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To develop effective learning algorithms for continuous prediction of cursor movement using EEG signals is a challenging research
issue in brain-computer interface (BCI). In this paper, we propose a novel statistical approach based on expectation-maximization
(EM) method to learn the parameters of a classifier for EEG-based cursor control. To train a classifier for continuous prediction,
trials in training data-set are first divided into segments. The difficulty is that the actual intention (label) at each time interval
(segment) is unknown. To handle the uncertainty of the segment label, we treat the unknown labels as the hidden variables in the
lower bound on the log posterior and maximize this lower bound via an EM-like algorithm. Experimental results have shown that
the averaged accuracy of the proposed method is among the best.
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1. INTRODUCTION

Brain-computer interface (BCI) is a communication system
in which the information sent to the external world does
not pass through the brain’s normal output pathways. It pro-
vides a radically new communication option to people with
neuromuscular impairments. In the past decade or so, re-
searchers have made impressive progress in BCI [1]. In this
paper our discussions focus on the Electroencephalogram
(EEG) driven BCI. Different types of EEG signals have been
used as the input of BCI system, such as slow cortical poten-
tials (SCPs) [2], motor imagery signal [3], P300 [4, 5], and
steady-state visual-evoked response (SSVER) [6]. In the re-
cent years, EEG controlled cursor movement has attracted
many research interests. In this kind of BCI, first, EEG is
recorded from the scalp and digitalized in both temporal and
spatial space by using acquisition system. Then the digital-
ized signals are subjected to one or more of feature extrac-
tion procedures, such as spectral analysis or spatial filter-
ing. Afterwards, translation algorithm converts the EEG fea-
ture into command vector whose elements control different
dimensions of cursor movement independently. Finally, the
outputs of cursor control part are displayed on the screen.
The subjects can learn from these feedbacks to improve their
control performance. In Figure 1 we depict one-dimensional
(1D) four-targets cursor-control system as an example. In the

scenario of 1D four targets cursor control, there are four tar-
gets on the right side of the screen. Targets 1 to 4 are from
top to bottom. The original position of the cursor is on the
middle of the left side. During each trial, the cursor moves
across the screen at a steady rate. The subjects’ task is to
move the cursor to the predecided target by performing ver-
tical control at each time interval, usually every hundreds
of milliseconds. Our aim is to continuously predict the cur-
sor movement at each time interval as well as the final tar-
get.

Many groups have made great efforts to find effective
translation algorithms to improve the performance of BCI
system. The translation algorithms for cursor control BCI
come under two categories: regression [7–9] and classifica-
tion [10–12]. Each of them has its merits. Here, we adopt
classification method to continuously predict cursor move-
ment (up or down in 1D case as discussed here) using EEG
signal. To train the classifier, we divide each trial into seg-
ments. Now the key issue is how to train a classifier, with
given training data set where there is no knowledge of ac-
tual intended cursor movement at any time intervals during
a trial. In other words, for each trial, although the final target
label of the trial is known, the true label of each segment is
unknown, which imposes great difficulties in classifier train-
ing. In this paper, we denote this issue as “unlabeled prob-
lem.”
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Figure 1: The diagram of EEG-based BCI system in one-dimen-
sional four-targets cursor-control case.

In [10] Roberts and Penny extracted features using an
AR model and classified them into cursor movement. Since
their method is used in 1D two-targets cursor-control sce-
nario, they can label the training data set, and use standard
Bayesian learning method to train the classifier. In 1D four-
targets cursor-control scenario, which we are discussing here,
Cheng et al. [11] proposed a trialwise method to classify the
cursor target position, and reported results on BCI Compe-
tition 2003 cursor-control data set 2a [13]. Blanchard and
Blankertz [12] described both continuous method and trial-
wise method using common spatial pattern (CSP) for fea-
ture extraction, using Fisher linear discriminant (continu-
ous method) and regularized linear discriminant (trialwise
method) for classification. The results derived from their
methods won the BCI Competition 2003 for cursor-control
data set 2a. As proposed in [12], a simple solution to solve the
unlabeled problem for continuously predicting cursor move-
ment is to only use trials of top and bottom targets for train-
ing the classifier. In this case, they can further label the train-
ing data set by assuming that in trials of top target the subject
would try to make the cursor always go up. Then, they can
use the classifier trained using partial training data set (top
and bottom targets) to perform 4 targets cursor control. As
we have seen from the above discussion, [12] simplified the
unlabeled problem by reducing the number of labels from 2
(up and down) to 1 (either up or down depending on the
target). We feel that the simplification in [12] is done at trial
level, while the actual cursor control is carried out at finer
time interval. For target on top, although the cursor has to
go up to reach the final target, it is not necessarily true that
the cursor always goes up at all time intervals.

In this paper, we propose a statistical learning method to-
wards fully exploiting information contained in the BCI data.
First we divide the training data set into segments whose la-
bels are not known, and then represent the training data set
by assigning a probability to the possible movement (the la-
bel of the segment) at each time interval. Then the unla-
beled problem is solved by treating the uncertain labels as
hidden variables in the lower bound on the log posterior,
and maximizing this lower bound via an EM-like algorithm.

The proposed algorithm can make full use of the incomplete
data without the need for specifying a distribution for the
unknown label. We tested our method on the BCI Compe-
tition 2003 cursor-control data set 2a. The results show that
the averaged classification accuracy of the proposed method
is among the best.

The rest sections of this paper are organized as follows.
The EM algorithm is reviewed in the lower bound point
of view in Section 2. We derive the proposed algorithm in
Section 3. In Section 4, we apply the proposed method in
EEG-based 1D four-targets cursor-control scenario. The ex-
perimental results are analyzed in Section 5. Conclusions are
drawn in Section 6.

2. THE LOWER BOUND INTERPRETATION OF
EMALGORITHMAND ITS EXTENSION

The expectation-maximization (EM) algorithm [14] is an it-
erative optimization algorithm specifically designed for the
probabilistic models with hidden variables. In this section,
we briefly review the lower bound form of the EM algorithm
and its extension. Suppose that Z is the observed random
variable, Y is the hidden (unobserved) variable, and θ is the
model parameter we want to estimate. The maximum a pos-
teriori (MAP) estimation concernsmaximizing the posterior,
or equally the logarithm of the posterior as follows:

L(θ) = lnP(Z, θ) = ln
∑

Y

P(Z,Y , θ). (1)

Generally, the existence of the hidden variable Y will in-
duce the dependencies between the parameters of the model.
Moreover, when the number of hidden variable is large, the
sum over Y is intractable. Thus it is difficult to maximize
L(θ) directly.

To simplify the maximization of L(θ), we derive a lower
bound on L by introducing an auxiliary distributionQY over
the hidden variable as follows:

L(θ) = ln
∑

Y

P(Z,Y , θ) = ln
∑

Y

QY (Y)
P(Z,Y , θ)
QY (Y)

≥
∑

Y

QY (Y) ln
P(Z,Y , θ)
QY (Y)

= F
(
QY , θ

)
,

(2)

where we have made use of Jensen’s inequality. Then the
maximization of L(θ) can be performed by the following two
steps:

E-step: Q(n+1)
Y ←− argmax

QY

[
F
(
QY , θ(n)

)]
,

M-step: θ(n+1) ←− argmax
θ

[
F
(
Q(n+1)

Y , θ
)]
.

(3)

This is the well-known lower bound derivation of the EM
algorithm: F(QY , θ) is the lower bound of L(θ) for any dis-
tribution QY , attaining equality after each E-step. This can
be proved by maximizing the lower bound F(QY , θ) without
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putting any constraints on the distribution QY :

P(Y | Z, θ) = argmax
QY

[
F
(
QY , θ

)]
. (4)

Then the E-step can be rewritten as follows:

E-step: Q(n+1)
Y ←− P

(
Y | Z, θ(n)). (5)

Furthermore, combining (2) and (5), we obtain

L
(
θ(n)

) = F
(
Q(n+1)

Y , θ(n)
)
. (6)

More detailed discussions on the lower bound interpretation
of EM algorithm can be found in [15].

However, for many interesting models it is intractable to
compute the full conditional distribution P(Y | Z, θ). In
these cases we can put constraints on QY (e.g., parameter-
izing QY to be a tractable form) and still perform the above
EM steps to estimate θ. But in general under these constraints
of QY , (4) is no longer held. This kind of algorithms which
can be viewed as a computationally tractable approximation
to the EM algorithm has been introduced in [16].

3. THE PROPOSED ALGORITHM FOR CONTINUOUS
CURSOR PREDICTION

In this section, we propose a statistical framework to fully
exploit information contained in the BCI data by solving the
unlabeled problem based on the EM algorithm. First we for-
mulate the learning problem as follows. Let D = {xi, zi}ND

i=1
stand for the learning data set of ND independent and iden-
tically distributed (i.i.d.) items, where xi denotes the ith trial
and zi denotes the target label of the ith trial. For continuous
prediction, each trial is divided into certain number of seg-
ments. Let xi = {xi1, . . . , xi j , . . . , xiJ}, where xi j denotes the
jth segment of the ith trial and J is the total number of the
segments in a trial. Let yi j ∈ Φ denote the label of xi j , where
Φ is the label set of segments. In this learning problem the
segment label yi j is hidden. Let θ denote the parameters of
classifier which maps the input space of xi j into label set Φ.

Based on the Bayesian theorem, parameter θ can be esti-
mated under MAP criterion:

argmax
θ

P(θ | D) = argmax
θ

[
P(D, θ)

]

= argmax
θ

[
P(D | θ)P(θ)]. (7)

Under the i.i.d. assumption of data set D, the likelihood
P(D | θ) can be formulated as follows (strictly we only model
the distribution of {zi}ND

i=1 as suggested in [17], which falls
into conditional Bayesian inference described in [18]):

P(D | θ) =
∏

i

P
(
zi | xi, θ

)
. (8)

To estimate parameter θ, since the label of each segment is
not known exactly, we sum the joint probability P(zi, yi, j=1:J |
xi, θ) on the hidden labels and model P(zi | xi, θ) as follows:

P
(
zi | xi, θ

) =
∑

yi, j=1:J
P
(
zi, yi, j=1:J | xi, θ

)
, (9)

P
(
zi, yi, j=1:J | xi, θ

)

= P
(
zi | yi, j=1:J

)
P
(
yi, j=1:J | xi, j=1:J , θ

)

= P
(
yi, j=1:J | zi

)
P
(
zi
)

P
(
yi, j=1:J

) P
(
yi, j=1:J | xi, j=1:J , θ

)

= 1
ZD

J∏

j=1

[
P
(
yi j | zi

)
P
(
yi j | xi j , θ

)]
,

(10)

where yi, j=1:J denotes variable set {yi1, . . . , yi j , . . . , yiJ}, xi, j=1:J
denotes variable set {xi1, . . . , xi j , . . . , xiJ}, and in the last step
of (10) the priors are set to be uniform distribution and the
posteriors over hidden variables are fully factorized. From
the above equations we obtain the logarithm of the posterior
as follows:

lnP(D, θ) =
∑

i, j

ln
∑

yi j∈Φ

[
P
(
yi j | zi

)
P
(
yi j | xi j , θ

)]
+ lnP(θ),

(11)

where some constants are omitted.
To derive a lower bound on lnP(D, θ), we introduce the

auxiliary distribution Q(yi j | zi). It should be noted that the
function form of Q(yi j | zi) is only determined by the value
of zi. Then according to (2), we obtain the lower bound as
follows:

∑

i, j

∑

yi j∈Φ

Q
(
yi j | zi

)
ln

P
(
yi j | zi

)
P
(
yi j | xi j , θ

)

Q
(
yi j | zi

) + lnP(θ).

(12)

And as suggested in [17], the prior P(θ) is modeled as the
Gaussian distribution:

P(θ) = N
[
0,α−1I

]
, (13)

where α is the precision parameter.
Therefore, by performing (3), the estimation of Q(yi j |

zi) and θ can be achieved via the following EM steps:

M-step:

θ(n+1) = argmax
θ

{
∑

i, j

∑

yi j∈Φ
Q(n)(yi j | zi

)

× ln
P
(
yi j | xi j , θ

)

Q

(n)(
yi j | zi

)− α

2
θTθ

}
,

(14)

E-step:

Q(n+1)(yi j | zi
)

=
P
(
yi j |zi

)
Nzi

√∏
m∈{m|zm=zi}

∏
n P
(
ymn= yi j |xmn, θ(n+1)

)

∑
ymn∈Φ P

(
ymn |zi

)
Nzi

√∏
m∈{m|zm=zi}

∏
n P
(
ymn |xmn, θ(n+1)

) ,

(15)
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where Nzi is the total number of segments belonging to the
trials having the same target label zi.

To see further about the proposed algorithm, we rewrite
(14) as follows:

θ(n+1) = argmin
θ

{
∑

i, j

∑

yi j∈Φ
Q(n)(yi j | zi

)

× ln
Q(n)

(
yi j | zi

)

P
(
yi j | xi j , θ

) +
α

2
θTθ

}
,

(16)

where the precision parameter α here acts as a regularization
constant. From (16) we can see that in the M-step Q(n)(yi j |
zi) is used to supervize the optimization process by minimiz-
ing the Kullback-Leibler distance between Q(n)(yi j | zi) and
P(yi j | xi j , θ) according to θ, which will let P(yi j | xi j , θ)
close to Q(n)(yi j | zi). In the E-step, Q(n+1)(yi j | zi) is it-
eratively updated by considering both the prior knowledge
P(yi j | zi) and the information extracted from training data.
Moreover, in binary classification case, let Φ = {C1,C0} be
the segment label set, where C1, C0 stand for the two classes.
If we assume the label of xi j is known and set Q(n)(yi j | zi)
to be delta function δ(yi j ,C1), then the above algorithm will
degenerate to

θMAP = argmin
θ

{
−
∑

i, j

[
δ
(
yi j ,C1

)
lnP

(
C1 | xi j , θ

)

+
(
1− δ

(
yi j ,C1

))

× ln
(
1−P(C1 | xi j , θ

))]
+
α

2
θTθ

}
,

(17)

where θMAP is the MAP estimation of parameter θ. This cri-
terion has been successfully used in [10]. For comparison, we
take this method as baseline.

To estimate θ in the M-step, we have to model classifier
P(yi j | xi j , θ) first. For simplicity let us model P(yi j | xi j , θ)
in binary classification case as follows:

P
(
C1 | xi j , θ) = 1[

1 + exp
(−θTxi j

)] = g
(
θTxi j

) = g(a)

P
(
C0 | xi j , θ

) = 1− P
(
C1 | xi j , θ

)
,

(18)

where a denotes θTxi j . Based on this logistic model, in the
M-step we use conjugate gradient algorithm to find the min-
imum of the target function in (16) and then update the
regularization constant α as part of the Bayesian learning
paradigm using a second level of Bayesian inference [19], as
follows:

α(n+1) =
(
K − α(n) trace

(
H−1))

θTθ
, (19)

where K is the dimension of θ, H is Hessian matrix.
We summarize the proposed algorithm as follows.

(1) n =0, set the initial values θ(0), Q(0)(yi j | zi), α(0), and
the prior P(yi j | zi).

(2) Perform conjugate gradient algorithm on the target
function in (16) to estimate parameter θ(n+1) and up-
date α(n+1) using (19).

(3) Update Q(n+1)(yi j | zi) using (15).
(4) n = n + 1, go to (2) until

∣∣Q(n+1)(C1 | zi
)−Q(n)(C1 | zi

)∣∣ < thresholdP ,
∣∣∣∣

[
α(n+1) − α(n)

]

α(n)

∣∣∣∣ < thresholdα .
(20)

4. IMPLEMENTATION OF THE PROPOSED
ALGORITHM

In this section we evaluated the proposed algorithm in cur-
sor control problem, specifically for 1D four-targets cursor
control based on mu/beta rhythms.

4.1. Feature extraction

Our aim in the feature extraction part is to increase the SNR
ratio and extract the relevant features centralizing on the al-
pha and beta bands from EEG data. The EEG inputs were
sampled at 160Hz and enhanced using a band pass IIR filter
with the pass band around 9–31Hz. Then, the common spa-
tial patterns (CSP) analysis was performed on the samples.
In binary classification case, CSP analysis [20] can derive
weights for linear combinations of the data collected from
every channel to get several (usually four) most discrimina-
tive spatial components. In our algorithm, the data belong-
ing to target 1 and 4 served as the two classes. Since not all
the channels were relevant for predicting cursor movement,
only a subset of channels was used to do CSP analysis for each
subject. Moreover, in this paper we just transformed EEG sig-
nal into the subspace of the most discriminative CSP spatial
components. After the above processing, we assume that the
EEG signal of each trial is in a 4× 368 matrix, where 4 is the
number of CSP components and 368 is the length of each
trial. Then the whole trials xi were blocked into overlapping
segments of 300 milliseconds (48 samples) in duration where
the overlap was set to 100 milliseconds (16 samples). There-
fore, the data matrix of each segment is 4× 48. The relevant
spectral power features were extracted from each segment af-
ter performing FFT on the roles of the segment matrix. Fur-
thermore, in order to regard the bias weight of linear part
θTxi j in the classifier as an element of the parameter vector
θ, a constant element “1” is added at the end of the feature
vector. Finally these feature vectors were transmitted to the
classifier for further processing.

4.2. Classification algorithm

The central part of our BCI system is the classification al-
gorithm. We applied the proposed classifier here to translate
feature vectors xi j into commands to control cursor move-
ment. However under the above model, the output of classi-
fier P(yi j | xi j , θ) has closed relation with parameter θ. Thus
the estimation error of θ will make the output of the classifier
overconfident. To solve this problem, we adopt the Bayesian
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learning treatment as suggested in [21] to integrate out the
parameter θ and obtain the modified classifier as follows:

P
(
C1 | xi j ,D

) � g
(
k
(
σ2
(
xi j
))
aMAP

(
xi j
))
, (21)

where aMAP(xi j) = θTMAPxi j , k(σ
2) = (1 + πσ2/8)−1/2, and

σ2 = xTi jH
−1xi j .

In the training period, the prior P(yi j | zi) is set to be flat.
The initial values and thresholds are set as follows: θ(0) = 0,
α(0) = 0.5, thresholdP = 0.05, and thresholdα = 0.01. The
setting of initial value Q(0)(yi j | zi) will be further discussed
in the experimental part.

4.3. Control and decision

Let di j denote the displacement of cursor movement at the
jth time interval of the ith trial, then we obtain

di j =
[
P
(
C1 | xi j ,D

)− 0.5
]

J
, (22)

where J is the total number of the segments of the ith trial.
Then we formulated the vertical displacement Dij between
the middle line of the screen and the cursor at the jth-time
interval of the ith trial as follows:

Dij =
j∑

k=1
dik. (23)

To evaluate the performance of our algorithm, three
thresholds t3 < t2 < t1 were chosen to classify the final dis-
tanceDiJ into four categories, such that trial xi belongs to tar-
get 1 if t1 < DiJ , and trial xi belongs to target 2 if t2 < DiJ < t1,
and so forth. Since ti is scale variable and DiJ ∈ [−0.5, 0.5],
we perform one-dimensional search for each ti according to
the classification accuracy between neighbor targets in train-
ing period, for example, t1 is set to achieve the best accuracy
between targets 1 and 2.

5. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed method, we
tested it on the BCI Competition 2003 data set 2a. This
data set consists of ten 30-minutes sessions for each of three
subjects (AA, BB, CC). In each session, there are 192 trials.
The training set consists of all the trials of 1–6 sessions. The
test set consists of 7–10 sessions. Both the proposed method
and two state-of-the-art methods: Bayesian logistic regres-
sion (baseline) and Fisher linear discriminant (FLD) [17],
were applied on this data set. In the proposed method, all the
trials of the first six sections were used to train the model.
The rest sections were used for testing. To set the initial value
ofQ(yi j|zi), a six-fold cross-validation was performed on the
training data set. In each fold we trained the classifier on five
sections and tested on the section which was left out. This
procedure was then repeated until all the sections had been
tested. Since in the baseline and the FLD methods we had to
assign label to each segment, as proposed in [12], we assumed
the labels for the segments of target 1 belong to C1 and the

Table 1: A comparison of classification accuracies and information
transfer rates of different methods for different subjects.

Accuracy (%)
Trans. rate (bits/trial)

AA BB CC Avg

Proposed 71.1 67.6 71.2 70 0.643

Baseline 68.4 63.5 66.3 66.1 0.539

FLD 70.1 65.2 68.9 68.1 0.591

labels of target 4 belong to C0, and used the trials belong-
ing to the first and fourth targets of the first six sections to
train the classifier. In all methods, first, the spatial and spec-
tral features were extracted from the EEG data. Then in the
training stage, the model parameter θ was estimated and the
three thresholds {ti}i=1,2,3 were chosen. In the testing stage,
we calculated P(C1 | xi j ,D) to control the cursor at each time
interval. In the end, the final distance DiJ was classified using
the thresholds. The accuracy was measured by N1/N2, where
N1 is the number of times DiJ falls into the correct interval
and N2 is the total number of tests.

5.1. Results and comparisons

In order to benchmark the performance of the proposed al-
gorithm, the averaged accuracies of each method are listed in
Table 1, where “Avg” denotes the averaged accuracy over all
the subjects. We also converted the overall classification ac-
curacy into information transfer rate as proposed in [9] by
using

B = log2N + p log2 p + (1− p) log2

[
1− p

N − 1

]
, (24)

where B is bits, N is the number of possible targets (four in
this case), and p is the probability that the target will be hit
(i.e., accuracy). From Table 1 we can see that the proposed
method outperforms all the other methods on every subject.
The improvement of the averaged accuracy over all subjects
is up to 4%. Furthermore, the information transfer rate is
increased from 0.539 to 0.643 bits/trial, the improvement is
19% which is considerable for the BCI communication sys-
tem. The above results also show that the performance of the
proposed method is comparable to the most recent methods,
such as Tsinghua’s method (66.0%) [11], Blanchard’s contin-
uous method (68.8%), and trial-wise method (71.8%) [12].

To further study the performance of the proposed
method, we illustrate the accuracies of individual tasks in
Figure 2 and compare them with the baseline method.

From Figure 2 we can see that for the middle targets
(tasks 2 and 3) which are difficult to reach, the proposed
method outperforms baseline method clearly for all the sub-
jects. However for the top and the bottom targets (tasks 1
and 4), the performance improvements are not consistent.
These results show that since we incorporate the unlabeled
segments of tasks 2 and 3 in the training procedure based
on EM algorithm, the information extracted from the train-
ing data set improves the control performance for the middle
targets significantly. But on the other hand this may also
hamper the performance improvement for the top and the
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Figure 2: A comparison of the classification accuracy of individual
task of the proposed method (black) and the baseline (white).

bottom targets according to the baseline. Due to the above
reasons, the overall improvement of the proposed method is
not always significant as compared with other methods, al-
though the proposed method performs more steadily than
baseline method on different targets.

Taking the above discussions as a whole, we can see that
the performance of the BCI system is improved by handling
the uncertainty of segment label properly. The classification
accuracy of our method is among the highest.

5.2. A comparison of error rates with different
initial probabilities

To study the effects of the initial probability, we performed a
six-fold cross-validation on different settings ofQ(0)(yi j | zi).
In binary classification case, only one initial value,Q(0)(yi j =
C1 | zi), needs to be set for individual target zi. Thus, we only
need to set four initial probabilities with respect to different
targets zi in a six-fold cross-validation. For simplicity, in the
rest of this section, we use Q(0)(zi) instead of Q(0)(yi j = C1 |
zi). These initial probabilities are set as follows: first the initial
value for the trials belonging to target one,Q(0)(zi = 1), is set
by using our prior knowledge. Then the rest initial values are
set as follows:

Q(0)(zi = 4
) = 1−Q(0)(zi = 1

)
,

Q(0)(zi = 2
) =

[
2×Q(0)

(
zi = 1

)
+Q(0)

(
zi = 4

)]

3
,

Q(0)(zi = 3) =
[
Q(0)

(
zi = 1

)
+ 2×Q(0)

(
zi = 4

)]

3
.

(25)

In the rest of this section, we take subject CC as an ex-
ample to show the effects of initial probabilities. In our ex-
periment, the initial probability Q(0)(zi = 1) was increased
0.1 at each step from 0.6 to 1. At each step, a six-fold cross-
validation was performed on the training data set. Therefore

we got six convergence values of the initial probability for
each target. Then, we calculated the mean and standard de-
viation of the convergence values for each target. The experi-
mental results with different initial probabilities are depicted
in Figure 3. The convergence property of initial probability is
illustrated in Figure 4.

In the left of Figure 3, we compare the error rates (ERs)
in three conditions: (i) the proposed algorithm (black), (ii)
the proposed algorithm without updating initial probability
(gray), and (iii) the baseline algorithm (white). Since there
are no initial probabilities in the baseline method, the ERs
of the baseline method are the same at each step. From the
left of Figure 3 we can see that at every initial probability the
performance of the BCI system is greatly improved by up-
dating the initial probability iteratively and the ER reaches
its minimum at Q(0)(zi = 1) = 0.8. Furthermore, without
updating initial probability the ERs of our method are still
lower than those of baseline method. Therefore the results
in the left of Figure 3 confirm that it is effective to introduce
Q(yi j | zi) in the proposed algorithm to improve the per-
formance of the classifier. In the right of Figure 3 we further
compare the ERs in the first two conditions described above.
The comparison is detailed to the error rates of different tar-
gets at different initial probabilities. In the right of Figure 3
ERs are significantly reduced on targets 2 and 3 by updat-
ing initial probability iteratively. For target 1 the improve-
ment is slight, and for target 4 the performance is enhanced
at Q(0)(zi = 1) = 0.8.

It is important to choose initial probability for the
proposed algorithm. From Figure 4 we can see that when
Q(0)(zi = 1) is small (near 0.6), most of the initial probabili-
ties are not changed after update. Thus in this case, the ben-
efits of the update procedure are reduced, especially for tar-
gets 2 and 3 (right of Figure 3) and the averaged ER reaches
its maximum (left of Figure 3, black bar). In the other case,
whenQ(0)(zi = 1) is large (near 1), the standard deviations of
the convergence probabilities in the six-fold cross-validation
are increased, which means that the convergence values of
the same initial probability are not consistent. This hampers
the performance improvement of the classifier, which is con-
firmed by the fact that when Q(0)(zi = 1) approaches 1, the
ERs are increased (left of Figure 3, black bar). Therefore, the
experimental results show that Q(0)(zi = 1) = 0.8 is the best
initial value for this subject.

From the above discussions, we can see that although ERs
vary with the initial values ofQ(0)(zi = 1), the proposed opti-
mization algorithm clearly improves the performance of cur-
sor control system at every initial probability, especially for
the targets in the middle position. By choosing proper initial
probability, the performance of the proposed algorithm can
be improved.

5.3. A further study of the efficacy of the
proposed algorithm

In this section, we demonstrate the efficacy of the proposed
algorithm more in depth in two aspects. In the first as-
pect, we illustrate the control performance during a trial for
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Figure 3: A comparison of the error rates (ERs) with different initial probabilities for subject CC. In the left, we compare the ERs averaged
over targets with different initial probabilities in three conditions, the proposed method (black), the proposed method without updating
initial probability (gray), and the baseline method (white). In the right, we compare ERs with and without updating initial probability in
detail. There are five groups of error bars, and each group contains the error bars of the four targets (targets 1 to 4, from left to right). In
each group, the bars with white top indicate that ER is reduced after update, and the length of the white part denotes that the amount of ER
has been reduced. Similarly, the bars with black top indicate that ER is increased after update. The bars which are all black indicate that ER
is unchanged after update.
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Figure 4: The convergence property of initial probability for sub-
ject CC. In this figure, we draw the mean values of the convergent
probabilities and mark them with standard deviations at different
initial values. For comparison, we also depict the curves of initial
probability.

individual subject by categorizingDij into the four targets us-
ing the estimated thresholds at each control step. The results
of the averaged cursor control accuracies are illustrated at the

top of Figure 5. It shows that for all the subjects the accu-
racy increases sharply during the middle of the performance,
which causes the form of the accuracy curves to be sigmoid.
From the top of Figure 5, we can see that for subject AA, these
two methods perform closely. While for the other two sub-
jects, the proposed method (�) performs clearly better than
the baseline method (�) during the whole trial. Especially,
for subject BB the classification accuracies are much higher
than those of baseline almost at every control step from the
beginning of the trial. These improvements indicate that by
using the proposed method to translate EEG features into
commands, one can achieve better performance consuming
less time. This character is important for the EEG-based on-
line cursor-control system.

In the second aspect, we manually corrupt the target
labels of the training data with some fixed noise rate and
show the effects of the noise rate with respect to the baseline
method at the bottom of Figure 5. For each subject, the noise
rate was increased 0.1 at each step from 0 to 0.5. The results
show that although increasing the mislabel rate decreases the
performance of both the two methods, the classification ac-
curacies are much better than the random accuracy 25% (in
four targets case), even the training data is half corrupted.

Furthermore, by comparing the two methods at the bot-
tom of Figure 5, firstly, we can see that the proposed al-
gorithm outperforms the baseline clearly almost at every
noise rate on all the subjects by extracting information from
the corrupted data effectively based on the EM algorithm.
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Figure 5: We further study the efficacy of the proposed algorithm in two aspects. At the top, we compare the control performance between
the proposed method (�) and the baseline (�). At the bottom, the classification accuracies at different noise rates are compared.

Secondly, we also find that when the noise rate increases the
advantage of the proposed algorithm is reduced, which is due
to the fact that the proposed method has more parameters to
be optimized than the baseline.

6. CONCLUSIONS

In this paper, we proposed a novel statistical learningmethod
based on the EM algorithm to learn parameters of a classi-
fier under MAP criterion. In most of the current methods
the authors labeled the segments of the EEG data empiri-
cally. This will lead to the under-use of the training data.
In the proposed method, we solved the “unlabeled problem”
by treating the uncertain labels as the hidden variables in
the lower bound on the log posterior. The parameters of the
model were estimated by maximizing this lower bound using
an EM-like algorithm. By solving the unlabeled problem, the
proposed method can fully exploit information contained in
the BCI data and improve the performance of the cursor con-
trol system. The experimental results have shown that the av-
eraged classification accuracy of the proposed algorithm is
higher than the results of other widely used methods up to
4% and the information transfer rate is improved up to 19%.

Furthermore, the proposed method can achieve better per-
formance consuming less time than the baseline, which is a
desirable property for online application.

Moreover, our algorithm still has the potentials to be
improved. From (10) we can see that the proposed crite-
rion is based on the complete factorization of the likelihood
P(D | θ). Thus in our method the dependence between
neighbor segments has not been considered. While brain is
a complex dynamic system, and EEG signal is a typical kind
of nonstationary time series. Thus our proposed model is an
approximation of the actual one. Therefore, one of the re-
search directions is to add the dependence between segments
(or predictions) into our model to model the nonstationary
property of the EEG signal. As a final remark, although our
method is derived to solve the cursor control problem of BCI
system, the same formulation can also be used to handle the
“unlabeled problem” in other pattern recognition systems.
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