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A system for bandwidth extension of telephone speech, aided by data embedding, is presented. The proposed system uses the trans-
mitted analog narrowband speech signal as a carrier of the side information needed to carry out the bandwidth extension. The
upper band of the wideband speech is reconstructed at the receiving end from two components: a synthetic wideband excitation
signal, generated from the narrowband telephone speech and a wideband spectral envelope, parametrically represented and trans-
mitted as embedded data in the telephone speech. We propose a novel data embedding scheme, in which the scalar Costa scheme
is combined with an auditory masking model allowing high rate transparent embedding, while maintaining a low bit error rate.
The signal is transformed to the frequency domain via the discrete Hartley transform (DHT) and is partitioned into subbands.
Data is embedded in an adaptively chosen subset of subbands by modifying the DHT coefficients. In our simulations, high quality
wideband speech was obtained from speech transmitted over a telephone line (characterized by spectral magnitude distortion,
dispersion, and noise), in which side information data is transparently embedded at the rate of 600 information bits/second and
with a bit error rate of approximately 3 · 10−4. In a listening test, the reconstructed wideband speech was preferred (at different
degrees) over conventional telephone speech in 92.5% of the test utterances.

Copyright © 2007 A. Sagi and D. Malah. This is an open access article distributed under the Creative Commons Attribution
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1. INTRODUCTION

Public telephone systems reduce the bandwidth of the trans-
mitted speech signal from an effective frequency range of
50Hz to 7KHz to the range of 300Hz to 3.4KHz. The re-
duced bandwidth leads to a characteristic thin and muf-
fled sound of the so-called telephone speech. Listening tests
have shown that the speech bandwidth affects the perceived
speech quality [1]. Artificially extending the bandwidth of
the narrowband (NB) speech signal can result in both higher
intelligibility and higher subjective quality of the recon-
structedwideband (WB) speech. Usually, the information re-
quired for speech bandwidth extension (SBE) [2] is gener-
ated from the received NB speech or transmitted separately.
Typically, the latter method results in higher quality of the
reconstructed WB speech.

A unique SBE system in which the transmission from and
to the talker’s handset is analog, and hence particularly suit-
able for the public telephone system, is suggested in this pa-
per. The proposed scheme uses the speech signal as a car-
rier of the side information required for SBE, by auditory-

transparent data-embedding, eliminating the need of an ad-
ditional channel for the side information while providing
high quality reconstructed WB speech. This SBE application
could be attractive for enhancement of the conventional pub-
lic telephone system, requiring only DSP hardware operating
at the receive and transmit sides of the telephone connection.

The structure of the SBE system is shown in Figure 1.
The input to the system is a WB speech signal, denoted
by sWB, which is fed in parallel into the SBE encoder and
data-embedding blocks. The SBE encoder extracts the high-
band (HB) spectral parameters which are embedded in the
telephone-band frequency range of the WB input signal (i.e.,
in the NB signal) by the data-embedding block. Themodified
NB speech is transmitted over a telephone channel. At the re-
ceiver, adaptive equalization is applied to reduce the channel
spectral distortion. The embedded data is extracted from the
NB speech signal at the channel equalizer output and used by
the SBE decoder to reconstruct WB speech, denoted by ŝWB.

The authors of [3], motivated by Costa’s work [4], pro-
posed a practical data-embedding scheme, known as the
scalar Costa scheme (SCS). The capacity of SCS is typically
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Figure 1: Speech bandwidth extension (SBE) system description.

higher than other proposed schemes, for example, schemes
based on spread-spectrum (SS) [5, 6] or quantization index
modulation (QIM) [7]. However, the general method in [3]
does not take into consideration human perception models,
such as human visual or human auditory models. SS-based
data-embedding techniques that use a perceptual model in
the embedding process were reported in [5, 6]. However, the
disadvantage of this techniques is low embedded data rate,
which is a consequence of the SS principle. The authors of
[8] proposed a data-embedding scheme for speech, which is
also a part of an SBE application. In the data-embedding en-
coder of [8], an excitation signal is first generated by filter-
ing the NB speech signal with its corresponding linear pre-
diction analysis filter to produce an excitation signal. Then,
the excitation signal is projected to a subspace, where data-
embedding is applied using the vectorial form of QIM [7].
The NB speech with embedded data is produced by back
projecting the modified subspace signal to the excitation sig-
nal space, and then filtering the excitation signal with the
corresponding linear prediction synthesis filter. The effect of
the linear prediction analysis/synthesis filtering can be in-
terpreted as noise shaping of the watermark signal which
then follows the spectral characteristics of the speech. In the
data-embedding decoder, the identical transformation from
the NB speech signal to the subspace signal is implemented,
which follows data extraction.

In this paper, we propose a novel combination of the SCS
data-embedding method with an auditory masking model.
In the proposed embedding scheme, the signal in the fre-
quency domain is partitioned into subbands and the data-
embedding parameters for each adaptively selected subband
are computed from the auditory masking threshold func-
tion and a channel noise estimate. An effective choice of
the embedding domain, namely, the discrete Hartley trans-
form (DHT), is suggested and is found to have an advan-
tage over the more common DCT and DFT domains. Data
is embedded by modifying the DHT coefficients according
to the principles of the SCS. A maximum likelihood de-
tector is employed at the decoder for embedded-data pres-
ence detection and data-embedding quantization-step esti-
mation. Partial details and preliminary results of the pro-
posed data-embedding scheme were reported by us in [9],
without any consideration of the current application, that is,
speech bandwidth extension.

The telephone line causes amplitude and phase distor-
tion combined with μ-law (or A-law) quantization noise and

additive white Gaussian noise (AWGN). In [8, 10] techniques
for data embedding in telephone speech are proposed, but
only the channel noise (PCM, μ-law, ADPCM, AWGN) is
treated, disregarding the spectral distortion caused by the
channel. In this work, we apply adaptive equalization to re-
duce the channel spectral distortion. Although the channel
model in our work includes spectral distortion and disper-
sion, the achievable data rate is much higher than the data
rate reported in [8, 10]. For the AWGN channel model of
[10], the achievable BER in our simulations is lower than the
one reported in [10], and at the same time the achievable
data rate is much higher.

This paper is organized as follows. The SBE encoder and
decoder structures are described in Section 2. In Section 3,
the main principles of SCS are briefly reviewed and the com-
bination of SCS with an auditory perceptual model is de-
scribed. Results of subjective listening tests and objective
evaluations are presented in Section 4, followed by conclu-
sions in Section 5.

2. SPEECH BANDWIDTH EXTENSION

In this section, the part of the system performing SBE is de-
scribed. We first describe the general principles of SBE sys-
tems in Section 2.1, and continue with the proposed SBE en-
coder and decoder structures details in Sections 2.2 and 2.3,
respectively.

2.1. Principles of speech bandwidth extension

Most of the works on SBE [11, 12] use linear prediction (LP)
techniques [13]. By these techniques, the WB speech gener-
ation at the receiving end is divided into two separate tasks.
The first task is the generation of a WB excitation signal, and
the second task is to determine the WB spectral envelope,
represented by linear prediction coefficients (LPCs) or trans-
formed versions like line spectral frequencies (LSF). Once
these two components are generated, WB speech is regener-
ated by filtering the WB excitation signal with the WB linear
prediction synthesis filter.

The generation of the WB excitation signal and the WB
spectral envelope can be done by solely using the received NB
speech signal [12, 14]. The implicit assumption of such an
approach is that there is correlation between the low and high
frequencies of the speech signal. In [12], a dual codebook in
which part of the codebook contains NB codewords and the
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ĝHB

Figure 2: SBE encoder structure.

other part contains highband (HB) codewords is proposed.
A chosen NB codeword, which is the most similar to the in-
put NB spectral envelope, points to an HB codebook. From
this HB codebook, a HB codeword is chosen. In [14], a sta-
tistical approach based on a hidden Markov model is used,
which takes into account several features of the NB speech.
Another approach is to code and transmit side information
about the HB portion of the speech signal. The WB speech
is then reconstructed at the encoder from the NB speech,
and the received side information. This approach is hybrid,
because it artificially regenerates the high-frequency excita-
tion information from the NB speech signal, and obtains the
high-frequency envelope information from the side informa-
tion [8, 15–17]. Some systems, for example, [18], make use
of both correlation between the low and high frequencies of
the speech signal and side information, for the generation
of the HB portion of the speech signal. The quality of WB
speech generated by the hybrid approach is usually signifi-
cantly better than the quality of WB speech generated by the
NB speech-only-based approach.

In this work, we use the hybrid approach, with the side
information being embedded in the NB speech, like [8].
However, our proposed SBE and data-embedding schemes
are different from the schemes suggested in [8].

2.2. SBE encoder structure

The SBE encoder extracts the HB spectral parameters that
will be embedded in the NB speech signal. The parameters
include a gain parameter and spectral envelope parameters
for each frame of the original WB speech signal.

The structure of the SBE encoder is shown in Figure 2.
The input to the SBE encoder is the original WB speech sig-
nal, denoted by sWB. The WB speech signal is fed in par-
allel into three branches. We first describe the structure of
each branch and in the sequel provide the details of the main
blocks.

Upper branch

In this branch, the WB speech is passed through a 2 : 1 dec-
imation system (composed of a low pass filter and a 2 : 1
down-sampler), obtaining an NB speech signal, denoted by
sNB. A time-domain LP analysis is performed on the NB sig-
nal, and the NB excitation (or residual) signal is obtained by
inverse filtering the NB speech signal by the analysis filter.
The NB excitation signal, denoted by eNB, is then used for
WB excitation regeneration at the encoder. The encoder re-
constructed WB excitation signal is denoted by êWB.

Middle branch

In this branch, theWB signal is analyzed by applying, like [8],
a selective LP analysis [21] to its HB, in the range 3–8KHz.
The selective LP coefficients, aHB, are converted into the LSF
[19] representation, ωHB. The selective LSFs are quantized
using a vector quantizer. The LSFs codebook index is one of
the transmitted parameters via data-embedding. The quan-
tized selective LSFs are transformed into WB LPCs, denoted
by âWB, which correspond to the reconstructed WB spectral
envelope. For the purpose of determining an appropriate HB
gain parameter, the WB LPCs are used to synthesize the WB
reconstructed speech signal at the encoder, denoted by s̃WB.
In comparison, in [8] the selective LP coefficients are con-
verted into the cepstral domain and are quantized by a vector
quantizer.

Lower branch

In the lower branch, the HB gain parameter, denoted by gHB,
is computed by minimizing the spectral distance between the
original and synthesized WB speech signals, in the 3–8KHz
frequency range. After computing the gain, it is quantized,
and the quantized gain index is transmitted.

The transmitted information in each analysis frame thus
includes the LSF codebook index and the gain index (i.e., the
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indices of the parameters ω̂HB and ĝHB, marked by dashed
lines).

In the next subsections, the details of the main SBE en-
coder blocks are given.

2.2.1. Wideband excitation generation block

The WB excitation can be artificially generated from the NB
excitation signal by one of the methods described in [20].
The NB excitation signal is the output of inverse filtering
by the LP analysis filter, applied to the NB speech signal.
As shown in Figure 3, the NB excitation signal, eNB, is first
passed through a 1 : 2 interpolation system (composed of
a 1 : 2 up-sampler followed by a low pass filter) to the WB
speech sampling rate. It is known that rectifiers and limiters
typically expand the bandwidth of a signal. In our case, the
interpolated NB excitation is passed through a full-wave rec-
tifier, which performs sample by sample rectification [20].
The interpolatedNB excitation is combined with theHB por-
tion of the rectified signal, to produce an artificially extended
WB excitation, denoted by ẽWB. This artificially extendedWB
excitation has a downward tilt in the high-frequencies due
to the rectification operation. The tilt can be flattened by a
whitening filter that performs inverse filtering. The filter is
obtained by an LP analysis of the artificially extended WB
excitation, ẽWB. The output of the whitening filter, which is
the reconstructed WB excitation signal, is denoted by êWB.

2.2.2. Selective LP, LPC to LSF conversion, and LSF
quantization blocks

Spectral LP, suggested by Makhoul [21], is a spectral model-
ing technique in which the signal spectrum is modeled by an
all-pole spectrum. In selective (spectral) LP, an all-pole model
is applied to a selected portion of the spectrum.

In the case of SBE, the selective LP technique is applied to
the HB of the original WB speech, and the spectral envelope
of the HB is computed. If, alternatively, a time domain LP
analysis is performed on the HB speech, one would need to
apply to the WB speech a sharp high pass filter and down-
sampling. The filtering operation is costly and is completely
eliminated by working in the frequency domain, using the
selective LP technique.

To compute the HB spectral envelope, selective LP on the
3–8KHz frequency range is performed on each frame. The
selective LPCs are subsequently converted to LSFs and are
quantized using an LSF codebook. An LSF vector quantizer
(VQ) codebook was designed by the LBG algorithm [22].

2.2.3. Wideband LPC codebook andwideband
synthesis blocks

The problem of WB spectral envelope computation is stated
as follows: given the selective LPCs (or equivalently LSFs) in
the frequency range of 3–8KHz, the task is to find WB LPCs
in the frequency range 0–8KHz such that an appropriately
defined spectral distance between the selective andWB spec-
tral envelopes will be minimal in the HB frequency range of
3–8KHz.

The spectral envelope shape has no importance in the
0–3KHz range since the reconstructed WB speech, gener-
ated at the decoder, uses the transmitted NB speech in that
frequency range. Hence, the method suggested here for WB
spectral envelope computation is based on creating a 0–
3KHz spectral envelope by a symmetric folding (mirroring)
of the spectral envelope at the frequency range 3–6KHz (in
the DFT domain) about the frequency 3KHz. The folding
operation is followed by WB LPCs computation using spec-
tral LP. To generate the WB LPC codebook, for each code-
word of the given HB LSF codebook, the spectral envelope
is reconstructed, and then the symmetric folding operation
followed by WB LPCs computation using spectral LP is per-
formed, resulting in a corresponding WB LPC codeword.
The generation of theWB LPC codebook is done once, in the
design stage. The HB LSF codebook is used for determining
the LSF index for a given HB LSF vector. The same index is
used to extract the corresponding WB envelope parameters
from the WB LPC codebook. The SBE encoder and decoder
store the same WB LPC codebook, and use it to generate the
WB spectral envelope from a given index of a quantized HB
LSF vector.

2.2.4. Gain estimation and gain quantization blocks

The computation of the HB gain is done to minimize
the spectral distance between the spectral envelopes of the
original WB speech signal and the reconstructed WB speech
signal, in the 3–8KHz frequency range. The spectral differ-
ence between these spectral envelopes originates from two
main reasons. First, the artificially extended WB excitation is
not identical to the original WB excitation. Second, the WB
LPCs obtained from the HB quantized LSFs introduce spec-
tral distortion between the two spectral envelopes.

The HB gain factor, denoted by gHB, should minimize
the spectral distance between the HB frequency region of
the original WB spectral envelope, |SWB(ω)| and the HB
frequency region of the reconstructed WB speech spectral
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Figure 4: SBE decoder structure.

envelope, |˜SWB(ω)|, multiplied by the HB gain. The error
measure for computing the gain factor g is defined by

EgHB � 1
ω1 − ω0

∫ ω1

ω0

(∣

∣SWB(ω)
∣

∣− gHB
∣

∣
˜SWB(ω)

∣

∣

)2
dω.

(1)

The gain factor is found by setting

∂EgHB

∂gHB
= 0. (2)

By solving (2), the gain factor is equal to

gHB =
∫ ω1

ω0

∣

∣SWB(ω)
∣

∣

∣

∣
˜SWB(ω)

∣

∣dω
∫ ω1

ω0

∣

∣
˜SWB(ω)

∣

∣

2
dω

. (3)

The computed HB gain is quantized for transmission, us-
ing a scalar nonuniform quantizer.

2.3. SBE decoder structure

The SBE decoder generates the reconstructed WB speech
from the received NB speech signal and the embedded side
information. The ensuing description of the decoder struc-
ture refers to Figure 4. The side information in each speech
frame includes the gain index and the LSF codebook index.
In the lower branch, the WB excitation signal is generated
from the NB speech signal, using the technique used in the
SBE encoder (Figure 3). In the middle branch, the WB LPCs
are computed by using the LSF codebook index as a pointer
to the corresponding WB LPC codebook. The WB artifi-
cial excitation together with the gain parameter and the WB
LPCs are used to synthesize the WB speech signal. The HB
part of the synthesized WB speech signal is filtered by a high
pass filter (HPF), and combined with the interpolated NB
speech signal, to produce the reconstructed WB speech sig-
nal, ŝWB.

The input signal to the decoder, denoted by s̃NB in
Figure 4, is the output of a channel equalizer. It is desirable

that the input to the SBE decoder be as close as possible to
the original NB speech signal generated at the input to the
telephone channel. Although the NB speech signal which is
the output of a channel equalizer is close to the original NB
speech, it is not identical to it because of three reasons. First, a
residual spectral distortion exists after channel equalization.
Second, noise in the transmission channel, which is ampli-
fied by channel equalization, gets added to the received sig-
nal. Third, the existence of embedded data in the NB speech
acts like added noise.

3. PERCEPTUALMODEL-BASED DATA EMBEDDING

A data-embedding (also known as data-hiding or digital
watermarking) system should satisfy the following require-
ments. It should embed information transparently, meaning
that the quality of the host signal is not degraded, percep-
tually, by the presence of embedded data. It should be ro-
bust, meaning that the embedded data could be decoded re-
liably from the watermarked signal, even if it is distorted or
attacked. The data-embedding rate is also of importance in
some applications.

In speech and audio coding, a human auditory percep-
tion model is used and the irrelevant signal information is
identified during signal analysis by incorporating several psy-
choacoustic principles, such as absolute hearing thresholds,
masking thresholds and critical band frequency analysis.
Perceptual characteristics of speech and audio coding are in-
corporated in all modern audio coding standards, such as
MPEG audio coders [23]. In data-embedding, the human au-
ditory perception model is used to construct the watermark
signal that could be added to the host signal, without affect-
ing the human listener. Auditory perception rules have also
been incorporated in SS-watermarking systems [6].

In this section, a method for perceptual model-based
data-embedding in speech signals, which combines the SCS
technique [3] for data-embedding with an auditory masking
model, is presented. The proposed encoder performs data-
embedding in the frequency domain, in separate subbands,
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utilizing a masking threshold function (MTF). The use of
subband masking thresholds (SMTs), derived from the MTF,
for the computation of SCS parameters for each subband, is
described. Afterwards, the motivation for choosing the dis-
crete Hartley transform (DHT) as the embedding domain
is explained. Methods for selecting the subbands for data-
embedding are also described.

It should be noted that the proposed data-embedding
technique, which combines an auditory masking model, is
demonstrated here for speech signals but could also be used,
with appropriate modifications, for data-embedding in au-
dio signals.

We begin the description of the proposed perceptual
model-based data-embedding method by presenting the
SCS principles in Section 3.1, followed by the description
of the subband SCS parameter determination process in
Section 3.2. The reasoning for choosing the DHT as the data-
embedding domain is given in Section 3.3, and several meth-
ods for selecting subbands for data-embedding are given in
Section 3.4. Finally, the embedded-data decoding process is
given in Section 3.6.

3.1. Scalar Costa scheme principles

A general model for data communication by data-embedd-
ing is described in Figure 5. The binary representation of
a message m, denoted by a sequence b, is encoded into a
coded sequence d using forward error-correction channel-
coding, such as block codes or convolutional codes. The data-
embedding encoder embeds the coded data d into the host
signal x producing the transmitted signal s, which is a sum of
the host signal x and the watermark signal w. A deliberate or
an unintentional attack, denoted by v, may modify the signal
s into a distorted signal r and impair data transmission. The
data-embedding decoder aims to extract the embedded data
from the received signal r. In blind data-embedding systems,
the host signal x is not available at the decoder.

Data embedding

According to SCS [3], the transmitted signal elements are ad-
ditively composed of the host signal and the watermark sig-
nal, that is,

sn = xn +wn = xn + αqn. (4)

The watermark signal elements are given by wn = αqn, where
α is a scale factor and qn is the quantization error of the host

signal element quantized according to the data dn,

qn = QΔ

{

xn − Δ
(

dn
D

+ kn

)}

−
(

xn − Δ
(

dn
D

+ kn

))

. (5)

QΔ{·} in (5) denotes scalar uniform quantization with a
step-size Δ, and kn ∈ [0, 1) denote the elements of a crypto-
graphically secure pseudo random sequence k. For simplic-
ity, it is assumed in the following that the sequence k is not in
use, that is, kn ≡ 0. The alphabet size is denoted by D. In this
paper, a binary SCS is utilized, that is, an SCS with an alpha-
bet size of D = 2, and dn ∈ D = {0, 1} are elements of the
data sequence d. The noise elements are given by vn = rn−sn,
and the watermark-to-noise ratio (WNR) is defined as

WNR = 10 log10

(

σ2w
σ2v

)

[dB], (6)

where σ2w, σ
2
v are the variances of the watermark and noise

signals elements, respectively. SCS embedding depends on
two parameters: the quantizer step-size Δ and the scale factor
α. For a given watermark power σ2w, and under the assump-
tion of fine quantization, these two parameters are related via

σ2w =
α2Δ2

12
. (7)

In [3] an analytical expression that approximates the opti-
mum value of α, in the sense of maximizing the capacity of
SCS, is given by

αSCS, approx =
√

σ2w
σ2w + 2.71σ2v

. (8)

Equations (7) and (8) lead to

ΔSCS, approx =
√

12
(

σ2w + 2.71σ2v
)

. (9)

Data extraction

In the decoder, data extraction is applied to a signal y, whose
elements are computed from the received signal elements rn
by

yn = QΔ
{

rn
}− rn. (10)

Since |yn| ≤ Δ/2, yn is expected to be close to zero if dn = 0
was embedded, and close to±Δ/2 if dn = 1, hence, for proper
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detection of binary SCS data embedding, a hard decoding
rule should assign

̂dn =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0
∣

∣yn
∣

∣ <
Δ

4
,

1
∣

∣yn
∣

∣ ≥ Δ

4
.

(11)

Soft-input decoding algorithms, for example, a Viterbi de-
coder like the one used for decoding convolutional codes,
can be used here too to decode the most likely transmitted

sequence ̂b, from the signal y.

3.2. Determination of subband SCS parameters

The following description is supported by Figure 6. The
MTF is computed by the MPEG-1 masking model [23],
which is designated for MTF computation for audio signals
in general, and for speech signals in particular. The MTF,
{T(k); 0 ≤ k ≤ N/2}, with k denoting a discrete frequency
index, is calculated for each frame of length N . The posi-
tive frequency band is divided into M subbands (M < N/2).
The subbands could be uniform or nonuniform. The sub-
band masking threshold (SMT) in each subband is set to the
minimum of the MTF value in that subband

Tmin,m = min
k∈mth subband

T(k), m = 1, 2, . . . ,M. (12)

The maximal embedding distortion (watermark vari-
ance) according to (4) and (5) is α2Δ2/4, while the average
embedding distortion is α2Δ2/12 (7). Distortion in the mth
subband that is greater than the SMT, Tmin,m (12), may be
audible. It is required therefore that the subband maximal
embedding distortion will be bounded from above by the
SMT. By equating the subband maximal embedding distor-
tion with the SMT

10 log10

[

α2mΔ
2
m

4

]

= Tmin,m [dB], (13)

the subband average embedding distortion can be expressed
in terms of Tmin,m by

σ2w,m =
α2mΔ

2
m

12
= 10Tmin,m/10

3
. (14)

Assuming that a channel-noise model or estimation is given,
and denoting the model or estimation of noise variance in
the mth subband by σ2v,m, the value of the subband scale fac-
tor, αm, is given by (8)

αm =
√

√

√

√

σ2w,m
σ2w,m + 2.71σ2v,m

. (15)

Formally, the subband quantization-step value is given now,
from (14), by

Δ∗m =
2
αm

10Tmin,m/20. (16)

However, to improve the robustness of the quantization-step
detection in the decoder, as well as to reduce the compu-
tational complexity of the detection, the applied subband
quantization step is selected to be one of a finite pre defined
set of quantization-step values, denoted by

{

Δ0,Δ1, . . . ,ΔJ−1}. (17)

The set of quantization steps is sorted in an ascending order.
This set of quantization steps will also be known at the de-
coder. The quantization step in the mth subband is obtained
by quantizing the above computedΔ∗m (16) in the log domain
(motivated by the logarithmic sensitivity to sound pressure
level of the human listener) yielding

Δm = 10Dm/20, (18)

where

Dm � c
⌊

Tmin,m + 20 log10
[

2/αm
]

c

⌋

, (19)
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and the constant c is the quantization step of Δ∗m in [dB].
Note that for WNRm > 10 [dB], αm ∼= 1, simplifying (19),
used for the computation of Δ∗m by (18), to

Dm
∼= c

⌊

Tmin,m + 6.02
c

⌋

. (20)

Note that if α = 1, SCS is equivalent to dither modulation
[7].

3.3. Choice of data-embedding domain

For each type of host signal, there is a need to decide on the
appropriate embedding domain. The use of a frequency do-
main auditory masking model naturally leads to the choice
of the frequency domain representation of a sound signal as
the embedding domain. In other words, the frequency do-
main coefficients of the host signal are modified according to
(4), (5). Several alternative transformations were examined
as follows.

Discrete Fourier transform

The discrete Fourier transform (DFT) of the signal frame x is
defined by

Fk = 1√
N

N−1
∑

n=0
xne

(− j(2π/N)nk), k = 0, . . . ,N − 1. (21)

Discrete Cosine transform

The discrete Cosine transform (DCT) of the signal frame x is
defined by

Ck = β(k)
N−1
∑

n=0
xn cos

(

(2n + 1)kπ
2N

)

, k = 0, . . . ,N − 1,

(22)

where

β(k) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1√
N
, k = 0,

2√
N
, 1 ≤ k ≤ N − 1.

(23)

Discrete Hartley transform

The discrete Hartley transform (DHT) [24] of the signal frame
x is defined by

Xk = 1√
N

N−1
∑

n=0
xn cas

(

2π
N

nk
)

, k = 0, . . . ,N − 1, (24)

where cas(x) � cos(x)+sin(x). As for the DFT, the transform
elements are periodic in k with period N .

The DHT coefficients are used here for data-embedding,
as this transform is preferred by us over the other two
frequency-domain representations: the DFT and the DCT.

The DHT is preferred here over the DFT because the lat-
ter is a complex transform, while the DHT is a real one, and

there are fast algorithms for the computation of the DHT
[25], similar to those used for the computation of the DFT.

The DFT is commonly used for computing theMTF [23].
Yet, the need for complex arithmetic can be completely elimi-
nated by using the direct relation between the DFT and DHT
given by

Re
{

Fk
} = 1

2

[

XN−k + Xk
]

, Im
{

Fk
} = 1

2

[

XN−k − Xk
]

,

∣

∣Fk
∣

∣

2 = 1
2

[

X2
k + X2

N−k
]

,

(25)

where Xk and Fk denote the DHT and DFT of a signal frame
x, respectively. Therefore, in the proposed scheme, the DHT
is calculated to obtain a representation of the signal for data-
embedding, followed by the direct computation of the MTF.

Although the DCT is also a real transform, it does not
provide the same simplicity in computing the MTF as the
DHT. Formally, let ΦF , ΦC, and ΦX define the transforma-
tion matrices such that

F = ΦFx,

C = ΦCx,

X = ΦXx,

(26)

where x is a column vector containing the frame elements,
and the elements of the transformed vectors F, C, and X are
defined in (21), (22), and (24), respectively. If it is required to
transform theMTF, computed by aDFT, to the DCT domain,
the MTF T (a vector whose elements are defined in dB) can
be inverse transformed into the vector t by

t = Φ−1
F 10T/20. (27)

Then, the MTF in the DCT domain, denoted by TC , can be
computed by

TC = 10 log10
(
∣

∣ΦCt
∣

∣

2
)

[dB]. (28)

Therefore, computation ofTC require the computation of the
MTF by a DFT, followed by the transformation of the MTF
to the DCT domain. This operations could be completely
avoided by using the DHT domain for the MTF calculation.

3.4. Selecting subbands for data-embedding

We have considered various approaches for selecting the sub-
bands for data embedding. Constraints regarding a fixed
or variable embedding-rate affect the number of subbands
in each frame which are used for data-embedding. Further
constraints can dictate a fixed or dynamic subband selection.
Table 1 describes the possible options for fixed/variable em-
bedding rate and fixed/dynamic subband selection.

For example, in some applications, a fixed embedding rate
is required. In that case, one can select in advance the sub-
bands (fixed subband selection) that will be used for data-
embedding, and continue to embed data in these subbands
even if the WNR in any of the selected subbands is low. This
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Table 1: Subband selection options.

Fixed- Variable-

embedding rate embedding rate

Fixed subband selection yes no

Dynamic subband selection yes yes

may result, of course, in a high bit error rate (BER). A better
option, is to dynamically select a fixed number of subbands,
but choose those with the maximal estimated WNR over all
subbands. The dynamic approach would obviously result in
better performance than a fixed subband selection.

Another option is to have a variable embedding rate with
dynamic subband selection. In this mode, data is embedded
in a specific subband only if the estimated WNR in that sub-
band is greater than a given threshold, that is set according to
the allowed BER value. If the actual WNR, caused by channel
noise, matches the estimated WNR, a target BER value can
be ensured. However, as the target BER value is lowered, the
attainable data rate is lowered too.

3.5. Composition of subband coefficients

The mth subband coefficients are composed of coefficients
from positive and negative frequencies, since the same SMT
(12) applies for the corresponding positive and negative
frequencies. For example, the mth subband is composed
of the following positive and negative frequency coeffi-
cients [Xkm,start ,Xkm,start+1, . . . ,Xkm,end ,X(N−km,end),X(N−km,end+1), . . . ,
X(N−km,start)], where km,start and km,end are the mth subband
positive frequency boundaries, and 0 < km,start < km,end <
N/2. If it is decided to embed data in the mth subband, the
DHT coefficients are modified according to the SCS embed-
ding rule shown in (4), (5) with the parameters {αm,Δm}.
If, alternatively, the DFT coefficients are used for data-
embedding, the embedding can be performed by modifying
the real and imaginary parts of the positive frequencies co-
efficients, and the negative frequencies coefficients are gen-
erated by the constraint FN−k = Fk since the inverse trans-
formed signal is real. The DHT coefficients are all real and
hence not constrained as the DFT coefficients. Therefore, dif-
ferent data can be embedded in the positive and negative fre-
quencies DHT coefficients, providing the same total ofN real
coefficients that can be used for data-embedding. After data-
embedding, the DHT coefficients are inverse transformed to
obtain the transmitted signal.

3.6. Decoding of embedded data

There are many types of both deliberate and unintentional
attacks, which can affect data-embedding systems. A spe-
cific unintentional attack, which is caused by transmitting a
speech signal with embedded data over a telephone channel,
is considered in this paper. When a speech signal with em-
bedded data is transmitted over the telephone channel, the
first step in the decoder is to compensate the spectral distor-
tion introduced by the channel, using an adaptive equalizer,

detailed in Section 3.6.1. Afterwards, frame synchronization
is carried out, based on the computed cross-correlation be-
tween the stored training signal and the equalizer output
signal. The maximum value of the cross-correlation func-
tion is searched for, and it’s position is used for deter-
mining the start position of the first frame. The DHT is
then applied to each frame of the equalized and frame-
synchronized signal in order to transform it to the embed-
ding domain.

The next decoding step is the blind detection of embed-
ding parameters. Blind detection is needed when the decoder
does not know the encoding parameters. In the discussed
scheme, detection of embedding parameters include detec-
tion of embedded-data presence in each subband, and the de-
tection of the SCS quantization step. Detection of embedded-
data presence in each subband is needed when the encoder
chooses dynamically the subbands for data-embedding. The
subband SCS parameters are also computed dynamically, ac-
cording to the MTF, and therefore the subband SCS quan-
tization step needs also to be determined. Since one of a fi-
nite set of step values is used (see (17)), determination of the
quantization step is treated as a detection problem, instead
of an estimation problem. A combined maximum likelihood
(ML) detection of embedded-data presence and quantization
step is proposed in Section 3.6.2.

The result of a detection error in the subband embedded-
data presence detection or in the quantization-step detection
is a high BER in the subband where the detection error oc-
curred. Therefore, the embedding-parameters detection per-
formance has great influence on the robustness. In order to
improve the detection performance, the use of a parameter
protection code (PPC) is suggested in Section 3.6.3.

The final step in the decoder includes extraction of the
channel coded data according to hard-decoding (11) or soft-
decoding rule followed by error correction decoding, which
results in the decoded embedded data.

3.6.1. Channel equalization

The speech signal transmitted over the telephone line is dis-
torted and noisy, compared to the original speech signal.
Trying to operate the decoder on the distorted speech sig-
nal would result in a very high BER. As a solution, a chan-
nel equalizer is used to compensate the channels’ spectral
distortion. In data communication literature, there is a va-
riety of algorithms for channel equalization [26–28]. In the
development stages of this work, several adaptive algorithms
were examined for channel equalization, such as the NLMS
and RLS algorithms. An equalizer that performs better, in
terms of a lower MSE, will usually result in a lower BER in
data decoding. Therefore, the RLS algorithm was preferred
although it has higher complexity than the NLMS algorithm.

The NLMS and RLS equalization algorithms typically use
a pseudo random white noise training sequence. Since lis-
tening to a white noise signal would certainly annoy the lis-
tener at the start of a phone conversation, the training stage
of the equalization is done in our system in a way that does
not annoy the listener. This is achieved by replacing the white
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noise training signal with amusical signal. Themusical train-
ing signal can be chosen from one of the listeners favorite
pieces of music. One demand from the “musical” equaliza-
tion is that the training signal occupies the full telephone
band, and thus be similar in this aspect to the white noise
training signal. Simulation results are reported in Section 4.2
and Section 4.3.1

Blind equalization algorithms that avoid the need for
a training signal are used for equalizing data communica-
tion channels, but to the knowledge of the authors there is
no blind equalization algorithm that would perform well in
our scenario, where data is implicitly embedded in a much
stronger analog host signal.

3.6.2. Maximum likelihood detection of
embedding parameters

If dynamic subband selection is applied, the decoder has no
prior knowledge of either the subband embedded-data pres-
ence or the quantization-step. Therefore, the decoder needs
to detect these embedding parameters. The detection stages
are as follows.

Step 1 (quantization-step determination). If data is embed-
ded in a particular subband, the quantization step used in
the embedding is one of a set of quantization-step values
(sorted in ascending order), {Δ0,Δ1, . . . ,ΔJ−1}, as discussed
in Section 3.2. A test set of quantization steps is chosen from
the above set, and the test set indices are denoted by G. The
minimal and maximal values of the quantization steps to be
tested are denoted by Δmin and Δmax, respectively.

Twomethods are suggested for the selection of the largest
quantization step to be tested, Δmax. In the first method, the
largest tested quantization step is set to be the quantization
step obtained by applying (18) with the MTF computed at
the decoder. In the second method, Tmin,m is substituted by
3σ2x,m computed at the decoder, and the largest tested quan-
tization step is computed by applying (18). The latter ap-
proach enables a complexity reduction, since there is no need
to compute the MTF at the decoder.

The smallest tested quantization step can be set to Δmin =
Δ0. In order to reduce computational complexity, the small-
est tested quantization step can also be set to the smallest
quantization step possible for a given test set size {|G| =
G; G > 0}. The test set size G is chosen according to an as-
sumed possible range of quantization step values, measured
in dB.

Step 2 (computation of the demodulated DHT coefficients).
Using the test set G of quantization steps, (10) is applied to
the received subband DHT coefficients Rm,k, to obtain Y

g
m,k.

Explicitly, Y
g
m,k is computed by

Y
g
m,k = QΔg

{

Rm,k
}− Rm,k, g ∈ G, (29)

where Rm,k is the kth DHT coefficient of the received signal in
themth subband, and Y

g
m,k is computed by (29) from the re-

ceived DHT coefficient by using each one of the quantization
steps, Δg , in the test set G.

Step 3 (computation of log-likelihood ratios). In this step, two
possible hypotheses are defined, and the log-likelihood ratios
(LLRs) are computed from Y

g
m,k. For notational simplicity,

Y
g
m,k is replaced by Y , in the next paragraph. The two hy-

potheses are

(i) H0: Y in (29) is computed with the correct quanti-
zation step,
(ii) H1: Y is computed with the incorrect quantization
step.

The PDFs of the two above hypotheses, p(Y | H0) and
p(Y | H1), are known at the decoder. Details of computa-
tion of the PDFs p(Y | H0) and p(Y | H1) are given in [3].
The hypotheses are under the assumption that the embedded
data is present in the subband. Computing Y with the incor-
rect quantization step is equivalent to the computation of Y
in a subband without embedded data, since the computation
of Y with an incorrect quantization step will result in uni-
formly distributed values of Y [3]. Therefore, if embedded-
data is absent in a given subband, the demodulated values Y ,
computed by (29), will have the PDF p(Y | H1).

The LLR, for each quantization step of the test set G, is
computed by

L
g
m � log

(∏

k∈mth subband p
(

Y
g
m,k | H0

)

∏

k∈mth subband p
(

Y
g
m,k | H1

)

)

, g ∈ G. (30)

The computation of the LLR L
g
m in the above equality is un-

der the assumption that Y
g
m,k are statistically independent in

the index k. This assumption can be justified in the case of
fine quantization. The LLR, L

g
m, is a measure of the validity

of the assumption that Δg is the quantization step used in
the encoder, given that embedded data is present in that sub-
band.

There are cases when the computation of the LLR will
result in a high value, although the tested quantization step
Δg is not the quantization step used in the encoder, denoted
by Δ∗. One such case happens when the tested quantization-
step value is large compared to the standard deviation of the
subband coefficients distribution. The fine quantization as-
sumption is invalid in this case. To avoid this, one of the
previously described methods for the selection of the largest
quantization step to be tested, Δmax, can be applied. Another
case is when the quantization grid of the tested quantiza-
tion step, Δg , and the grid of the quantization step used in
the encoder, Δ∗, partly coincide by obeying 2nΔg = Δ∗;
{n = 1, 2, . . . }. Since with zero noise the extracted coded
data (11) is equal to zero, the Hamming distance between
the extracted coded data and a parameter protection code,
described in Section 3.6.3, provides an additional measure of
likelihood for the tested quantization step.

Step 4 (embedded-data presence detection). Themaximal LLR

from (30), denoted by L
g∗
m , is used in the following subband

embedded-data presence detection rule:

Im =
⎧

⎨

⎩

1, L
g∗
m > T ,

0, L
g∗
m ≤ T ,

(31)

where T is a decision threshold. The detector decides that
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embedded data is present in the mth subband if Im = 1, and
that it is absent if Im = 0.

Setting the decision threshold, T , to a value higher than
zero will result in a lower false positive detection probabil-
ity and in a higher false negative detection probability. The
setting of T = 0 was used in our simulations.

Step 5 (quantization-step detection). This final step is exe-
cuted if Im = 1 in the previous step. The quantization step
in the mth subband is determined as the quantization-step
value that maximizes the LLR, that is,

̂Δm = Δg∗ , (32)

where

g∗ = argmax
g∈G

L
g
m. (33)

3.6.3. Parameter protection code

The parameter protection code (PPC) can be used to im-
prove the embedded-data presence and quantization-step
detection. The PPC is a fixed code, of length Np, known to
the encoder and the decoder and is denoted by {pn; 0 ≤ n ≤
Np − 1}. The PPC is appended to the coded data, and em-
bedded in each subband where data is embedded.

For each subband, the decoder computes by hard decod-
ing (11) the decoded PPC, p̂

g
n, for each tested quantization

step {Δg , g ∈ G}. The decoder computes the Hamming dis-
tance, denoted by d

g
p, between the decoded PPC and the orig-

inal PPC,

d
g
p =

Np−1
∑

n=0

∣

∣pn − p̂
g
n
∣

∣, g ∈ G. (34)

As in Section 3.6.2, two possible hypotheses are defined.

(i) H0: the decoded PPC is computed with the correct
quantization step.

(ii) H1: the decoded PPC is computed with the incorrect
quantization step.

The uncoded BER1, given hypothesis H0, is denoted by PH0
e ,

and the uncoded BER, given hypothesis H1, is denoted by
PH1
e . It is assumed that the decoder has prior knowledge on

the probability PH0
e , which is dependent on the channel con-

ditions. It is also assumed that PH1
e = 1/2. The probability

that the distance between the original and decoded PPC is
equal to dp is given by

P
(

dp | H0
) =

(

Np

dp

)

(

PH0
e

)dp(1− PH0
e

)(Np−dp),

P
(

dp | H1
) =

(

Np

dp

)

(

PH1
e

)Np .

(35)

1 Uncoded BER is the normalized Hamming distance between the embed-

ded bits, d, and the extracted bits, ̂d. The coded BER is the normalized
Hamming distance between the information bits and the decoded infor-
mation bits.

The PPC LLR is defined by

P
g
m � log

(

P
(

dp | H0
)

P
(

dp | H1
)

)

= log

((

PH0
e
)dp(1− PH0

e
)(Np−dp)

(

PH1
e
)Np

)

.

(36)

Basically, Steps 4-5 of the previous section can now be per-
formed, by replacing the LLRs calculated from Y values (30),
by the LLRs calculated from the PPC (36). A better option is
to combine the two LLRs, as described below.

Combining the LLRs

The LLRs calculated from Y values in (30), denoted L
g
m,

and the LLRs calculated from the PPC in (36), denoted
P
g
m, can be combined for the data-embedding presence and

quantization-step detection. There are many ways of com-
bining the above LLRs. A simple combination is to sum the
two values,

L
g
m, combined = L

g
m + P

g
m, (37)

and to use the combined LLR for embedding-parameters de-
tection.

4. EXPERIMENTAL RESULTS

The experimental results reported here are divided into three
parts. First, in Section 4.1, we demonstrate the bandwidth
extension of telephone speech, then we detail the telephone
channel equalization in Section 4.2, and finally we describe
the data-embedding experimental results in Section 4.3.

Subjective listening tests were performed using utter-
ances from the TIMIT database. The subjective tests include
a mean opinion score (MOS) evaluation of reconstructed
WB speech, a MOS evaluation of NB speech with embed-
ded data, and a preference test between the reconstructedWB
speech and the conventional telephone speech. Objective ex-
periments were done using the same database. The results
were evaluated by averaging over 625 sentences, having a to-
tal duration of more than 34 minutes of speech.

Channel models

Three channel models were used in our simulations: (i) tele-
phone channel model based on the “ITU-T V.56bis” stan-
dard [29], which causes amplitude and phase distortion,
combined with PCM quantization noise and AWGN. (ii)
PCM channel model that contains μ-law quantization noise
(8 bits/sample), without the telephone channel, and (iii)
AWGN channel model with an SNR of 35 dB.

4.1. Speech bandwidth extension

In our evaluation of the SBE system, we applied an energy-
based voice activity detector (VAD) in the SBE encoder to
determine in which frames the reconstruction of WB speech
should be performed. In those frames, the SBE encoder com-
putes the HB parameters, and the HB parameters are embed-
ded in the NB speech, as described earlier.
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For each input WB signal frame, identified by the VAD as
containing speech, the encoder computes and transmits the
indices of the HB gain and spectral envelope parameters. The
allocation of 12 information bits in a data-embedded sub-
band is divided into 4 bits for the gain index and 8 bits for
the LSF index. The NB LP analysis window is of length of
32ms (256 samples at 8 KHz sampling rate), but the analysis
is updated every 16ms (i.e., with 50% overlap), so that there
are two HB updates in each 32msec. A rectangular window
is used for extracting frames for data-embedding. The DHT
coefficients of each nonoverlapping frame of 32ms are par-
titioned into subbands as described in Section 4.3. To sup-
port the required SBE side information, 24 information bits
are used in each frame (12 bits in each of the two selected
subbands for embedding), resulting in a coded-data rate of
64 bits (two subbands, with 32 bits in each) for each frame.
That is, 20 bits are used in each of those two subbands for
error correction/protection.

4.1.1. SBE experiment results

The proposed SBE system was evaluated by both subjec-
tive and objective measures. A subjective MOS test was con-
ducted on 2 sets of 10 sentence-long utterances. The first
set included WB speech utterances taken from the TIMIT
database recordings. The second set comprised reconstructed
WB speech utterances generated by passing the first set thor-
ough the complete system (i.e., data-embedding, telephone
channel, equalization, data extraction, and HB reconstruc-
tion). Twelve nonprofessional listeners listened to the utter-
ances and rated them on a [1–5] scale: (1) bad, (2) poor,
(3) fair, (4) good, (5) excellent. The MOS of the original
WB speech was 4.133 and the MOS of the reconstructed WB
speech was 3.775. The MOS of the original WB speech ut-
terances is lower than the maximum score of 5 since TIMIT
database recordings are intended for the development and
evaluation of automatic speech recognition systems, and
do not really have excellent quality. The reconstructed WB
speech has lower quality than the originalWB speech because
of two reasons. First, the NB part of the reconstructed speech
is noisy, because of the transmission and equalization of the
NB speech. Second, the reconstructed HB part is generated
from an artificial excitation and the decoded HB parameters.

The objective tool for perceptual evaluation of speech
quality (PESQ) [30] in its WB version could perhaps be used
for quality evaluation, but an operational WB PESQ software
for a 16KHz sampling rate is not at our disposal. Hence, as
in other works [8, 17], objective results were evaluated by the
log spectral distance (LSD) measure. The averaged LSD ob-
tained, supported by a side-information rate of 600 bits/sec
and measured over the 3.4–7KHz range, was 2.8 dB for the
simulated telephone channel model. In comparison, in [17],
a different structure of the SBE system, which does not use
data embedding, is proposed. In the SBE of [17], the power
spectrum is directly vector quantized, in the log domain, re-
quiring a side information rate of 500 bits/sec. The average
LSD reported in [17] is 3.6 dB, measured over the 3–8KHz
range. In the SBE of [8], an LSD of approximately 2.9 dB,

measured over the 3.4–7KHz range, is supported by a data
rate of 300 bits/sec. However, the result in [8] was obtained
with a PCM channel model. With this simplified channel
model our suggested system achieved an LSD of 2.6 dB at the
expense of a higher side information rate. For the AWGN
channel model, our suggested system obtained an LSD of
2.7 dB. The LSD comparison above is under the restriction of
not having the same underlying data and applied LSD mea-
sure as [8, 17].

Results obtained for a sample sentence are shown in
Figure 7. The original WB speech signal spectrogram is
shown in Figure 7(a). The spectrogram of the speech signal
filtered by the telephone channel is shown in Figure 7(b) and
the reconstructed WB speech signal spectrogram is shown
in Figure 7(c). The spectra and spectral envelope of a sam-
ple frame of the original and reconstructed WB signals is
shown in Figure 8. It can be observed that the NB parts of the
spectral envelopes are almost identical, as expected. The dif-
ference between these spectral envelopes is due to imperfect
channel equalization. It can also be seen that the HB parts
differ more because of the artificial reconstruction process,
but this difference was hardly noticed in informal listening.

Effect of BER on reconstructedWB speech quality

In this experiment, the data needed for SBE is transmitted
by an external side-information channel and is not embed-
ded in the NB speech. Uniformly distributed random errors
were inserted to the side-information bit stream. The chan-
nel model is also removed and the SBE encoder and decoder
operate in cascade. The LSD as a function of the inserted BER
is shown in Figure 9. It can be seen that a BER below 10−3

does not practically affect the LSD that is achieved by the SBE
algorithm. At this BER the LSD is 2.5 dB. With a telephone
channel model, we obtained a BER of 3.1 · 10−4 and only a
somewhat higher LSD value of 2.8 dB, showing that the ef-
fect of embedded data noise, channel noise, and remaining
spectral distortion after equalization amounts in our system
in an increase of 0.3 dB only in LSD.

4.2. Telephone channel equalization

The RLS algorithm was applied with 256 taps for equalizing
the telephone channel. The length of the training sequence
is 215 samples, which is approximately 4 seconds long at a
sampling rate of 8 KHz. Equalization using amusical training
signal was also successfully experimented, utilizing part of a
classical music piece of Smetana. The averaged LSD obtained
with musical equalization was 2.8 dB, about the same LSD as
in the case of a white noise training signal.

4.3. Perceptualmodel-based data-embedding

As discussed earlier, the computation of the MTF is based
on MPEG’s psychoacoustic model [23]. The standard sup-
ports several common sampling frequencies of audio signals.
Some modifications in the masking model implementation
were made in order to suit the case of speech signals sampled
at 8 KHz.
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Figure 7: Spectrograms of (a) original WB signal, (b) NB signal, (c)
reconstructed WB signal.
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display purposes) of original WB speech signal (solid line) and re-
constructed WB speech signal (dashed line) produced by SBE de-
coder.
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Figure 9: Effect of BER in side information on the SBE LSD.

Since the telephone channel has a large attenuation in
the frequency ranges of 0–300Hz and 3400–4000Hz, the
full band is partitioned into M = 8 nonuniform subbands,
as follows: from each frame containing 256 DHT coeffi-
cients, the positive and negative frequency coefficients of the
first subband (0–312.5Hz, with the start and end indices
of the first subband positive frequency boundaries equal to
k0,start = 0 and k0,end = 10, resp.), and of the positive and
negative frequency coefficients of the last subband (3343.75–
4000Hz, with the start and end indices of the last subband
positive frequency boundaries equal to k7,start = 107 and
k7,end = 128, resp.), are not used for data embedding. The
frequency range 343.75–3312.5Hz (with the corresponding
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start and end indices of the positive frequency boundaries
equal to k1,start = 11 and k1,end = 106) is divided into 6
equal width subbands, with each subband containing 32 co-
efficients from the positive and negative frequencies as de-
scribed in Section 3.5. From the six subbands, two subbands
having the maximal estimated subband WNR were dynam-
ically chosen for data embedding in each frame, which is
detected as containing speech by the VAD. The subband em-
bedded data is divided into two parts: error-corrected coded
data and parameter protection code (PPC). A (23,12) Golay
block code [28] is used as the error correction code (ECC)
for the coded data part, and the PPC part contains a PPC of
length Np = 9, p = [1, 1, 0, 1, 1, 0, 1, 0, 1]. Thus, each data
embedded subband contains 12 information bits, out of the
allocated 32 bits. The average information embedding rate
obtained was 600 bps. This rate is obtained by multiplying
the embedded 24 information bits per frame by the num-
ber of frames per second (8000/256) and then by the average
VAD rate (0.8).

4.3.1. Data-embedding experiments results

Data-embedding robustness

Robustness of the full system that includes the combined
LLRs (37) is described here. Using more than 106 informa-
tion bits, the simulation resulted in the uncoded BER was
9.6 · 10−4 and the coded BER (following ECC using Golay
code) was 3.3 · 10−4. Detection errors occur when a wrong
quantization step is detected in a subband with embedded
data, or when a subband without embedded data is detected
as containing data. The detection error-rate is defined by the
ratio of detection errors to the total number of subbands with
embedded data. The detection-error rate was approximately
4.6 · 10−4. The utilization of a different ECC is not expected
to change significantly the coded BER, since this BER is dom-
inated by the detection error rate.

The embedding scheme of [10] is robust to μ-law quan-
tization noise. In the case of AWGN channel model with an
SNR equal to 35 dB and an embedding rate of 216 bits/sec,
the achievable BER in [10] was 10−3. In our proposed system,
the embedding rate is 600 bits/sec and the achievable BER
was 3.2·10−4 for the same channelmodel. For the PCM chan-
nel model, the achievable BER by our system was 1 · 10−4.

Data-embedding transparency

Data embedding transparency was evaluated both subjec-
tively and objectively. A subjective MOS test was conducted
again on 2 sets of 10 utterances. The first set included NB
speech utterances, obtained by a 2 : 1 decimation of the
WB database utterances. The second set comprised the same
set of NB speech samples with embedded data. Both sets
were taken before transmission over any channel. 12 non-
professional listeners listened to the samples and rated them
on a [1–5] scale. The MOS of the NB speech was 3.7 and
the MOS of the NB speech with embedded data was 3.625.
The small difference between the MOS results demonstrate

the transparency of the proposed data-embedding scheme.
Transparency was evaluated objectively by the PESQ tool for
an 8KHz sampling rate. The evaluation results are assumed
to be equivalent to an MOS scale of [0–4.5]. Similar to the
subjective transparency test, the comparison is between the
NB speech and the NB speech with embedded data. The
PESQ score result, averaged over 625 sentences, was approx-
imately 3.9.

The authors of [10] conducted a subjective test, in which
they asked participants to compare the NB speech and the
NB speech with embedded data by a four-grade scale: (1) the
two signals are quite different; (2) the two signals are similar,
but the difference is easy to see; (3) the two signals sound
very similar, little difference exists; (4) the two signals sound
identical. The subjective test result was 3.07.

A “nearly imperceptible watermark” was reported in [8],
while no numerical objective or subjective measures were
given.

4.3.2. Subjective comparison of reconstructed
WB speech and telephone speech

In order to examine the complete scheme of bandwidth ex-
tension of telephone speech aided by data-embedding, an A-
B preference test was conducted by the same 12 non profes-
sional listeners as in the previousMOS tests. The participants
were asked to compare the quality of A-B utterance pairs,
and to rate if the quality of one is much better, better, or the
same, compared to the other utterance. Conventional tele-
phone speech utterance without embedded data was com-
pared to the reconstructed WB signal, created by the com-
plete scheme. The results are summarized in Table 2. Note
that the proposed system achieved 92.5% preference, at dif-
ferent degrees, over the conventional telephone speech.

5. CONCLUSION

We have presented a system for bandwidth extension of tele-
phone speech aided by data-embedding. The proposed sys-
tem uses the transmitted NB speech signal as a carrier of
the side information needed to carry out the bandwidth ex-
tension, thus eliminating the need for an additional chan-
nel. We have also proposed a novel data-embedding scheme,
in which the scalar Costa scheme is combined with an au-
ditory masking model allowing high-rate transparent em-
bedding at a low bit error rate. The embedded data pay-
load can also be used for purposes other than SBE. For ex-
ample, text and graphics can be transmitted as embedded
data during an ongoing conversation. Subjective tests showed
that the WB speech output of the suggested SBE system was
preferred (at different degrees) over conventional telephone
speech in 92.5% of the test utterances. In another listening
test, the MOS of the NB speech was 3.7 and the MOS of the
NB speech with embedded data was 3.625. The small differ-
ence between the MOS results demonstrate the transparency
of the proposed data-embedding scheme. In simulations, the
embedded data rate was 600 information bits/second with a
bit-error rate of approximately 3 · 10−4. The averaged LSD
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Table 2: A-B preference test for the reconstructed WB speech and the conventional telephone speech.

Preference Same
Reconstructed WB speech (set A) Telephone speech (set B)

A is better A is much better B is better B is much better

% 3.33 67.5 25 3.33 0.83

obtained, measured over the 3.4–7KHz range, was 2.8 dB.
Further details regarding the suggested SBE system sup-
ported by data embedding can be found in [31].

Future work may be directed to the following compo-
nents of the proposed system:

Embedding-rate improvements

(i) It was shown in [3] that binary SCS capacity is limited for
highWNRs due to the binary alphabet of embedded-data let-
ters. Throughout this work binary SCS was utilized. Since the
experimental average subband WNR is high, approximately
18 dB, the rate can be increased by applying D-ary SCS with
D > 2. (ii) Lattice Costa scheme [32], which employs lattice
quantization instead of scalar quantization, can also be used
for embedding-rate improvement. (iii) In the suggested ap-
plication, only two subbands are used for data embedding
in each frame. The encoder chooses these subbands as the
ones with the highest estimated WNR for each frame. The
embedding rate could be increased by dynamically choosing
also the number of subbands for data-embedding, from the
set of subbands into which the transformed signal frames are
divided.

Blind channel equalization

The examined algorithms for channel equalization make use
of a training sequence for the adaption stage. If blind chan-
nel equalization could be used, this stage could be avoided.
Developing a blind channel-equalization algorithm for data-
embedding systems appears to be a challenge.
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