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We introduce a novel method for secure computation of biometric hash on dynamic hand signatures using BioPhasor mixing and
2N discretization. The use of BioPhasor as the mixing process provides a one-way transformation that precludes exact recovery
of the biometric vector from compromised hashes and stolen tokens. In addition, our user-specific 2N discretization acts both
as an error correction step as well as a real-to-binary space converter. We also propose a new method of extracting compressed
representation of dynamic hand signatures using discrete wavelet transform (DWT) and discrete fourier transform (DFT).Without
the conventional use of dynamic time warping, the proposed method avoids storage of user’s hand signature template. This is an
important consideration for protecting the privacy of the biometric owner. Our results show that the proposed method could
produce stable and distinguishable bit strings with equal error rates (EERs) of 0% and 9.4% for random and skilled forgeries for
stolen token (worst case) scenario, and 0% for both forgeries in the genuine token (optimal) scenario.
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1. INTRODUCTION

Recently there is a growing interest in applying biometric
for authentication, especially in deriving compact represen-
tation of the biometric for cryptographic uses or as encryp-
tion keys. This is because existing authentication methods
are based on password and cryptographic keys, which are
stolen easily, are not sufficiently secure since they are based
on what you know and what you have. Using human biomet-
ric input provides an additional authentication factor based
on what you are. Many good cryptographic techniques exist
but since biometric data are not exactly reproducible at each
capture, new frameworks and formalisms related to integrat-
ing biometrics into cryptosystems need to be considered. In
this paper, we chose dynamic hand signatures as the biomet-
ric of study for computing biometric keys due to its wide so-
cial acceptance and low cost of implementation. We focus on
using dynamic hand signatures rather than just off line hand
signatures for higher security. Dynamic hand signatures are
more difficult to copy as they require the capture of timing
information from the signing action and other behavioral
characteristics such as the pressure imposed, altitude of the

pen and azimuth. Past research into hand signature had fo-
cused on increasing the recognition rate between forged and
genuine signatures regardless of storage security and capac-
ity. However, in the recent years, with increasing awareness
for user privacy especially on the internet and for remote ac-
cess, there has been a developing body of literature on the
protection of biometric data and secure management of keys.

Existingmethods of extractions typically require the stor-
age of the template hand signature signals. This is because a
template signal is needed to adjust nonlinear variations in
the input hand signature signals. A few variations exist for
the storage of user templates: (1) use of tamper-proof cards
and (2) centralized server. The former which normally re-
quires some form of PIN or password for access permission
to the template is not secure as the PIN is meant to be mem-
orized and is hence short and easy to be guessed. Storing the
biometric in a centralized server also has serious security im-
plication if the server is compromised.

From the key management perspective, if the biometric
template is compromised, the user needs to change both his
key and biometric template. Note that for physiological bio-
metric such as fingerprint, iris, DNA, and such, replacement
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of biometric secret is not even possible. The solution is to in-
corporate another independent factor for authentication us-
ing random token which could be stored in a tamper-proof
card. The biometric would then be combined on the fly with
this random token in a one-way manner so that the resulting
biometric hash would not reveal information about the bio-
metric. In the event of key compromise, a new key would be
reissued using another random token but not the biometric.

2. LITERATURE REVIEW

There are two main groups of work in this area: (1) pure bio-
metric approach, and (2) biometric + user-token approach.
The difference between the two is that the second method
incorporates a random token for each user, which provides
better security as authentication requires the input of an-
other independent token, which is stored in a tamper-proof
device. Another advantage is that the keys are cancelable for
the second case as the keys are not solely dependent on the
biometric alone. The first biometric hash on dynamic hand
signature was proposed by Vielhauer et al. in [1] which used a
50-feature-parameter set from dynamic hand signature and
an interval matrix to store the upper and lower thresholds
permissible for correct identification. The authors also pro-
posed using written passwords for authentication in [2]. An-
other scheme similar to [1, 2] is Feng-Chan [3] which also
used specific boundaries for each user. The scheme uses 43
features (but not all are published) and reported equal error
rate (EER) of 8% but the uniqueness of the output vector is
only 1 in 240. Since these methods are parameter-based, the
feature extraction is limited and short, and could not sup-
port use in cryptographic systems as they are small in key
space, the keys are not cancelable andmore importantly, they
are generally low in entropy. They are also not secure due to
storage of user-specific statistical boundaries that could be
used to recover the biometric features. Chang et al. [4] on
the other hand used function-based extraction using statis-
tical methods like principal component analysis on face data
but the keys are however not cancelable.

Soutar et al. [5], Juels and Wattenberg [6], Juels and Su-
dan [7], Clancy et al. [8], and Goh and Ngo [9] proposed
to incorporate random token into the biometric to allow re-
placeable or cancelable keys. Soutar et al. [5] proposed the
biometric encryptionmethod which required the correlation
of the biometric image with a predesigned filter, followed by
key generation using a lookup table. Juels andWattenberg [6]
and Juels and Sudan [7], respectively, proposed fuzzy com-
mitment (using error correction codes and XOR) and fuzzy
vault which extends the former by using secret sharing to
hide the secret. Goh and Ngo [9] used the method of iterative
inner product which has the overall effect of random projec-
tion of biometric vector based on random token, while pre-
serving the distances within the biometric vector. Yip et al.
[10] combined the methods of Goh and Ngo [9] and Chang
et al. [4] to enable longer and cancelable or replaceable keys
but however, the user-specific key statistics required to cor-
rect the feature vector allows an adversary to easily guess
the most probable combination from the compromised user
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Figure 1: Outline of proposed scheme.

boundaries information and reduced number of segments,
for example, smaller search space. In another paper [11] Yip
et al. proposed a modification to 2N discretization and fixed
the boundaries to deter guessing based on boundaries and
segment size. However, the use of iterative inner product of
Goh and Ngo introduced a security loophole which enables
partial recovery of the biometric feature through multiple
extractions of the biometric. In particular, this problem lies
in the straightforward multiplication operation of a random
basis and the biometric feature which allows an adversary
to solve for the biometric vector through QR factorization
as shown in [12]. Moreover, the scheme in [11] is globally
tuned to provide higher security but the recognition rate is
relatively poor.

In this paper, we would like to address the following is-
sues with past implementation of biometric hashing on hand
signature.

(i) Hand signature template storage. Many good recog-
nition schemes like Kholmatov-Yanikoglu [13], Feng-Chan
[14], Martinez et al. [15], and Hastie et al. [16] used dynamic
time warping for distancemeasure but thesemethods require
storage of the template signature. It is not recommended that
the hand signature template be stored in a centralized server
or locally in the event of key compromise because the bio-
metric template has permanent association with the user.

(ii) Noncancelable biometric. Previous schemes of Viel-
hauer et al. [1] and Feng-Chan [3] which relied solely on the
biometric are not secure and are inconvenient as the biomet-
ric keys cannot be reissued if stolen.

(iii) Poor recognition rate for high security. Previous
scheme of Yip et al. [11] assumes globally tuned parame-
ters which do not enhance the local recognition rate, that is,
skilled forgery EER is 17% and random forgery EER is 7%.

(iv) Partial leakage of biometric data. The use of iterative
inner product [10, 11] leaks partial biometric data if used
multiple times.

3. PROPOSED SCHEME

In this paper, we propose a new method for deriving cance-
lable hand signature key based on the random mixing step
of BioPhasor and user-specific 2N discretization for better
recognition rate.We summarize our proposed scheme in Fig-
ure. Our proposed scheme utilized dynamic features such as
time stamps of signature points, pressure, azimuth, and al-
titude. A new function-based feature extraction method is
introduced, combining discrete wavelet transform (DWT)
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Figure 2: DWT-DFT feature extraction.

for location-sensitive compression and discrete fourier trans-
form (DFT) for frequency analysis to obtain compact repre-
sentation of the biometric feature. We chose the function-
based approach (based on the whole input signals) over
parameter-based approach (using specific features such as
number of pen ups, duration of signature) to avoid the need
to perform individual feature selection and obtain longer
keys. The extracted biometric feature is then randomlymixed
with a user token T , using the BioPhasor mixing method,
which “encrypts” the biometric secret in a one-way manner.
A pseudorandom number generator (PRNG) is used to gen-
erate a random basis for use in the BioPhasor mixing process.
Then, the randomly extracted biometric feature undergoes a
real-to-binary conversion using 2N discretization, with the
help of user-specific statistics. Only discretization segment
sizes are considered so that they do not reveal original in-
formation that could be used for reconstruction of the bio-
metric feature. Finally, we require the use of Gray encoding
to ensure that discretized segments that are sufficiently close
to the genuine distribution have lower Hamming distances
to the genuine index.

3.1. DWT-DFT biometric feature extraction

We applied a hybrid of DWT and DFT methods for the
biometric feature extraction as depicted in Figure 2. DWT
was chosen due to its good localization feature which gave
a more accurate model for compression without losing im-
portant information such as sudden peaks or stops as shown
by da Silva and de Freitas [17], Deng et al. [18], Lejtman and
George [19] and Nakanishi et al. [20]. Then DFT threshold-
based compression as by Lam and Kamins [21] was per-
formed on the DWT-compressed vector to further remove
high-frequency coefficients, resulting in a very compact rep-
resentation of the dynamic signature features.

We assume a pressure-sensitive pen and tablet for captur-
ing the online signature signals in terms of pressure informa-
tion (p), pen altitude (a), and azimuth (az) for each point.
Since the points are sampled consistently (10milliseconds),
no resampling was performed and the pen-down segments
(detected as points between two pen downs) are concate-
nated to form one single signal. Each signal is then com-
pressed with the DWT-DFT method described below.

The DWT involves the selection of dyadic (powers of
two) scales and positions, and applying them to the mother
wavelet. Each dynamic signature signal can be modeled as
function f (t) ∈ L2(R) that defines space of square integrable

functions. Its wavelet transform can be represented as

f (t) =
L∑

j=1

∞∑

k=−∞
d( j, k)ψ

(
2− j t − k

)

+
∞∑

k=−∞
a(L, k)φ

(
2−Lt − k

)
(1)

with ψ(t) the mother wavelet, φ(t) the scaling function,
and the orthonormal basis for L2(R) defined by the set of
functions
{√

2−lφ
(
2−Lt − k

)
,
√
2− jψ

(
2− j t − k

) | j ≤ L, j, k,L ∈ Z
}
.

(2)

The approximation coefficients at scale L are defined as

a(L, k) = 1√
2L

∫∞

−∞
f (t)φ

(
2−Lt − k

)
dt (3)

while the detail coefficients at scale j are

d( j, k) = 1√
2 j

∫∞

−∞
f (t)ψ

(
2− j t − k

)
dt. (4)

From (1), the wavelet decomposition at any level L, fL(t) can
be obtained from approximation coefficient a(L, k) and lay-
ers of detail coefficients {d( j, k) | j ≤ L}. The selection of the
optimal decomposition level in the hierarchy, however, relies
on the experimental data used. In our case, we are also inter-
ested in compressing the dynamic hand signature signal by
zeroing wavelet coefficients below a certain threshold, to ob-
tain the most compact representation as the feature vector.
The global threshold compression method which kept the
largest absolute value coefficients and set the others to zero
is used. From our experiments (not shown here due to space
constraint), we found that the Daubechies 6 (DB6) mother
wavelet with decomposition level 2 and compression rate of
60% gave the optimal results, that is, the lowest error rates
between genuine and forgery signature distributions.

Each compressed wavelet F(t) = compress ( f2(t)) can
then be represented by a Fourier integral of form as g(w) =∫∞
−∞ F(t)e− jwtdt with j = √−1. The DFT is performed using
FFT and the resulting g(w) is then normalized via division

by
√∑

g2i so that |g| = 1. Each signal is further truncated
using a global thresholding method to obtain G(w). The first
18 significant amplitudes of the transforms are selected based
on the lowest error rates (in terms of Euclidean distance) be-
tween similarly obtained compressed vectors from genuine
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and forgery signatures in experimental database [23]. We
used this method to determine the best configuration to en-
sure that the highest separation between the extracted vec-
tors for the two contrasting classes is retained. In our experi-
ments, we selected the real, imaginary, and magnitude com-
ponents of (1) tFFT(tDWT(p)) and (2) tFFT(tDWT(a)), and
(3) tFFT(tDWT(az)) with tFFT and tDWT being the com-
pression methods described in F(t) and G(w), as dynamic
features. Again, these features were chosen because this com-
bination provided the lowest error rates between extracted
genuine and forgery vectors from database [23]. Finally, all
the DWT-FFT compressed vectors are concatenated and nor-
malized again to form the biometric feature, b ∈ Rn of length
n. In our experiment, n = 3 FFT components ×3 dynamic
features ×18 significant amplitudes = 162. Note that each
original dynamic feature signal is not fixed; each averaged
at 208.2 and ranged from 80 to 713 points. Hence, the pro-
posed feature extraction method is able to produce a fixed
hash from varying signature inputs.

3.2. Random extraction of biometric
feature using BioPhasor

The outline of the BioPhasor [22] mixing step follows.
(1) At enrollment, generate secret random token T using

a PRNG, for example, Blum-Blum-Shub generator and store
T in a tamper-proof card.

(2) To compute the random basis, generate m < n num-
ber of random vectors ti ∈ Rn

R with subscript R denoting that
the number is generated randomly using T as the seed, n as
the length of the biometric feature, and an integer m. Then,
orthonormalize∀ti using the Gram-Schmidt method.

(3) Compute hi = [
∑n

j=1 arctan((bj)q/ti, j)]/n, where q ∈
Z for i = 1, . . . ,m. The parameter q tunes the magnitude of
the biometric feature element and from our experiment on
actual dynamic signature database, q = 2 provided the lowest
error rate in terms of Euclidean distance between h vectors
from genuine and forged signatures.

Since arctan(x)+ arctan(x−1) = π/2, the projected vector
can be rewritten as hi = [

∑n
j=1(π/2− arctan((ti, j)/(bj)q))]/n

with q = 2, which has a more complicated transforma-
tion than random projection using iterative inner product
used in earlier work [11]. In particular, the effect is a one-
to-one arctan transformation of the random projection of
the inverse of biometric vector bonto bounded range of
(−π/2,π/2), followed by reflection of the arctan projected
space along the x-axis and displacement of π/2.

3.3. User-specific 2N discretization

2N discretization is achieved by dividing the h vector element
space into 2N segments by adjusting to each user standard
deviation and the implementation is outlined below.

(1) At enrollment, compute user-specific standard devia-

tion, stdi =
√
(
∑K

k=1[hi,k − hi,k])2/K forK = 10 is the number

of training sample, and mean hi,k, for each element in h.

(2) Estimate and store the number of segments in terms
of bit size, ni for each ith element in h is defined as

ni =
{
N | min

[
abs

(
π/2− (−π/2)

2N
− stdi×2× kind

)]
,

N = 1, . . . , 30
}

(5)

for i = 1, . . . ,n and kind, is a tunable constant for determining
how many times of the standard deviation should be consid-
ered for the width of each segment. Maximum value of N is
arbitrarily limited to 30 to avoid too many bits used for one
representative.

(3) At verification, the discretized vector for random pro-
jected test input h is di, defined as

di =
⌊[

hi − (−π/2)] · 2ni
π/2− (−π/2)

⌋
(6)

with �·� denoting the floor function.
(4) Convert to binary representation using Gray encod-

ing, pi = gray, (di) because consecutive Gray codes differ by
one bit. This ensures that further states from the genuine re-
gion, that is, occurring with high probability from imposter
test input would have higher Hamming distances.

(5) Perform user-specific permutation by using the
PRNG to retrieve another random sequence of indices s (gen-
erated based on stored T as the seed), by index sorting to
obtain the permutated vector ki = psi . The additional per-
mutation step serves to create diffusion to spread the effect
of each element to the whole key space.

4. EXPERIMENTS AND SECURITY ANALYSIS

We tested the proposed algorithm with Task 2 training
database of the signature verification competition [23],
which consists of 40 users with 20 genuine and 20 skilled
forgery samples per user. For every user, the first 10 user
samples are used as training database to obtain the standard
deviations used in our discretization scheme. Since the bio-
metric hashes are in bit strings, we utilized Hamming dis-
tance (number of different bits) as the distance measure-
ment. There are two types of forgeries: (1) random and (2)
skilled. In random forgery, the forger uses his own signature
to access the system. For random forgery error rate evalu-
ation, we compare the remaining 10 test signature keys for
each user with every other user. In skilled forgery, the forger
simulates the genuine signature that he is impersonating to
enter into the system. For skilled forgery, we compare the 20
skilled forgery keys with the 10 test genuine signature keys.
To avoid bias in the random numbers, each experiment is re-
peated 5 times with different random numbers for BioPha-
sor mixing to obtain the averaged results presented in this
section.

Table 1 shows the performance of the various configura-
tions of our proposed algorithm. The Hamming distribution
measurements, in terms of mean and standard deviations,
are denoted as Mean-[Type] and Std-[Type] with [Type] in-
dicating the distribution for genuine (G), random forgery
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Table 1: Comparison of EER and mean distribution for various configurations of kind.

Type kind Bits EER-R EER-S Mean-G Std-G Mean-R Std-R Mean-S Std-S

Bio−Euclidean 2 162 10.833 11.780 0.014 0.008 0.378 0.015 0.149 0.016

Bio−discretized 3.0 1610 0.000 14.278 0.017 0.008 0.447 0.011 0.048 0.018

Bio+gen token 0.2 1618 0.000 0.000 0.061 0.030 0.253 0.025 0.246 0.008

Bio+gen token 0.4 1607 0.000 0.000 0.061 0.030 0.346 0.075 0.246 0.008

Bio+gen token 0.6 1560 0.000 0.000 0.131 0.030 0.449 0.012 0.279 0.008

Bio+gen token 0.8 1510 0.000 0.000 0.101 0.031 0.441 0.013 0.261 0.009

Bio+gen token 1 1470 0.000 0.000 0.083 0.031 0.435 0.013 0.249 0.010

Bio+gen token 2 1310 0.000 0.000 0.069 0.029 0.430 0.013 0.239 0.010

Bio+gen token 3 1209 0.000 0.000 0.060 0.027 0.426 0.013 0.232 0.011

Bio+gen token 4 1148 0.000 0.000 0.035 0.018 0.410 0.014 0.205 0.012

Bio+gen token 5 1088 0.000 0.000 0.025 0.014 0.399 0.014 0.186 0.013

Bio+gen token 6 1047 0.000 0.000 0.020 0.011 0.390 0.015 0.171 0.014

Bio+gen token 7 1007 0.000 0.000 0.017 0.010 0.383 0.015 0.159 0.015

Bio+stolen token 0.2 1620 10.893 10.139 0.061 0.030 0.151 0.035 0.144 0.028

Bio+stolen token 0.4 1606 5.968 10.250 0.061 0.030 0.279 0.121 0.143 0.028

Bio+stolen token 0.6 1563 0.752 10.056 0.059 0.029 0.392 0.076 0.141 0.028

Bio+stolen token 0.8 1503 0.051 9.750 0.055 0.027 0.420 0.043 0.138 0.028

Bio+stolen token 1.0 1468 0.000 9.389 0.051 0.026 0.425 0.032 0.133 0.028

Bio+stolen token 2.0 1312 0.000 9.750 0.036 0.019 0.425 0.021 0.107 0.029

Bio+stolen token 3.0 1208 0.000 10.056 0.027 0.015 0.416 0.021 0.086 0.028

Bio+stolen token 4.0 1151 0.000 10.444 0.021 0.012 0.409 0.021 0.071 0.025

Bio+stolen token 5.0 1091 0.000 11.333 0.018 0.010 0.403 0.021 0.061 0.023

Bio+stolen token 6.0 1046 0.000 11.833 0.015 0.009 0.401 0.021 0.053 0.021

Bio+stolen token 7.0 1012 0.000 12.111 0.014 0.008 0.398 0.022 0.047 0.019

(R), and skilled forgery (S) keys generated from our pro-
posed algorithm.When only biometric features are extracted
using the proposed DWT-FFT and measure in Euclidean dis-
tances, the random forgery equal error rate (EER-R) is 10.8%
while the skilled forgery equal error rate (EER-S) is 11.7%.
Using 2N discretization on biometric (bio-discretized) yields
better results than using the Euclidean distance alone for the
random forgery scenario. However, for the skilled forgery
case, the discretization deteriorates the results from 11.7%
to 14.2%. This shows that using biometric alone as the key
is not sufficient as the entropy is still low and hence, insuf-
ficient for providing good separation between genuine and
skilled forgery cases.

When the biometric is combined with genuine random
token (Bio+gen token), perfect separation is observed for
both types of forgeries, that is, random forgery with imposter
own token EER-R is 0% and skilled forgery with imposter
own token EER-S is 0% (Figure 3). However, this former sce-
nario is only applicable for the case where the user never loses
his token which is not realistic in the real world. We simu-

late the worst case for stolen token scenario (Bio+stolen to-
ken) by using the same set of random numbers on all the
users. Figure 4 shows the optimal configuration (assuming
the stolen token scenario) when kind = 1 which provided
EER-R is 0% and EER-S is 9.39%. Figures 5 and 6 illustrate
the Hamming distribution for worst and optimal cases. Note
also that the mean distribution of the random forgery bit
strings in both cases peaks around 0.45, indicating that each
user bit strings differ by 45% which is desirable.

We consider possible ways the proposed scheme may be
attacked and discuss how the scheme circumvents these at-
tacks.

(1) Brute force attack

The adversary does not have any knowledge of the user key,
token or key statistics. He performs a brute force attack by
trying out all possible combinations of the key. The compu-
tational complexity to guess the key is 2n

′
where n′ is the key

length.
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Figure 3: EER and mean distribution for genuine token scenario.
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(2) Multiple key attacks

The adversary eavesdrops on a genuine user to collect mul-
tiple keys. Since the genuine token is not compromised, the
irreversible random extraction method used in the scheme
would ensure that recovery of the biometric feature is per-
formed at least nonpolynomial time (shown in Proposition 3
later in this section).

(3) Substitution token with skilled forgery attack

In this scenario, the imposter uses his own token and skilled
forgeries of the genuine signature to hopefully generate a
false acceptance into the system. The experimental results are
shown in Table 1 as skilled forgery under Bio+genuine token
category, with EER-S ∼ 0% indicating that using the pro-
posed scheme, this attack will not be successful.
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(4) Known key, token, and user statistics attack

This represents the worst case scenario whereby the adver-
sary has access to the key statistics, that is, segment size infor-
mation and genuine user token. He attempts to combine the
stolen token with forged signature to enter the system. From
Table 1, for the optimal case where kind=1 is used, the prob-
ability of success is with this type of forged entry ∼9.39%.

The security strength of the proposed scheme lies in two
important dispositions: (1) irreversible random extraction of
biometric information via BioPhasor, and (2) transforma-
tion from real-valued biometric feature to index space and
finally to binary bit strings, which can be seen as a form of er-
ror correction to compensate for noisy biometric data as well
as lossy compression. The overall effect of these two steps is
a one-way transformation of the real-space biometric vector
into binary-space hashes without compromising the biomet-
ric secret itself. We proceed to show the security proofs of the
proposed scheme.

Proposition 1. If the BioPhasor vector h and the genuine token
T are known, recovering the biometric feature b exactly cannot
be performed in polynomial time, that is, intractable problem.

Proof. The random vectors ti are known since token T is
known. Hence, we can form the system of equations hi =
[
∑n

j=1 arctan((bj)q/ti, j)]/n=[
∑n

j=1(π/2−arctan(ti, j /(bj)q))]/n
where q ∈ Z and i = 1, . . . ,m < n. Due to the presence of
arctan operation, solving the system of equations cannot be
straightforwardly performed using QR factorization. Also,
since tan(hi) 
=

∑n
j=1(bj)qt−1i, j , we cannot linearly transform

the system of equations into Gaussian eliminated form.
Using Taylor series representation, arctan(ti, j · b

−q
j ) =

∑∞
a=0((−1)(ti, j ·b−qj )2a+1/(2a+1)), we can rewrite the system

of equations as
∑n

j=1[
∑K

a=0(π/2 − (−1)(ti, j · b−qj )2a+1/(2a +
1))] = hi assuming that we truncate the series to K > 1
terms for approximation purpose. It is clear that this system
cannot be solved in polynomial time, hence solving for the
biometric b is an intractable problem.

Proposition 2. 2N discretization is an irreversible process.

Proof. Let the 2N discretization be defined as f ◦ g where
f : (−π/2,π/2)n → Zn

2N and g : Zn
2N → {0, 1}n′ with n′ > n.

Since f is a transformation from real-to-index space, infor-
mation will be lost. In particular, the continuous to discrete
entropy lost is log(2ni) based on individual segment size ni
as mentioned in Cover and Thomas [24]. Hence the 2N dis-
cretization is irreversible.

Proposition 3. The sequence of BioPhasor mixing and 2N dis-
cretization obeys the product principle, that is, the proposed
scheme is a one-way transformation.

Lemma 1. The product principle of Shannon [25] states that
the systematic cascading of different types of ciphers in single
cryptosystems will increase the cipher strength provided that the
product ciphers are associative but not commutative.

Proof. Let individual BioPhasor mixing be defined as fi :
Rn × Rn → (−π/2,π/2) and let the 2N discretization be
g : (−π/2,π/2)n → {0, 1}n′ with n′ > n. Clearly { fi}ni=1 ◦ g
is associative but not commutative since the domain and
range cannot be interchanged. Since f and g are irreversible
from Propositions 1 and 2, and due to the product principle
(Lemma 1), { fi}ni=1 ◦ g is a one-way transformation.

5. CONCLUSION

We believe that the proposed integration of BioPhasor ran-
dom mixing and user-specific 2N discretization is a se-
cure method for deriving biometric hashes from dynamic
hand signatures without jeopardizing the privacy of the user.
Firstly, the avoidance of using dynamic time warping tech-
nique removes the necessity of signature template storage.
Secondly, the random token is an independent factor from
the biometric, hence if compromised, a new token and hash
can be generated but the biometric could still be retained.
A stronger notion of security in BioPhasor compared to
successive inner product mixing used in our earlier scheme
also prevents leakage of sensitive biometric information. We
achieve this via the use of arctan for limiting the range as well
as for disabling recovery of biometric vector using QR factor-
ization. Meanwhile, the application of user-specific 2N dis-
cretization and DWT-DFT feature extraction enabled better
recognition rate especially for the stolen token scenario with
EER-R∼ 0% and EER-S∼ 9.4%. By imposing the number of
segments to 2N and limiting the boundaries across the pop-
ulation, we force the adversary to attempt all combinations
of the segment space, hence, prevent guessing based on user
space.
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