects have different statistical properties from the back-
ground they are thus highlighted. The influence of the signal-to-noise ratio (SNR) on the results is studied in the case of Gaussian
noise. Mathematical expressions of the estimators and of the expected performances are derived and are experimentally confirmed.
In a second step, the results are focused by a matched filter using a theoretical model. This enables the precise localization of the
regions of interest. The proposed method generalizes to other statistical distributions and we derive the theoretical expressions of
the HOS estimators in the case of a Weibull distribution (both when only noise is present or when a small deterministic object is
present within the filtering window). This enables the application of the proposed technique to the processing of synthetic aperture
sonar data containing underwater mines whose echoes have to be detected and located. Results on real data sets are presented and
quantitatively evaluated using receiver operating characteristic (ROC) curves.

Copyright © 2007 F. Maussang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Higher-order statistics (HOS) are largely used in signal pro-
cessing and have already been applied to various domains:
astronomy (that provided pioneering applications), but also
seismic data processing, communication and, more recently,
geophysics, speech, radar, and sonar signal processing and
analysis. In the last decade, several journals have published
special issues on these emerging techniques [1–3]. As a mat-
ter of fact, HOS allow the solving of problems that first- and
second-order statistics fail to solve. For example, they enable
linear system identification by blind deconvolution [4, 5],
and nonlinear identification (Volterra filter) [6]. They are
used in nonstationary signals analysis [7], array processing
[8], and source separation [9–11].

A much scarcer literature addresses the use of HOS in
the field of image processing (considering images as bidi-
mensional signals). Jacovitti [12] presented applications of

HOS to image decomposition, blind deconvolution, coding
and pattern recognition. Some studies were also made on
texture analysis [13, 14] and segmentation by data clustering
[15]. Carrato and Ramponi [16] presented a Skewness-of-
Gaussian edge extractor applied on images. This method uses
the crossing of a skewness operator by zero (corresponding
to a symmetric distribution) to detect edges in images with
good performances and robustness [17]. The most interest-
ing paper regarding our application is proposed by Alexan-
drou et al. [18]: a coefficient of excess, the kurtosis (4th-
order statistical value), is studied in order to model the non-
Gaussian reverberation hypothesis. But, as raised by the au-
thors, it is difficult to differentiate this excess, induced by an
inaccurate modeling of the background with a Gaussian law,
from a potential coherent component embedded in the re-
verberation.Moreover, this difficulty increases as the number
of samples decreases, which does not allow a local estimation
in order to detect small coherent elements (echoes).
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In this paper,1 a new statistical detection method on im-
ages is proposed. It aims at detecting small targets, modeled
as deterministic regions, in a noisy background which is pre-
viously statistically modeled by a Weibull law. It is based on
higher-order statistical properties of the image. The global
detection process can be divided into four main steps:

(1) HOS (skewness or kurtosis) are locally estimated on a
square computation window sliding all over the image;

(2) the results are focused with a matched filter in order to
accurately locate the sought regions;

(3) a rebuilding of the sought regions is performed using
a morphological dilation;

(4) finally, a gray-level threshold is applied to detect the
objects (ROC curves).

The paper is organized as follows. In Section 2, some
properties of the used HOS are recalled and two classical esti-
mators (for the skewness and the kurtosis, resp.) are defined
and presented. In Section 3, the use of HOS for the purpose
of detection is discussed in function of the signal-to-noise ra-
tio (SNR). In Section 4, the focusing process used in order to
obtain an accurate localization of the different regions of in-
terest is presented. In the last section, the proposed method
is tested on real sonar data containing various underwater
objects, both lying on the sea-bed and buried, after a presen-
tation of the statistical specificities of these images. In partic-
ular, this requires the derivation of the theoretical HOS esti-
mators in the case of a Weibull distribution.

2. HOS ESTIMATORS

2.1. Definitions

The two most classically used HOS are the skewness (derived
from the 3rd-order moment) and the kurtosis (derived from
the 4th-order moment) [19]. One should underline that be-
yond these two standard statistics, other statistics with an or-
der greater than 4 can be mathematically defined. However,
these statistics are extremely difficult to estimate in a reliable
and robust way and are thus practically never used. Noting
μX(r) as the rth order central moment of a random variable
X , the definition of the skewness is given by

SX = μX(3)
μ3/2X(2)

. (1)

A definition of the kurtosis is given by

KX = μX(4)
μ2X(2)

− 3. (2)

The skewness measures the symmetry of a random distribu-
tion, while the kurtosis measures whether the data distribu-
tion is peaked or flat relative to a normal distribution. These
statistics are theoretically null for the normal distribution.

1 This paper is on results obtained by F. Maussang during his Ph.D. in LIS.

2.2. Estimators

To estimate the skewness and the kurtosis on a sample X of
finite size N , k-statistics kX(r) can be used. kr is defined as
the unique symmetric unbiased estimator of the cumulant
κX(r) on X [19]. An unbiased estimator of the skewness is
then given by

̂SX = kX(3)
k3/2X(2)

. (3)

Defining the rth sample central moment of X by the follow-
ing expression:

mX(r) = 1
N

N
∑

i=1

(

xi − x
)r
, (4)

where x = (1/N)
∑N

i=1 xi and xi are the N samples of X , we
can derive another definition of this estimator. Actually, con-
sidering the relationships between kX(r) andmX(r), we have

̂SX =
√

N(N − 1)
N − 2

mX(3)

m3/2
X(2)

. (5)

In the same way, we derive the following estimator for the
kurtosis:

̂KX = kX(4)
k2X(2)

= (N + 1)(N − 1)
(N − 2)(N − 3)

mX(4)

m2
X(2)

− 3(N − 1)2

(N − 2)(N − 3)
.

(6)

Asymptotic statistical properties are studied for high values
of N . Firstly, we can mention that these estimators are bi-
ased in the first order and that they are correlated (the bias
being dependent on higher-order moments). However, ex-
act results can be derived in the Gaussian case. In this case,
M and V being, respectively, the mean and the variance, we
have

M
(

̂SX
) = 0,

M
(

̂KX
) = 0,

V
(

̂SX
) = 6N(N − 1)

(N − 2)(N + 1)(N + 3)
≈ 6

N
,

V
(

̂KX
) = 24N(N − 1)2

(N − 3)(N − 2)(N + 3)(N + 5)
≈ 24

N
.

(7)

In the general case, there is no analytical expression for un-
biased estimators independently from the probability density
function of the random value. However, one should note that
in the case of a normal distribution, the estimators are unbi-
ased. Nevertheless, variances of these estimators are relatively
high and it is well known that a reliable estimation requires a
large set of samples.

3. HOS FOR DETECTION

To illustrate the detection method proposed in this paper, it
is first tested on a simple synthetic image (128× 128 pixels).
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It consists of a square of size 11× 11, with a constant ampli-
tude A, surrounded by a noisy background. The noise in this
image has a central Gaussian distribution with a variance σ2B.
Its probability density function is given by

GB(B) = 1
σB
√
2π

exp
(

− B2

2σ2B

)

(8)

and its rth noncentral moments μ′B(r) are

μ′B(r) =
⎧

⎪

⎨

⎪

⎩

σrB
r!

(r/2)!2r/2
if r is even,

0 otherwise.
(9)

Note that combining these noncentral moments leads to the
nullity of the skewness and kurtosis for a normal distribu-
tion.

Regarding the deterministic square of amplitude A, its
rth noncentral moments μ′D(r) are

μ′D(r) = Ar. (10)

Considering the deterministic square as a signal surrounded
by noise, the SNR can be defined as

ρ = A

σB
(11)

and in decibels:

ρdB = 10 log10

(

A2

σ2B

)

= 20 log10(ρ). (12)

Skewness and kurtosis are invariant by a scale shift. This is of
the utmost importance: since, in the following, the HOS are
estimated locally, the proposed method is invariant to vary-
ing offset in the image. Consequently, if the noise is mod-
eled by a noncentral Gaussian of mean μ and variance σ2,
described by the following density probability function:

G′B(B) =
1

σB
√
2π

exp
{

− (B − μ)2

2σ2B

}

(13)

all the results obtained in the following remain valid with an
SNR defined as

ρ′ = |A− μ|
σB

. (14)

3.1. Local properties of the HOS

Skewness and kurtosis estimators previously described in (5)
and (6) are used in this paper to detect small deterministic
regions in a noisy image. For this purpose, these HOS are lo-
cally estimated for each pixel using a square sliding window,
composed of N pixels, the current pixel being in the center.

To model the situation and explain the results obtained
when applied on the images, p ∈ [0, 1] is defined as the pro-
portion of deterministic pixels in the computation window
(Figure 1). Consequently, (1−p) is the proportion of random

a
d

c

b

Figure 1: Various values of parameter p: (a) p = 0, (b) p = 1/9, (c)
p = 2/9, (d) p = 1 (black pixels= deterministic region, white pixels
= background).

values (pixels belonging to the noisy background). In the fol-
lowing, the local statistical properties (moments) of the de-
terministic region and the noisy background in the compu-
tation window are assumed to be the same as the global ones
presented in the previous section. This is achieved when the
size of the computation window is large enough. In particu-
lar, this size should be greater than the maximum size of the
sought deterministic regions. Note that in practical cases, the
value of p for one given position of course remains unknown.

Considering μ′D(r), μ
′
B(r), and μ′W(r) the rth noncentral

moments computed on the “deterministic-part” of the fil-
tering window, on the “noisy background part,” and on the
whole window, respectively, the following relation holds:

μ′W(r) = p · μ′D(r) + (1− p) · μ′B(r). (15)

Therefore, we can combine the definitions of the skewness
and kurtosis in (1) and (2), the noncentral moments of the
different parts of the window in (9) and (10), the definition
of the SNR ρ (11), and the relationships between the central
and noncentral moments [19]. Using the previous model, we
derive the following expressions for the skewness SW and the
kurtosis KW estimated on the computation window:

SW (ρ, p) = p
√

1− p

(1− 2p)ρ3 − 3ρ
(

pρ2 + 1
)3/2 ,

KW (ρ, p) = p

1− p

(

1− 6p + 6p2
)

ρ4 − 6(1− 2p)ρ2 + 3
(

pρ2 + 1
)2 .

(16)

The evolution of these HOS in function of p and the SNR ρ
is plotted on Figure 2. Different behaviors are observed de-
pending on whether the SNR is high or low. The skewness
has low values for low SNRs, but, for high SNRs, it has high
values for low values of p and negative values for high values
of p (close to 1). This is confirmed by Figure 3(a) where we
can observe the skewness getting close to zero for low SNRs
(below 0 dB for low p and below−20 dB for high p) and tak-
ing higher values for high SNRs (above 20 dB). Intermediate
values are obtained for intermediate values of the SNR. For
the kurtosis (Figure 3(b)), opposed behaviors are observed
depending on whether the SNR is low or high, with an inter-
mediate area between 0 and 20 dB. Considering these prop-
erties, the detection problem is addressed in the next three
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Figure 2: HOS in function of the deterministic proportion p and the SNR.

�8

�6

�4

�2

0

2

4

6

8

10

Sk
ew

n
es
s

�100 �50 0 50 100

SNR (dB)

p = 0.01
p = 0.95

(a) Skewness

�20

0

20

40

60

80

100
K
u
rt
os
is

�100 �50 0 50 100

SNR (dB)

p = 0.01

p = 0.95

(b) Kurtosis

Figure 3: HOS in function of the SNR for low p (solid line) or high p (dashed line).

sections in the case of low, high, and intermediate SNRs, re-
spectively.

3.2. Application to small objects detection:
the case of low SNRs

In this section, we consider images containing small objects
(target, fault, and other manmade or natural objects mod-
eled as small deterministic regions), with a low SNR as men-
tioned in the previous section and derived from the curves
presented on Figure 3. SNRs lower than −20 dB are con-
sidered as low SNRs. For an illustrative purpose, HOS are

estimated in a synthetic image as previously described with
an SNR of −60 dB (Figure 6(a)).

For low SNRs, we derive the following approximate ex-
pressions of the equations presented in the previous section
(16):

SW (p) ≈ lim
ρ→0

SW (ρ, p) = 0,

KW (p) ≈ lim
ρ→0

KW (ρ, p) = 3p
1− p

.
(17)

These approximations are confirmed by Figure 4 where, for
an SNR of−60 dB, the kurtosis increases from zero to infinity
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Figure 4: Skewness (dashed line) and kurtosis (solid line) in func-
tion of parameter p for SNR = −60 dB.

when p goes from zero to one, and the skewness values are
close to zero. This result is illustrated on Figure 5, represent-
ing an example of probability density function obtained on a
window with a low SNR, showing a symmetric density, hence
a low skewness, with a peak, hence a high kurtosis.

These approximations also explain the results obtained
with the synthetic image (Figure 6). Note that on this exam-
ple only used for illustration, the detection would be trivial
since the “target” is clearly visible. However, we must under-
line that in real cases the regions of interest can be composed
of a very few pixels in a very large image, thus with an ex-
tremely low visibility.

The skewness image (Figure 6(b)) only consists of low
values, without any clearly contrasted region emerging from
the noisy background. On the contrary, the kurtosis has low
values in the regions corresponding to the noisy background
and higher values around the center of the deterministic re-
gion. This is consistent with the predicted increase of the kur-
tosis with p. Actually, the closer is the filtering window to the
center of the object, the higher is the deterministic propor-
tion p in the window. Note that the previous approximations
remain valid when no deterministic region is present (e.g.,
in the noisy background, with p = 0). Therefore, in the case
of low SNRs, a detection of small deterministic objects can
be made by performing a simple threshold selecting the high
values of the kurtosis. On the other hand, skewness does not
lead to any satisfactory detection.

Given the influence of p on the kurtosis, the smaller is the
computation window, the higher are the values of the kur-
tosis, and the better is the detection. This is illustrated on
Figure 7 where we can see higher and more centered values
of the kurtosis with a 13×13 window than with a 41×41 one.
But, as stated in Section 2.2 (7), the smaller is this window,
the higher is the variance of the estimator, and the less robust
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Figure 5: Example of probability density function on a computa-
tion window for a low SNR (p = 0.4).

is the detection. This is illustrated on Figure 7(a) where the
maximum is about 8.2 when the theoretical result predicts
pmax = 11 × 11/13 × 13 = 121/169 which leads to a maxi-
mum value of 3pmax/(1− pmax) ≈ 7.56 for the kurtosis.

To illustrate these comments, two numerical values are
computed on the results. The first one is the variance of the
HOS on the background (to the exclusion of all the pixels
where the filtering window actually meets the target). The
second criterion measures the contrast: it is the ratio be-
tween the maximum value of the HOS on the image (ab-
solute value) and the standard deviation of the background
(square root of the variance previously estimated). This pa-
rameter allows to estimate the quality of the detection, bound
with the enhancement of the regions of interest compared
with the background. Table 1 presents the results obtained on
the HOS images with an SNR of −60 dB and different sizes
of computation window.

As previously mentioned, the narrower is the computa-
tion window (and the lower is the number of samples), the
higher are the variances of the HOS estimators. This induces
an increase of the variance of the background. This is even
higher for the kurtosis, as predicted by (7) (with a ratio close
to 4, especially for large windows). However all the variances
are significantly lower than the variance of the original image
(close to 1, the Gaussian noise being of standard deviation
1). Furthermore, the contrast values confirm our previous
visual observations regarding the kurtosis: the detection is
easier for small computation windows. Regarding the skew-
ness, the contrast has lower values, whatever the size of the
window, confirming its low potential in terms of detection.

To conclude with the detection in the case of a low SNRs,
the skewness is of little interest, its values always being close
to zero, whether there is an object or not. On the contrary, the
kurtosis gives interesting results for the detection. However,
a trade-off has to be found for the size of the computation
window. A large size ensures a low variance of estimation, but
gives low values of kurtosis. A small size gives higher values of
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Figure 6: HOS evaluated on 21× 21 windows (SNR = −60 dB).
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Figure 7: Kurtosis images obtained with different sizes of window (SNR = −60 dB).

Table 1: Detection performances of the HOS (variance of the back-
ground and contrast), with an SNR of −60 dB, in function of the
size of the computation window.

Size of the window
Skewness Kurtosis

Variance Contrast Variance Contrast

13× 13 0.0282 7.94 0.115 24.6

21× 21 0.0099 4.23 0.0375 11.0

41× 41 0.0011 5.42 0.0039 8.99

kurtosis, and thus a better detection, but with a high variance
of estimation.

3.3. Application to the detection of small objects:
the case of high SNRs

In this section, we consider images containing small objects
with a high SNR. As suggested by the curves on Figure 3,
SNRs greater than 40 dB are considered as high SNRs. For an
illustrative purpose, HOS are estimated in a synthetic image
with a 50 dB SNR (Figure 9(a)).

For high SNRs (ρ →∞), we derive the following approxi-
mate expressions of the previously presented equations (16):

SW (p) ≈ lim
ρ→+∞ SW (ρ, p) = 1− 2p

√

p(1− p)
, (18)

KW (p) ≈ lim
ρ→+∞KW (ρ, p) = 1− 6p + 6p2

p(1− p)
. (19)
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Figure 8: Skewness (dashed line) and kurtosis (solid line) for
SNR = 50 dB.

This is illustrated on Figure 8. For an SNR of 50 dB: the kur-
tosis decreases from infinity to −2 when p increases from 0
to 0.5. It again increases to infinity when p increases from
0.5 to 1. The skewness has a different behavior: it decreases
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Figure 9: HOS evaluated on 21× 21 windows (SNR = 50 dB).
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Figure 10: Kurtosis images obtained with different sizes of window (SNR = 50 dB).

from plus to minus infinity as p goes from 0 to 1, with a zero
crossing for p = 0.5.

Figure 9 illustrates this situation and presents the results
obtained for the skewness and the kurtosis (Figures 9(b) and
9(c), resp.) in the case of a synthetic test image with a high
SNR (Figure 9(a)). We can make the following observations.

(i) In a noisy background, the HOS have small values.
This corresponds to the nullity of the HOS for the Gaussian
distribution (note that in this specific case, the approxima-
tions proposed in (18) and (19) do not hold anymore).

(ii) Square structures are observed around the object of
interest. They are composed of pixels with high values, the
highest being in the corners.

The size of these squares corresponds to the size of the
deterministic region plus the size of the computation win-
dow. Considering the deterministic region as a square of side
nD and a square computation window of side nW (the to-
tal number of pixels inside the computation window being
N = n2D), the side nS of the square appearing in the HOS
images is given by

nS = nD + nW − 1. (20)

For example, on Figure 9, the object is of size 11 × 11. This
leads to a 31× 31 frame.

As seen on Figure 8, the estimators reach their maximal
values for the minimal values of parameter p. This corre-
sponds to the case where one single pixel of the object of
interest is included in the computation window (i.e., the cor-
ner of the structure, when the computation window starts

overlapping it). When the number of deterministic pixels in-
cluded inside the filtering window increases (i.e., when the
window keeps on sliding towards the center of the object),
the value of the estimators decreases. That explains the shape
of the square structures observed in the result images and
the decreasing values along the edges and inside the square.
From (18) and (19), for low values of p, skewness can be ap-
proximated by 1/

√
p and kurtosis by 1/p. This explains that

for a 21× 21 window, the highest values in the skewness im-
age is close to 21 (corresponding to p = 1/(21× 21)) and
441 for the kurtosis. As a consequence, the higher is the size
of the computation window, the higher is the value of the
maximum on the skewness and the kurtosis image. Figure 10
illustrates the effect of the size of the computation window
on the kurtosis estimation results: the larger is the window,
the larger is the resulting square and the higher is the max-
imum value (check the scales). When p goes above 0.5 (the
computation window contains more pixels belonging to the
deterministic object than to the noisy background), the kur-
tosis starts to increase again, which explains increasing val-
ues near the center of the sought region on Figure 10(a). To
avoid this case, we use a computation window whose side is
twice as large as the largest possible dimension of the sought
objects. Assuming we are only interested in detecting small
objects, this is easily fulfilled. Furthermore, as described in
Section 2.2, the use of a too small filtering window does not
lead to a robust estimation. However, this size should not
be too large either. Actually, as previously observed, the size
of the square structure on the HOS image is equal to the
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Figure 11: Kurtosis images obtained with different sizes of window on a synthetic image with two regions (left object: SNR = 70 dB, right
object: SNR = 50 dB).

size of the deterministic region plus the size of the compu-
tation window. If one given image contains several objects
of interest, the corresponding structures in the HOS images
may overlap if the filtering window is too large. This situ-
ation is illustrated on Figure 11 with two regions of differ-
ent amplitudes and different sizes (5× 5 on the left, 11 × 11
on the right), with a 21 pixel wide gap in between. Note on
Figure 11(b) the independence of the kurtosis value from the
SNR (both objects lead to the same maximum value).

The contrasts reported on Table 2 confirm these obser-
vations, the contrast increasing with the size of the compu-
tation window. The variances being estimated on the noisy
background, the variances reported on Table 1 do not de-
pend on the SNR. The contrast estimated on the original
image corresponds to the SNR (about 316.2 for 50 dB). The
contrast obtained with the HOS is largely greater, especially
for a large window. This highlights the interest of a detection
using these statistical values. Finally, note that, for a given size
of window, the contrast obtained with the kurtosis is greater
than with the skewness. This is also confirmed by the derived
approximations that give higher values of the kurtosis for low
values of p (lower than approximately 0.15, (2 − √2)/4 ex-
actly).

As a conclusion to this section, both the skewness and the
kurtosis allow the detection of deterministic regions. How-
ever, the maximum values being in the corners of a square
located around the region of interest, the precise localization
of the sought regions requires some post processing. This
“focusing” of the resulting frames to the real position of the
objects will be studied in Section 4. Moreover, the choice of
the size of the computation window appears as a trade-off
between the size of the deterministic regions that must be
detected and the space separating two different objects.

3.4. Application to the detection of small objects:
the case of intermediate SNRs

SNRs between −20 dB and 40 dB are considered as inter-
mediate SNRs. As we can see on Figure 3, detection per-
formances are still interesting for these SNRs, but they be-
come more complex to evaluate and understand. Whereas

Table 2: Detection performances of the HOS (contrast), with an
SNR of 50 dB, in function of the size of the computation window.

Window size
Contrasts

Skewness Kurtosis

13× 13 77.3 496.2

21× 21 209.4 2270.9

41× 41 1195.4 2.59× 104

skewness values remain close to zero for SNRs below 10 dB
for small values of p, negative values with high amplitude
appear for SNRs greater than −50 dB, with a peak at 0 dB,
for high values of p. Therefore, for an SNR between −50 dB
and 10 dB, a detection is possible by isolating pixels leading
to a negative skewness. They are located close to the cen-
ter of the deterministic region (see Figure 12(b)). For higher
SNRs (greater than 10 dB), the skewness increases regularly
to reach the approximations obtained for high SNRs. For
such SNRs, square structures are observed as previously de-
scribed (see Figures 9(b) and 13(b)), the values decreasing
more slowly near the center, but with the same structure as
with high SNRs. In this case the detectionmethod is the same
as for high SNRs.

The kurtosis behaves similarly to the low SNRs case un-
til approximately 10 dB with a value progressively decreas-
ing for high values of p (Figure 3(b)). The detection is possi-
ble by selecting the highest values in the kurtosis image: they
are located near the center of the object (Figure 12(c)). This
is similar to the low SNRs case (Figure 7(a)), but the con-
trast between the highest kurtosis values and the noisy back-
ground is smaller. For higher SNRs (greater than 10 dB), the
kurtosis increases progressively for low values of p, reaching
the approximations derived for high SNRs. As previously de-
scribed, square frames appear (Figure 13(c)), the values de-
creasingmore slowly near the center, but with the same struc-
ture as with high SNRs. Again, the detection method is the
same as for high SNRs.

The numerical values reported in Tables 3 and 4 con-
firm these observations, with a “low SNR”-like behavior at
0 dB for the kurtosis and a “high SNR”-like behavior at
20 dB, both for the skewness and the kurtosis. However, the
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Figure 12: HOS evaluated on 13× 13 windows (SNR = 0 dB).
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Figure 13: HOS evaluated on 21× 21 windows (SNR = 20 dB).

Table 3: Detection performances of the HOS (contrast), with an
SNR of 0 dB, in function of the size of the computation window.

Window size
Contrasts

Skewness Kurtosis

13× 13 14.5 19.9

21× 21 8.39 4.46

41× 41 6.84 5.21

contrasts are lower than in the previous case, but they still
remain largely above the SNR of the original image.

4. DETECTIONWITH HIGH SNRs:
FOCUSING OF THE RESULTS

4.1. Matched filtering approach

In the case of high SNRs, square frames appear around
the deterministic regions in the skewness and the kurtosis
images, the highest values being in the corner of these struc-
tures. This does not allow the correct localization of the
sought elements in the image. To solve this problem, a
matched filtering approach is proposed in this section by per-
forming a correlation of the HOS image with a theoretical

Table 4: Detection performances of the HOS (contrast), with an
SNR of 20 dB, in function of the size of the computation window.

Window size
Contrasts

Skewness Kurtosis

13× 13 24.4 75.5

21× 21 38.8 131.3

41× 41 113.3 384.5

model of the result. The results of this focusing will only be
presented on the kurtosis image, the results obtained with
the skewness being similar with the corresponding theoreti-
cal model.

Knowing the size of the computation window and ap-
proximately knowing the size of the sought objects, the
approximation presented in (19) is used to build a suit-
able model. For example, for the kurtosis image obtained
on Figure 15(a), the obtained model is shown on Figure 14
(with a size of 31 × 31 as explained by (20)). We can see
on Figure 15(b) the result obtained by the correlation of
the kurtosis image with the model. In the zoomed image
(Figure 15(c)), the maximum of the filtered result can be ob-
served at the exact position of the center of the deterministic
region of the original image.



10 EURASIP Journal on Advances in Signal Processing

�100

0

100

200

300

400

500

A
m
pl
it
u
de

40
30

20
10

0 0
10

20
30

40

0

50

100

150

200

250

300

350

400

Figure 14: Kurtosis theoretical model used for the matched filter
(window size 21× 21, region size 11× 11).

4.2. Uncertainty regarding the size of
the deterministic region

The size of the used computation window is known (it is
user-defined), but the size of the sought objects is not pre-
cisely known. As a consequence, the sizes of the structures
needing to be focused in the HOS images remain partially
unknown. A solution consists in taking, for the correlation,
a model built with the sum of several models with different
sizes. This sum is weighted in accordance with a Gaussian
distribution with a mean corresponding to the most typical
size, and a variance bound with the incertitude on the knowl-
edge of this size. It is tested on an image containing two de-
terministic regions (Figure 11(a), described in Section 3.3).
If a 25 × 25 model is chosen on the kurtosis image obtained
with a 15× 15 window (Figure 16(a)), only the wider region
is correctly focused (Figure 16(b)). To solve this problem, a
new model is built with a mean size of 23× 23 and an uncer-
tainty (standard deviation of the Gaussian distribution) of
3 (Figure 17). This allows a fairly good detection of the two
regions (Figure 16(c)).

4.3. Rebuilding of the region of interest:
dilationwith a fuzzy operator

The focusing of the HOS results allows to have the highest
values in the center of the sought region. This is very inter-
esting for detection and localization of the region, but it does
not give its shape and size. A morphological dilation is per-
formed on the focused HOS images to solve this problem.
The operator use is fuzzy [20] in order to take into account
the uncertainty on the size of the sought region. The model
uses the same size of uncertainty as for the matched filter.
The corresponding results are presented in Section 5.2.

A simple threshold of the latter image then allows an easy
detection and precise localization of the sought regions. If
available, further prior knowledge about the characteristics

of the object of interest can be incorporated into the model
(e.g., a rectangular shape can be used instead of a square).

5. APPLICATION IN SONAR IMAGING

In this section, the proposed algorithm is tested on real
sonar images, with application to underwater mines detec-
tion. These images are obtained by a synthetic aperture sonar
(SAS), an active sonar imaging system providing high reso-
lution images of the sea bed.

5.1. Specificities in sonar imaging

The sonar images used in this section represent the sea bed
with different objects lying, partially or completely buried
in the sea floor. When they are not buried, the objects cast
a shadow on the sea bed (see, e.g., the triangular shaped
shadow on Figure 19(a)). All these objects also generate some
echoes (reflexion of the sound wave on the objects), these
echoes being the only noticeable element in the case of buried
objects. As seen on Figures 20(a) and 21(a), these objects are
hardly visible and the images are seriously corrupted by a
speckle noise giving a granular aspect to the image and dis-
turbing its interpretation.

A good statistical model of this noise in the case of high
resolution images is given by the Weibull law described by
the following probability density function [21, 22]:

WB(B) = δ

α

(

B

α

)δ−1
exp

{

−
(

B

α

)δ
}

, B ≥ 0, (21)

with α the scale parameter and δ the shape parameter, strictly
positive.

With such a non-Gaussian distribution, background val-
ues of the skewness SB and the kurtosis KB are not null any-
more (see the appendix). On real SAS data, δ is function of
the resolution of the image, but it is generally approximated
by 1.65 [23]. This corresponds to skewness and kurtosis val-
ues close to 1 (Figure 18).

Considering the echoes generated by the mines as deter-
ministic elements of amplitude A, the SNR is defined as

ρW = A

α
. (22)

This assumption is simple but fair, since the echoes are gener-
ally composed of a few pixels, with values included in a lim-
ited range compared to the background (it would be difficult
to model these values with a random distribution).

The approximations made in Section 3.3 remain valid in
the case of high SNRs. As a matter of fact, the resulting coeffi-
cients of the highest orders (3 for the skewness, 4 for the kur-
tosis) are the same (see the terms in bold in the appendix).
This induces similar detection properties with the previous
case. For sonar images, the SNR as defined above is far greater
than 0 dB, even in the case of buried objects. As a conclusion,
following the discussions in Section 3 on detection in the case
of high or intermediate SNRs, the proposed algorithm is well
suited to objects detection in SAS imaging [23].
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Figure 15: Matched filtering on the kurtosis image (window size 21× 21).
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Figure 16: Matched filtering on the kurtosis image of two deterministic regions with no uncertainty (25× 25) and an uncertainty (23× 23,
SD = 3).
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5.2. Results on SAS images

In this section, the proposed detection method is tested on
various real SAS images provided by the DGA (Délégation
Générale de l’Armement, France). The resolution is defined
here as the size of one pixel. This is different from the actual
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Figure 18: Weibull background HOS values in function of the pa-
rameter δ.

system resolution, corresponding to the smallest distance
between two objects that can be distinguished, which is



12 EURASIP Journal on Advances in Signal Processing

6

5.5

5

4.5

4

3.5

A
zi
m
u
th

(m
)

6 8 10 12 14

Sight (m)

�30

�25

�20

�15

�10

�5

0

(a) SAS image

6

5.5

5

4.5

4

3.5

A
zi
m
u
th

(m
)

6 8 10 12 14

Sight (m)

0

10

20

30

40

50

60

(b) Kurtosis

6

5.5

5

4.5

4

3.5

A
zi
m
u
th

(m
)

6 8 10 12 14

Sight (m)

1

2

3

4

5

6

7

(c) Detection

Figure 19: Detection on the first SAS data (kurtosis 21 × 21,
matched filtering 25× 25, SD = 3).

generally larger. This explains the independence of the size
of the computation window and the resolution.

The first image (Figure 19(a)) contains an underwater
mine lying on the sea bed. It is recognizable thanks to the
shadow cast on the sea bed and the echoes generated by the
object [24]. This image represents a region of 3.5m by 10m,
with a resolution of approximately 1 cm in both dimensions.
After the computation of the kurtosis image using a 21 × 21
window, taking into account the dimension of the echoes and
the space in between, the resulting image is matched filtered
(taking into account the uncertainty on the dimension of the
echoes). Figure 19(b) represents the kurtosis estimated on a
sliding computation window. On the result obtained after a
focusing and rebuilding process (Figure 19(c)), the twomain
echoes that characterize the mine are clearly detected.

The second data set is more complex: the original SAS
image contains several buried or partially buried objects.
This image represents a sea bed region of about 10m by
10m, with a resolution of about 10 cm in both dimensions.
In this image, the echoes are hardly visible apart from a par-
tially buried cylindrical mine on the left, around sight sample
16 (Figure 20(a)). Here, the computation of the kurtosis im-
age uses an 11× 11 window (Figure 20(b)): the resolution of
this image is lower than in the previous one, and the echoes
thus appear as smaller objects in terms of number of pixels.
The result of the matched filter is presented on Figure 20(c).
This result is extremely interesting: buried objects, that were
hardly visible on the original SAS image, now clearly appear.
Some false alarms appearing on the lower part of the picture
are due to rocks. Note that the rectangular echo on the left,
created by a cylindrical mine, is well detected even though a
simple square model was used for the focusing.

The third SAS image represents a region of 40m by 20m
of the sea bed with a pixel size of about 4 cm in both direc-
tions [25, 26] (Figure 21(a)). It contains three cylindrical un-
derwater mines: one mine is lying on the sea floor (at the top
of the image), another one is partially buried (about 2/3, in
the middle), and the last one is completely buried under the
sea floor (lower part of the picture). After the computation
of the kurtosis image using a 55×55 window (Figure 21(b)),
the result of the matched filter is presented on Figure 21(c).
The result enhances the three echoes corresponding to the
three mines. Note that the amplitudes in the resulting image
are similar, whereas the echoes were of different amplitudes
in the original SAS image. This independence is a key result
of our study.

5.3. Performance evaluation

To quantitatively evaluate the detection performances of the
proposed algorithm, ROC curves are computed. The evolu-
tion of the detection probability versus the false alarm rate
is plotted when the threshold value increases. These proba-
bilities are estimated using manually designed ground truth
images. The set A of pixels assumed to actually belong to
the echoes is determined by an expert. The result of the al-
gorithm for a given threshold is a set B of segmented pixels
(Figure 22). WithNA the number of pixels in A andNA∩B the
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Figure 20: Detection on the second SAS data (kurtosis 11 × 11,
matched filtering 15× 15, SD = 3).

number of pixels in the intersection of A and B, the detection
probability pd is estimated as

pd = NA∩B
NA

. (23)

The false alarm rate p f a is estimated as

p f a = NA∩B
NA

(24)

with A the complement of A (NA = N − NA with N the size
of the original image).

The proposed method using HOS is compared with the
conventional detection method consisting in directly thresh-
olding the amplitude of the original SAS data (noted “origi-
nal” on the figures).

Figure 23 represents the ROC curves estimated on the re-
sults of the different process on the second (a) and the third
(b) data set, respectively, where buried mines are present.
From the ROC curves, both the skewness and the kurtosis
clearly provide better detection performances than the con-
ventional algorithm. The skewness seems to be more efficient
than the kurtosis. As a matter of fact, the kurtosis estimator
has a higher variance and thus induces a higher false alarm
rate for a given detection probability.

6. CONCLUSION

Based on higher-order statistics, an original detection meth-
od of small deterministic regions surrounded by random
noise is proposed in this paper. Two main cases are studied.

(i) In the case of low SNR, the detection can be easily per-
formed by selecting the pixels leading to locally high values
of the kurtosis. These pixels are located near the center of the
sought object.

(ii) In the case of high SNRs, a matched filter is applied
on the HOS images in order to obtain a precise localization
of the sought elements.

A strong enhancement of the deterministic regions is ob-
tained, thus enabling a robust detection. In the situation of
intermediate SNRs, the results can be linked with the two
previous cases. The robustness of the method can be empha-
sized, the detection being possible for high SNRs as well as
for low SNRs. The results are proved to be theoretically inde-
pendent from the amplitude of the sought region.

On the other hand, some prior knowledge is also re-
quired: the typical size of the sought objects and the min-
imal spacing between two objects should be approximately
known. A hint on the SNR value (high or low?) is also re-
quired to know whether the results need to be focused or
not. However, for one given application, this knowledge is
usually available. Furthermore, in the focusing step, a given
uncertainty can be introduced in the model to take some im-
precision into account and thus increase robustness.

The proposed method is applied on real sonar (SAS) data
for object detection. The use of HOS in this framework is an
original contribution of this paper. Extremely promising re-
sults are obtained on various data sets, with different resolu-
tions. This is assessed by the standard ROC curves.
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Figure 21: Detection on the third SAS data (kurtosis 55× 55, matched filtering 63× 63, SD = 3).
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Figure 22: Evaluation of the detection probability and the false
alarm rate: A is a region considered by the expert as a “real” echo, B
is a region segmented at a given threshold.

Finally, one should underline the genericity and the ro-
bustness of the proposed method. As a matter of fact, the
very same algorithm has been successfully applied for an ap-
plication in quality control of X-ray images for a biomedical
application. The corresponding results are reported in [27].

APPENDIX

SKEWNESS AND KURTOSIS IN SONAR IMAGING
(WEIBULLMODEL)

We assume the noised background of our images is modeled
by a Weibull law described by the following probability den-
sity function:

WB(B) = δ

α

(

B

α

)δ−1
exp

{

−
(

B

α

)δ
}

, B ≥ 0, (A.1)

with α the scale parameter and δ the shape parameter, strictly
positive. The rth order noncentral moment μ′B(r) is given by

μ′B(r) = αrΓ
(

1 +
r

δ

)

(A.2)

with Γ the Gamma function: Γ(z + 1) = z! = ∫ +∞0 e−ttzdt.
Noting γk = Γ(1 + k/δ), we derive

SB = γ3 − 3γ2γ1 + 2γ31
(

γ2 − γ21
)3/2 ,

KB = γ4 − 4γ3γ1 − 3γ22 + 12γ2γ21 − 6γ41
(

γ2 − γ21
)2 .

(A.3)

A is the amplitude of the echo. The SNR is then defined as

ρW = A

α
. (A.4)

Using the (15), we have

μ′W (1) = pD + (1− p)αγ1,

μ′W (2) = pD2 + (1− p)α2γ2,

μ′W (3) = pD3 + (1− p)α3γ3,

μ′W (4) = pD4 + (1− p)α4γ4.

(A.5)
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Figure 23: Performances of the HOS on the second and third SAS data compared with an amplitude threshold.

We derive

μW(2) = (1− p)
{

pA2 − 2γ1pAα +
(

γ2 − γ21 + γ21 p
)

α2
}

,

μW(3) = (1− p)
{

p(1− 2p)A3 − 3p(1− 2p)γ1A2α

− 3p
(

γ2 − 2γ21 + 2γ21 p
)

Aα2

+ · · · + [γ3 − 3γ2γ1 + 2γ31

+ γ1
(

3γ2 − 4γ21
)

p + 2γ31 p
2]α3

}

,

μW(4) = (1− p)
{

p
(

1− 6p + 6p2
)

A4

− 4p
(

1− 6p + 6p2
)

γ1A
3α

− · · · −6p[γ2−2γ21−2
(

γ2−4γ21
)

p

−6γ21 p2
]

A2α2

−· · ·−4p[γ3−6γ2γ1+6γ31+6γ1
(

γ2−2γ21
)

p

+ 6γ31 p
2]Aα3

+ · · · + [γ4 − 3γ22 − 4γ3γ1 + 12γ2γ21 − 6γ41

+
(

3γ22 + 4γ3γ1 − 24γ2γ21 + 24γ41
)

p

+ · · · + 12γ21
(

γ2 − 3γ21
)

p2

+ 24γ41 p
3 − 6γ41 p

4]α4
}

+ 3μ2W(2).

(A.6)

We include the SNR ρW :

μW(2)

α2
= (1− p)

{

pρ2W − 2γ1pρW +
(

γ2 − γ21 + γ21 p
)}

,

μW(3)

α3
= (1− p)

{

p(1− 2p)ρ3W − 3p(1− 2p)γ1ρ2

− 3p
(

γ2 − 2γ21 + 2γ21 p
)

ρ

+ · · · + [γ3 − 3γ2γ1 + 2γ31

+ γ1
(

3γ2 − 4γ21
)

p + 2γ31 p
2]},

μW(4)

α4
= (1− p)

{

p
(

1− 6p + 6p2
)

ρ4W

− 4p
(

1− 6p + 6p2
)

γ1ρ
3
W

− · · · − 6p
[

γ2 − 2γ21 − 2
(

γ2 − 4γ21
)

p

− 6γ21 p
2]ρ2

− · · · − 4p
[

γ3 − 6γ2γ1 + 6γ31

+ 6γ1
(

γ2−2γ21
)

p+6γ31 p
2]ρ

+· · ·+[γ4−3γ22−4γ3γ1+12γ2γ21−6γ41
+
(

3γ22+4γ3γ1−24γ2γ21+24γ41
)

p

+ · · · + 12γ21
(

γ2 − 3γ21
)

p2

+ 24γ41 p
3−6γ41 p4

]}

+
3μ2W(2)

α4
.

(A.7)

We have then obviously

SW
(

ρW , p
) = μW(3)

μ3/2W(2)

,

KW
(

ρW , p
) = μW(4)

μ2W(2)
− 3.

(A.8)
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