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Vector quantization is a classical method used inmobile communications. Each sequence of d samples of the discretized vocal signal
is associated to the closest d-dimensional codevector of a given set called codebook. Only the binary indices of these codevectors (the
codewords) are transmitted over the channel. Since channels are generally noisy, the codewords received are often slightly different
from the codewords sent. In order to minimize the distortion of the original signal due to this noisy transmission, codevectors
indexed by one-bit different codewords should have a small mutual Euclidean distance. This paper is devoted to this problem of
index assignment of binary codewords to the codevectors. When the vector quantizer has a Gaussian structure, we show that a fast
index assignment algorithm based on simple geometrical and combinatorial considerations can improve the SNR at the receiver by
5dB with respect to a purely random assignment. We also show that in the Gaussian case this algorithm outperforms the classical
combinatorial approach in the field.
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1. INTRODUCTION

Taking into account the constraints of the transmission chan-
nel between the base transceiver stations (BTS) and mobile
stations (MS), voice is coded in mobile networks with the
help of techniques allowing to minimize the quantity of in-
formation required for its good reconstitution. Among these
techniques one finds vector quantization. This method con-
sists of replacing the vector y from Rd, obtained by finite
discretization of the input vocal signal, by the element ci,
taken from a set C = {c0, c1, . . . , cN−1} of vectors of refer-
ence, which is the closest to y. The set C is called a codebook
and its elements the codevectors. Instead of transmitting the
initial discretization y, one transmits a string of 0’s and 1’s
which is the binary codeword b(ci) associated with the code-
vector ci of the codebook C which is the closest to y. Because
of some interfering noises on the transmission channel, the
string s actually received can be different from b(ci). The out-
put signal is then cj such that b(cj) = s (see Figure 1). In what
follows, themapping b that associates with each codevector ci
a binary word b(ci) representing a nonnegative integer will be
called the indexation (or the index assignment) of the code-
book. We will also refer to b(ci) as the index associated with
the codevector ci.

From the very start, vector quantization showed itself as
an extremely efficient data compression system. Indeed, it
gave impressive performance results in various speech and
image coding situations (see, e.g., [1, 2]). Practical imple-
mentations of this technique include code excited linear pre-
diction (CELP) algorithm (see [3]), which sets the basis of
voice encoding within GSM and CDMA protocols. Consid-
ering that speech is an autoregressive process, that is, that
each sample is the sum of a linearly predictable part and an
innovation part, CELP algorithms first perform a linear pre-
dictive coding (LPC) analysis on the transmitted signal. Sec-
ond, vectors of prediction errors (excitation) are quantized
and eventually encoded according to the method described
above. Voice encoding in GSM networks is mainly based on
this scheme. The initial GSM vocoder linear prediction cod-
ing with regular pulse excitation (LPC-RPE) as well as the
more recent algebraic code excited linear prediction (ACELP)
vocoder are adaptations of this technology. CDMA networks
are based on the Selectable mode vocoder speech coding stan-
dard. This voice coding technology (named as such for it can
be operated at a premium, standard and economy mode)
uses a multistage algorithm. After a pre-processing stage,
LPC analysis as well as pitch search are performed and frames
of input signal are classified as silence/background noise,
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Figure 1: Signal transmission by vector quantization.

stationary unvoiced, nonstationary unvoiced, onset, nonsta-
tionary voiced, or stationary voiced. Depending on the frame
type, either a eight-rate, fourth-rate, half-rate, and full-rate
codec is selected. While background noise and stationary
unvoiced frames are represented by a spectrum and energy
modulated noise and are encoded with the fourth or eight
rate codec, voiced frames are encoded with the full or half
rate codec according to an extension of CELP, namely ex-
tended CELP (eX-CELP). For such frames with a low pitch
gain, eX-CELP behaves similarly as traditional CELP. For
frames with high and stable pitch gain eX-CELP uses less bits
for pitch encoding and allow more for excitation representa-
tion (see [4, 5] or [6] for further details).

In spite of its evident success in modern speech coding
technologies, vector quantization has also a big drawback:
the slightest transmission error on the string representing a
binary codeword (e.g., one single bit error) can induce a very
large difference (in terms of Euclidean distance) between the
input and the output codevectors and, by consequence, an
important distortion of the transmitted signal. Hence, the
indexation of the codebook should be as robust as possible
with respect to this problem.

The practical importance of vector quantization induced
a relatively active research on the indexation problem. The
main classical indexation algorithms that can be found in
the literature (cf. [7–12]) are using general optimization
techniques or heuristics. While achieving high performance,
these methods require time consuming convergence stages.

A few combinatorial approaches (cf. [13, 14]) have also
been proposed. These methods do not use any a priori as-
sumption on the geometrical structure of the codebook. In
this paper, we will study the problem of indexation starting of
a hypothesis that the vectors of the codebook are distributed
according the multidimensional Gaussian laws (we show that
this hypothesis holds in practical situations). We use the fact
that Gaussian laws can be approximated in a discrete manner
by binomial laws to design new combinatorial algorithms of
indexation resulting in higher performance and lower time
complexity.

The paper is organized as follows. In Section 2 a mathe-
matical formulation of the index assignment problem and a
short survey of the existing methods are presented. Section 3
starts with a brief discussion justifying the hypothesis of
the Gaussian structure of the codebook and a presentation
(through several examples) of a classical discrete model of

Gaussian distribution in terms of binomial coefficients. Fur-
ther, a combinatorial algorithm based on this model for the
assignment of binary codewords to the codevectors of vec-
tor quantizer is developed. In Section 5 the performance of
the algorithm is analyzed. It is compared with that of the Wu
and Barba’s algorithm and of a system with randomly chosen
binary codewords. Finally, Section 6 includes some prelimi-
nary ideas on potential applications of the algorithm and a
conclusion.

2. VECTOR QUANTIZATION: PRINCIPLES AND
CLASSICAL APPROACHES

2.1. Mathematical formulation of the problem

In this paper, we will assume that the vector quantizer is de-
signed and fixed. That means we have a finite set (codebook)
C = {c0, c1, . . . , cN−1} ⊂ Rd of codevectors as well as a map-
ping (the quantizer) Q : Rd → C, that associates to each
vector y of Rd (input signal), the element c from C such that
the Euclidean distance between y and c is minimal. Binary
codewords on the output of vector quantizer are to be sent
over a noisy channel. The channel is assumed to be a binary,
symmetric, and memoryless chanel (BSC) with error prob-
ability ε. The length of the binary codewords is fixed and
equal K = log2N (i.e.,N = 2K ). The objective is to construct
an indexation mapping b (as defined above) that makes this
communication model as robust as possible with respect to
transmission errors while having a minimum time complex-
ity.

In order to formalize this statement we need to introduce
some new notations and to define our performance criteri-
ons. Assume that the codevector ci occurs with probability
p(ci). Let p(b(cj) | b(ci)), i, j = 0, 1, . . . ,N − 1, denote the
conditional probability of decoding cj when transmitting ci,
which is equal to

p
(
b
(
cj
) | b(ci

)) = εdH (b(ci),b(cj ))(1− ε)N−dH (b(ci),b(cj )), (1)

where dH(b(ci), b(cj)) is the Hamming distance between the
binary words associated with codevectors ci and cj . Let us
also denote by d (ci, cj) the distance between codevectors
ci and cj . In this paper we will consider the widely used
squared-error distortion based on the usual Euclidean dis-
tance:

d(x, y) = ‖x − y‖2. (2)

Then the distortion performance criterion we adopt is deter-
mined in the following manner:

D =
N−1∑

i=0

N−1∑

j=0
p
(
ci
)
p
(
b
(
cj
) | b(ci

))
d
(
ci, cj

)
. (3)

Therefore the index assignment problem is just the problem
of finding an index assignment function b that minimizes
(3). The objective of this paper consists in proposing a com-
binatorial approach for finding an appropriate suboptimal
solution to this problem. Our solution will be based on the
geometrical properties of the codebook.
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2.2. Classical approaches

2.2.1. Heuristics

Since the problem is precisely formulated, in the rest of
this section we envisage to recall some design and perfor-
mance issues related to vector quantization for noisy chan-
nels. However, before we start several comments are in order.

There are two main questions concerning vector quanti-
zation that (apart from some exceptions as [15] or [16]) are
usually treated separately: how to distribute the codevectors
over the source, and how to choose the codewords, or indices,
so that the effect of channel errors is not too degrading on the
performance. This is due to the vector extension of the the-
orem for scalar quantization by Totty and Clark (see [17])
suggesting the separation of the overall distortion into the
sum of the quantization distortion and the channel distor-
tion for the squared-error distortion measure. Here we will
mainly refer to the articles devoted to resolving the second
question (as well as our present paper).

One more preliminary remark we wish to make is con-
cerning the difficulty of index assignment problem. In fact, it
is well known that the search problem of index assignment is
NP-hard (see, e.g., [18]) and, as a consequence, all the pro-
posed algorithms are necessarily suboptimal.

For this reason, most of heuristic algorithms we can find
in literature first perform a deterministic search in a set of
admissible configurations and then, in order not to termi-
nate in a local minimum of a cost function, adopt a random-
ized approach (e.g., randomly generating the next configu-
ration and allowing within reasonable limits the configura-
tions of higher cost than the present). Among the first pa-
pers that assessed an index assignment problem for vector
quantization by an heuristic approach one can find those of
De Marca and Jayant [7], and of Chen et al. [19]. Farvardin
[20] employed to the problem a simulated annealing algo-
rithm. Zeger and Gersho [12] proposed a binary switching
method, where pairs of codevectors change index in an iter-
ative fashion, determined by a cost function. Potter and Chi-
ang [18] presented a paper using minimax criterion based
on hypercube that improves the worst case performance, im-
portant for the image perception. Knagenhjelm and Agrell
employed the Hadamard transform to derive first an objec-
tive measure on success of index assignment [10] and then,
to design efficient index assignment algorithms [11]. Similar
theory was applied by Hagen and Hedelin [16] for designing
vectors quantizers with good index assignments.

2.2.2. Combinatorial approaches

Only a few combinatorially flavored approaches have already
been proposed. Cheng and Kingsbury (cf. [13]) designed a
recursive algorithm based on hypercube transformations.

Wu and Barba (cf. [14]) proposed a method with smaller
time complexity than the above solutions. Within their ap-
proach, minimization programs over the set of nonassigned
codevectors are successively solved for each codeword. The

aim of these minimization programs is to ensure that the Eu-
clidean distance between two codevectors, which have been
assigned codewords with Hamming distance equal to one, is
kept low. More precisely, given a codebook with 2K elements,
the algorithm is initialized by assigning the codeword com-
posed of K0’s to the codevector with the highest occurrence
probability and then by indexing its K closest neighbors with
the codeword of Hamming weight 1. Then for each already
assigned codeword b all the binary words having a Ham-
ming distance of 1 with b and higher Hamming weight are
attributed one after the other to the not yet assigned code-
vectors minimizing a given criterion.

2.3. Limitations of the classical combinatorial
approach and baseline of ourmethod

Although Wu and Barba’s method provides a simple and el-
egant solution allowing good improvement of the system’s
robustness to noise, this method does not consider any geo-
metrical properties of the quantizer. Throughout this paper,
we show how taking into account its geometrical structure
may allow further reduction of the time complexity while in-
creasing the performance. Using a classical discrete model of
the Gaussian distribution we split the codebook into zones
where each zone corresponds to a predefined set of code-
words. Performing minimization programs within the zones
rather than within the whole dictionary saves time complex-
ity. Besides, at each step of the assignment process, it pro-
vides a better solution for the trade-off between optimizing
the current codeword assignment and those of the remaining
ones. In the following section, we present the discrete model
of the Gaussian distribution we used to split the codebook.
The index assignment method itself is described afterwards.

3. GAUSSIAN VECTOR QUANTIZERS ANDDISCRETE
MODEL OF GAUSSIAN DISTRIBUTION

3.1. Workingwith Gaussian codebooks

Our index assignment approach is specially designed for
codebooks whose codevectors are distributed according to
multidimensional Gaussian laws. The best results are for
the codebooks with Gaussian distributions close to symmet-
ric with respect to their mean point. However, the numeri-
cal simulations on nonsymmetric Gaussian codebooks pre-
sented at the end of the paper show that our method is also
very well adapted for nonsymmetric Gaussian distributions
with different variance values along the different principal di-
rections.

The Gaussian hypothesis is valid in practical situations.
Indeed, we studied several real codebooks provided by indus-
trial partners. The results of applying Kolmogorov-Smirnov
test to random samples, representing each coordinate, are
satisfactory. Besides the reader is proposed to see Figure 2 for
a projection on a plane of a real four-dimensional codebook
and Figure 3 for a normalized repartition of the codevectors
of another codebook along its principal axis.
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Figure 2: Projection on a plane of a real codebook with N = 256.
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Figure 3: Normalized repartition of the projections of another
codebook along its principal axis.

3.2. A classical discretemodel of Gaussian distribution

In our algorithm the codebookC is interpreted as anN-point
discrete realization of the Gaussian distribution. More pre-
cisely, we use the well-known approximation in terms of bi-
nomial coefficients of the Gaussian density. This section gives
a description of the one-dimensional version of this model
followed by its generalization to d (d > 1) dimensions.

One-dimensional model

Let S be a segment on the line of length (K + 1)r (r being the
parameter of the model). Consider a partition of S into K +1
adjacent segments numbered from left to right S0, S1, . . . , SK
of equal length r on the line. AnN-point discrete approxima-
tion of the Gaussian distribution centered on the mean point
of S with standard-deviation 2r is obtained by considering
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Figure 4: Binomial approximation of the standard Gaussian distri-
bution for K = 15.

the pdf :

p1(x) = 1
Nr

(
K

i

)

, if x ∈ Si (4)

and 0 if x does not belong to any of the segments. This step
function corresponds to the repartition histogram that one

would get if N points were distributed on S such that
(
K
i

)
of

them are in Si (see Figure 4 for the binomial approximation
for K = 15).

Generalization to d-dimensional symmetric
Gaussian distributions

In d (d > 1) dimensions, the model is generalized by re-
placing the segments on the line by regions delimited by hy-
perspheres. Let S be a d-ball with center O intersected by a
hyperplane H containing O. As we are considering symmet-
ric Gaussian distributions any hyperplane containing O can
be indifferently chosen. Then a carefully defined system of
�K/2� + 1 embedded d-balls centered in O

S ⊃ S1 ⊃ · · · ⊃ S�K/2� (5)

provides together with the hyperplane H the partition of S
into K + 1 regions Si (0 ≤ i ≤ K) of equal d-content. Let
r (parameter of the model) be the radius of the central and
smallest ball. Then the radiuses of the balls are related by the
following equations:

Ri = d
√
(K + 1)/2− i r, i = 0, . . . , (K − 1)/2, for odd K

Ri = d
√
K + 1− 2i r, i = 0, . . . ,K/2, for even K.

(6)

The regions Si and SK+1−i (with i 
= �K/2�) are the sym-
metric halves of Si \ Si+1 with respect to the splitting hyper-
plane H . For odd K two central regions S(K−1)/2 and S(K+1)/2
are the halves of the central ball S(K−1)/2 and for even K the
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Figure 5: Partition of a 128 point 2-dimensional Gaussian code-
book into 8 regions.

central region SK/2 is simply the central ball SK/2. Similarly
to the one-dimensional case we have an approximation of
the Gaussian distribution centered in O and with variance-
covariance matrix (2r)2I (where I is the identity matrix) by
considering the pdf :

pd(x) = 1
N ×Vol

(
Si
)

(
K

i

)

, if x ∈ Si (7)

and 0 if x /∈ S (Vol (Si) denotes the content of Si). As in
the previous case, this step function corresponds to the d-
dimensional histogram depicting the geometrical repartition

of N points distributed in such a way that
(
K
i

)
of them are in

Si (i = 0, . . . ,K).

3.3. Link with Gaussian codebooks

In a few words, the main feature of the model is that an N
point Gaussian codebook can be approximately partitioned
into K + 1 regions with equal d-content, each region be-
ing bounded by two d-dimensional semihyperspheres such
that the radiuses of the hyperspheres are related by (6), and

the number of points in the ith region is
(
K
i

)
(see Figure 5

for a two-dimensional example with K = 7). Note, that the
above discrete model is chosen as it suits very well our prob-
lem. Indeed, it gives a very natural way to split a Gaussian

codebook containing 2K elements into K + 1 subsets of
(
K
i

)

codevectors (i = 0, . . . ,K). The binomial coefficient
(
K
i

)
can

also be interpreted as the number of codewords of length K
and fixed Hamming weight i. That suggests for the Gaussian
codebooks of size 2K the existence of a natural correspon-
dence between these subsets of codevectors and the subsets
of codewords of fixed Hamming weight. Using this idea we
develop an index assignment method in the next section.

4. INDEX ASSIGNMENT

Let us first present the general idea of the proposed approach
and then focus on its full description.

4.1. The guiding principle

Looking at (3), one can remark that the couples of codewords
with mutual Hamming distance equal to one are of particu-
lar interest. Indeed, they correspond to one-bit error on the
transmission channel. When the BER is much less than one,
the signal’s distortion is mainly due to this kind of error. To
keep the average distortion low, we need to minimize the Eu-
clidean distance between codevectors indexed by neighbor-
ing codewords. It is also important to keep in mind the trade
off between minimizing this distance for a particular pair
of codewords and minimizing the sum of all the Euclidean
distances between codevectors having neighboring codeword
assignments.

We address these two issues through a two stage algo-
rithm. During a preprocessing stage we split the given code-
book into zones according to the discrete model described in
the previous section. This allows us to establish a correspon-
dence between the subsets of the codewords of a given Ham-
ming weight and the subsets of codevectors belonging to a
given zone. Due to this correspondence the codewords that
differ only in one bit (and therefore belonging to the subsets
with Hamming weight difference equal to one) are associ-
ated to subsets of geometrically close codevectors of adjacent
zones. This repartition of the codebook into zones allows to
conceive the algorithm as the sequence of consecutive mini-
mization programs, each of them treating only the codevec-
tors of adjacent zones. Therefore the time complexity is sig-
nificantly reduced compared to the methods searching the
whole codebook (see, e.g., [14]). Besides, limiting the search
for the minima to predefined zones insures that the first lo-
cal optimizations will not be done to the detriment of the
following ones.

To understand better the importance of this repartition
into zones, let us consider the special case when the code-
vectors have equal occurrence probability 1/N . Without loss
of generality we consider that K is an odd integer (similar
calculations can be conducted when K is even). As one can
see it on Figure 5, the maximal Euclidean distances between
two vectors from two adjacent zones is upper-bounded by the
sum of the radiuses of the two corresponding d-balls. As a re-
sult, the distortion due to one-bit error between codewords
of weight p and those of weight p − 1 is upper bounded by

(
d
√∣∣(K + 1)

/
2− p

∣∣ + d
√∣∣(K + 1)

/
2− (p − 1)

∣∣
)
r. (8)

There are
(
K
p

)
codewords associated to the codevectors of

zone p and each of them has p neighboring codewords as-
signed to codevectors of the previous zone. The contribution
of the one-bit errors to the distortion that would occur if we
assume this repartition into zones is therefore less or equal to

D ≤ ε
N

K∑

p=0

(
K

p

)

p
(

d
√∣
∣(K + 1)

/
2− p

∣
∣

+ d
√∣
∣(K + 1)

/
2− (p − 1)

∣
∣
)
r.

(9)

We would like to compare this upper-bound to the average
distortion yielded by a purely random indexation scheme.
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If we consider the codevectors as independent random vari-
ables distributed in Rd according to the centered Gaussian
law of variance-covariance (2r)2I , the average distortion due
to one-bit error for a random indexation is given by

E(D) = ε
2N

N∑

i=1
KE
(
d
(
c1, c2

))
, (10)

where we took into account that each codeword has K neigh-
bors. The coefficient 1/2 insures that we do not count twice
the contribution from each couple of neighboring code-
words. The average distance between two codevectors is com-
puted using the Gaussian assumption

E
(
d
(
c1, c2

)) = 1
(
2r
√
2π
)d

∫

Rd×Rd
d
(
c1, c2

)

× exp

{

−
∣
∣c1
∣
∣2

8r2

}

exp

{

−
∣
∣c2
∣
∣2

8r2

}

dc1 dc2,

E
(
d
(
c1, c2

)) = 2r
(√

2π
)d

∫

Rd×Rd
d
(
c1, c2

)

× exp

{

−
∣
∣c1
∣
∣2

2

}

exp

{

−
∣
∣c2
∣
∣2

2

}

dc1 dc2.

(11)

The ratio ρ of the upper-bound (9) to the average distortion
(10) is only a function of the length of the codewords K and
the dimension d, namely,

ρ(K ,d)

=

∑K
p=0

(
K−1
p−1
)(

d

√∣
∣
∣∣
(K + 1)

2
−p

∣
∣
∣∣+

d

√∣
∣
∣∣
(K + 1)

2
−(p − 1)

∣
∣
∣∣

)

(
2K

(√
2π
)d

) ∫

Rd×Rd

d
(
c1, c2

)
exp

{
− |c1|

2

2

}
exp

{
− |c2|

2

2

}
dc1dc2

.

(12)

Figure 6 plots this ratio as a function of d for K = 5, 7, 9.
We see that the improvement of the repartition into zone
scheme with respect to a random indexation becomes more
and more substantial as the dimension of the vector quan-
tizer increases.

In practical situations, codebooks may not be strictly
symmetric Gaussian. Hence, the partition of the codebook
into zones we adopt will not exactly respect the specific ge-
ometrical bounds of the regions of the model. Rather, these
bounds are adapted such that each zone accommodates the
necessary number of codevectors and that the maximal dis-
tance between two vectors of adjacent zones is minimized.
This is achieved by defining the radius of each d-ball as the
distance from the codebook’s mean point of the most re-
mote codevector belonging to it. Also we split each d-ball
by hyperplanes orthogonal to the principal direction of the
codebook, since the dispersion of the projection of the code-
vectors along this axis is the most significant. For each ball,
an appropriate hyperplane is chosen so its splitting results in
two subsets of codevectors of equal cardinality. The method
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Figure 6: ρ as a function of the dimension for various values of K .

we proposed in the following sections can thus be applied to
any codebook. However, for the codebooks having the code-
vectors mainly concentrated around the mean point, this
partition appears to be better justified for the model contin-
ues to be a good approximation.

4.2. Repartition of the codebook into zones

The repartition into zones is performed according to the fol-
lowing procedure. Transfer the center of coordinates to the
mean point of the codebook C and use the eigenvectors of
the covariance matrix (computed by assuming equal weight
for each point) of C as a new basis. Choose any of the pos-
sible orientations for this new system of coordinates. Select
the principal axis, that is, the eigenvector corresponding to
the greatest eigenvalue. Definem0 as the median value of the
coordinates of the codevectors on this axis andM0 as the hy-
perplane orthogonal to the principal axis that contains m0.
The hyperplane M0 splits the d-dimensional space into two
subspaces with N/2 points of C each. Then, we sort all the
codevectors of C in an ascending order with regard to their
distances to the new center of coordinates, that results in an
ordered set π:

π = {ci0 < ci1 < · · · < ciN−1
}
. (13)

Among the codevectors located to the left ofM0 (i.e., having
a coordinate value on the principal axis less than m0) select
the one maximizing the Euclidean distance to zero. Similarly,
among the codevectors to the right of M0 select the one sat-
isfying the same criterion. These two points constitute zones
Z0 and ZK of our codebook. Numbering of zones is chosen
in such a way, that the number i of a zone Zi corresponds

both to the cardinality
(
K
i

)
of subset Zi and the number of

codewords with Hamming weight i to be assigned to it later
on.

The other zones are built in an iterative fashion. Suppose
that we already created 2p zones and that the ordered set

π \ {Z0 ∪ · · · ∪ Zp−1 ∪ ZK ∪ · · · ∪ ZK−p+1
}

(14)
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Figure 7: Iterative construction of the zones (only codevectors be-
longing to zones Zp−1, Zp, ZK−p+1, and ZK−p are shown).

is still not partitioned. In this ordered set consider the sub-

set of the last
(
K
p

)
+
(

K
K−p

)
codevectors (if K is even and only

two last zones are still not defined consider the last
(
K
p

)
code-

vectors). Find the median coordinate mp of this subset with
respect to the principal axis of the basis and, as well, Mp the
median hyperplane. Then zone Zp is defined as the set of
codevectors of the considered subset located to the left ofMp,
and the other half of the codevectors constitute zone ZK−p.
The process of repartition of the codebookC into zones (cre-
ation of zones Zp and ZK−p) is illustrated by Figure 7.

4.3. Iterative assignment

We use the partition of C into zones to construct a recursive
procedure of indexation onwhich our combinatorial method
relies.

Step 1. We assign the codeword

K
︷ ︸︸ ︷
00 · · · 0 to the codevector of

zone Z0 and the codeword

K
︷ ︸︸ ︷
11 · · · 1 to the codevector of zone

ZK .

Step 2. We proceed by assigning the indices to codevectors of
zones Z1 and ZK−1, the next ones on the way to zero and both
having cardinality K . We assign randomly all the K code-
words of Hamming weight 1 to the codevectors of zone Z1,
and all the K codewords of Hamming weight K − 1 to the
codewords of zone ZK−1.

Step 3 (2 ≤ p ≤ �(K − 1)/2�). Suppose now that we have
already made p steps resulting in assignment of indices to
all the codevectors within the first 2p zones Z0, . . . ,Zp−1 and
ZK , . . . ,ZK−p+1. We proceed by assigning all the codewords of
Hamming weight p to the codevectors of zone Zp. For each

such binary codeword b
p
j

(
j ∈ 1, . . . ,

(
K
p

))
we consider the

codevectors c
p−1
i of zone Zp−1 such that dH(b(cip−1), b

p
j ) = 1,

that is, the codevectors that were previously indexed with a
codeword one-bit different from b

p
j . Then we look for the

codevector c
p
j belonging to the subset of zone Zp containing

only codevctors that have not been yet indexed (further de-
noted Z∗p ) minimizing the contribution to the distortion

c
p
j = argmin

c∈Z∗p

∑

c
p−1
i ∈Zp−1

dH (b(c
p−1
i ),b

p
j )=1

p
(
c
p−1
i

)
d
(
c
p−1
i , c

)
. (15)

Finally, we assign the binary codeword b
p
j to this codevec-

tor (i.e., b(c
p
j ) = b

p
j ). In other words, we look for the code-

vectors minimizing the distortion due to one-bit error dur-
ing the transmission of the codewords of the previous zone.
We proceed in a similar fashion to index the vectors in zone
ZK−p.

4.4. Time complexity

Let us now estimate the time complexity of the algorithm
described above. The repartition into zones being neglegi-
ble with respect to the sequence of minimization programs
we focus on this last point. For each program of minimiza-
tion or equivalently each index assignment, the number of
elementary operations performed is proportional to the size
of the searched set of codevectors. When assigning the ith
codeword of the pth zone of anN = 2K vector quantizer, this

minimizing point is searched among
(
K
p

)
−i codevectors. The

global complexity CN is then given by

CN = O

⎧
⎪⎨

⎪⎩

K∑

p=0

(Kp)−1∑

i=0

(
K

p

)

− i

⎫
⎪⎬

⎪⎭

= O

{ K∑

p=0

1
2

(
K

p

)((
K

p

)

+ 1

)}

= O

{
1
2

((
2K
K

)

+ 2K
)}

= O

{(
2K
K

)}

.

(16)

Now using Sterling formula gives a simple asymptotic equiv-
alent to the algorithm complexity, namely,

CN = O

{
(2K)2K

√
4πK

(
eK
)2

e2K
(
KK
√
2πK

)2

}

= O

{
(2)2K√
πK

}

= O

{
N2

√
log2N

}

.

(17)

For comparison purposes we compute the complexity of Wu
and Barba’s method. We notice that this algorithm follows a
similar fashion of sequential minimization programs. How-
ever the minimizations are not performed within zones but
in the set of all the codevectors remaining unindexed. The
complexity of this algorithm is given by

CWuBarba
N = O

{ N−1∑

i=0
(N − i)

}

= O
{
N(N + 1)

2

}
= O

{
N2}.

(18)
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As a result, our algorithm has a complexity that can be ne-
glected at asymptote with respect to the Wu and Barba’s
method.

5. SIMULATION RESULTS

5.1. Simulations on real Gaussian codebooks

We conducted numerical simulations on three four-dimen-
sional real codebooks provided by our industrial partner.
For each of these codebooks, statistics of occurrence of the
codevectors in real life mobile communications were pro-
vided as well. Five-second samples of real life conversation
from 200, 000 different speakers were gathered to derive these
statistics. Speech signals were encoded through an extended
CELP process (similarly as in CDMA) based on each of the
provided codebooks for prediction errors quantization and
coding. Using these statistics we computed the expected out-
put SNRs yielded by various indexation schemes as functions
of the channel bit error rate on a typical mobile commu-
nication speech signal (having the same statistics). Figure 8
presents these output SNRs resulting from the following in-
dex assignment schemes: random index assignment, Wu and
Barba’s algorithm, the proposed approach. In order to illus-
trate the importance of the codebook repartition into zones,
we also plotted the results of a random indexation of the
codevectors in each zone by the codewords of corresponding
Hamming weight.

One can see that our approach achieves better results
than the Wu and Barba’s algorithm on all the three provided
codebooks. It is very interesting as well to see that the repar-
tition into zones stage contributes for most of the improve-
ment of our indexation scheme with respect to a random
one.

5.2. CPU times comparison

As claimed earlier in this paper, our approach allows lower
computation time than Wu and Barba’s method to achieve
the presented results. We drew at random a large number of
4 to 10 dimensional Gaussian codebooks of various sizes and
measured the CPU time needed by the two methods to pro-
cess each of these codebooks. Figure 9 depicts the ratio of the
mean (averaged over dimensions and the codebook draw-
ings) CPU times required by Wu and Barba’s approach to
the mean CPU times required by our algorithm as a function
of the codebook size. We see that for very small set of code-
vectors, the time required by our method is higher because
of the preprocessing stage. However when the set of codevec-
tors has a cardinality above 16, simulations demonstrate that
our method is less time consuming.

5.3. Simulations on bigger Gaussian codebooks

We applied our algorithm to bigger simulated codebooks
of higher dimension. We drew at random 10, 000, 25-
dimensional codebooks with 1024 codevectors according to
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Figure 8: Output SNR yielded by various indexation schemes on
two 256-vector codebooks (up and middle) and a 64-vector code-
book (down).
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Figure 9: CPU time ratio of Wu and Barba’s method to the pro-
posed approach.
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Figure 10: Average output SNR yielded by various indexation
schemes on 1024-vector 25-dimensional codebooks.

the normal distribution. We then multiplied the obtained
codebooks by randomly drawn 25 × 25 matrices with coef-
ficients uniformly drawn between −1 and 1 to simulate the
fact that codebooks are in general not represented within the
basis of the principal axis of their covariance matrice and to
prevent them from being perfectly symmetric. Probability of
occurence of the codevectors are uniformly drawn at random
as well. Figure 10 shows the average expected output SNR
recorded for these bigger codebooks. We see that increasing
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Figure 11: A uniform codebook.
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Figure 12: Output SNR yielded by various indexation schemes on
a uniformly distributed codebook.

the size and the dimension of the codebooks did not changed
much the performance patterns observed.

5.4. Extension to non-Gaussian codebooks

While the Gaussian hypothesis is the base for the general
intuition of our approach, it turns out that the proposed
method can be applied to any codebook. We generated an
artificial four-dimensional codebook of 128 codevectors uni-
formly distributed within a given hypercube (see Figure 11
for a projection on the two first coordinates of the code-
book). We applied the same indexation scheme as in the pre-
vious section to this codebook. The proposed approach per-
forms less efficiently on this codebook. One can remark for
example that the repartition into zone stage alone achieves a
very little improvement with respect to a random indexation.
We will notice however that the result of the whole algorithm
is of similar order (even if a bit worse) as Wu and Barba’s
method (see Figure 12).
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6. CONCLUSION

In this paper we proposed a new combinatorial method
for index assignment of vector quantizers specially designed
for Gaussian codebooks. In this case, our approach displays
better performance than the Wu and Barba algorithm. In
general the proposed method achieves an important reduc-
tion in time complexity. This suggests the idea of using our
algorithm when time is a critical factor. We can imagine em-
bedded systems with low computational capacities for very
small networks (local) where quantization would be adapted
in real time to the voice of the users. In this case, assignment
could be rapidly adapted as well. We might think as well of
statistical studies in voice coding that would require fast gen-
eration of a great number of codebooks with good index as-
signment. Besides, it can be employed as an initial assign-
ment for general optimization methods in the field ([12] or
[20]). To this extent, the repartition into zones together with
a random indexation in each zone is very valuable since its
time complexity can be neglected and the improvement with
respect to a fully random assignment is quite substantial.
Some applications might be relevant as well beyond voice
coding as vector quantization is a widely spread method for
lossy data compression (e.g., image and video coding).
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