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The bearing characteristic frequencies (BCF) contain very little energy, and are usually overwhelmed by noise and higher levels of
macro-structural vibrations. They are difficult to find in their frequency spectra when using the common technique of fast fourier
transforms (FFT). Therefore, Envelope Detection (ED) has always been used with FFT to identify faults occurring at the BCF.
However, the computation of the ED is suffering to strictly define the resonance frequency band. In this paper, an alternative ap-
proach based on the Laplace-wavelet enveloped power spectrum is proposed. The Laplace-Wavelet shape parameters are optimized
based on Kurtosis maximization criteria. The results for simulated as well as real bearing vibration signal show the effectiveness of
the proposed method to extract the bearing fault characteristic frequencies from the resonant frequency band.
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1. INTRODUCTION

The predictive maintenance philosophy of using vibration
information to lower operating costs and increase machinery
availability is gaining acceptance throughout industry. Since
most of the machinery in a predictive maintenance program
contains rolling element bearings, it is imperative to establish
a suitable condition monitoring procedure to prevent mal-
function and breakage during operation.

The hertzian contact stresses between the rolling ele-
ments and the races are one of the basic mechanisms that
initiate a localized defect. When a rolling element strikes a
localized defect, an impulse occurs which excites the reso-
nance of the structure. Therefore, the vibration signature of
the damaged bearing consists of exponentially decaying sinu-
soid having the structure resonance frequency. The duration
of the impulse is extremely short compared with the interval
between impulses, and so its energy is distributed at a very
low level over a wide range of frequency and hence, can be
easily masked by noise and low-frequency effects. The peri-
odicity and amplitude of the impulses are governed by the
bearing operating speed, location of the defect, geometry of
the bearing, and the type of the bearing load. The theoret-
ical estimations of these frequencies are denoted as bearing
characteristics frequencies (BCF); see the appendix.

The rolling elements experience some slippage as the
rolling elements enter and leave the bearing load zone. As a
consequence, the occurrence of the impacts never reproduce
exactly at the same position from one cycle to another, more-
over, when the position of the defect is moving with respect
to the load distribution of the bearing, the series of impulses
is modulated in amplitude. However, the periodicity and the
amplitude of the impulses experience a certain degree of ran-
domness [1–4]. In such case, the signal is not strictly peri-
odic, but can be considered as cyclo-stationary (periodically
time-varying statistics), then the cyclic second-order statis-
tics (such as cyclic autocorrelation and cyclic spectral den-
sity) are suited to demodulate the signal and extract the fault
feature [5–7]. All these make the bearing defects very diffi-
cult to detect by conventional FFT-spectrum analysis which
assumes that the analyzed signal to be strictly periodic. A
method of conditioning the signal before the spectrum es-
timation takes places is necessary.

To overcome the modulation problem, several signal
envelope demodulation techniques have been introduced.
In high-frequency resonance technique (HFRT), an en-
velope detector demodulates the passband filtered signal
and the frequency spectrum is determined by FFT tech-
nique [8]. Another well-established method is based on the
Hilbert transform [9, 10]. The inconvenience of the envelope
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demodulation techniques is that the most suitable passband
must be identified before the demodulation takes place.

The wavelet transform provides powerful multiresolu-
tion analysis in both time and frequency domain and thereby
becomes a favored tool to extract the transitory features
of nonstationary vibration signals produced by the faulty
bearing [11–16]. The wavelet analysis results in a series of
wavelet coefficients, which indicate how close the signal is
to the particular wavelet. In order to extract the fault fea-
ture of signals more effectively, an appropriate wavelet base
function should be selected. Morlet wavelet is mostly ap-
plied to extract the rolling element bearing fault feature be-
cause of the large similarity with the impulse generated by
the faulty bearing [17–20]. The impulse response wavelet is
constructed and applied to extract the feature of fault vibra-
tion signal in [21]. A number of wavelet-based functions are
proposed for mechanical fault detection with high sensitiv-
ity in [22], and the differences between single and double-
sided Morlet wavelets are presented. An adaptive wavelet fil-
ter based on single-sided Morlet wavelet is introduced in
[23].

The Laplace wavelet is a complex, single-sided damped
exponential formulated as an impulse response of a single
mode system to be similar to data feature commonly encoun-
tered in health monitoring tasks. It is applied to the vibration
analysis of an actual aircraft for aerodynamic and structural
testing [24], and to diagnose the wear fault of the intake valve
of an internal combustion engine [25].

In this paper, an alternative approach for detecting local-
ized faults in the outer and inner races of a rolling element
bearing using the envelope power spectrum of the Laplace
wavelet is investigated. The wavelet shape parameters are op-
timized bymaximizing the kurtosis of the wavelet coefficients
to ensure a large similarity between the wavelet function and
the generated fault impulse.

This paper is organized as follows. In the next section,
the vibration model for a rolling bearing with outer- and
inner-race faults is introduced. Then in Section 3, the pro-
cedures of the proposed approach are set up. In Section 4,
the implementation of the proposed approach for detection
of localized ball bearing defects for both simulated and actual
bearing vibration signals is presented. Conclusions are finally
given in Section 5.

2. VIBRATIONMODEL FOR ROLLING ELEMENT
BEARING LOCALIZED DEFECTS

Every time the rolling element strikes a defect in the raceway
or every time a defect in the rolling element hits the raceway,
a force impulse of short duration is produced which in turn
excites the natural frequencies of the bearing parts and hous-
ing structure. The structure resonance in the system acts as
an amplifier of low-energy impacts. Therefore, the overall vi-
bration signal measured on the bearing shows a pattern con-
sisting of a succession of oscillating bursts dominated by the
major resonance frequency of the structure.

The response of the bearing structure as an under-
damped second-order mass-spring-damper system to a sin-
gle impulse force is given by

S(t) = Ce−(ξ/
√

1−ξ2)ωdt sin
(
ωdt
)
, (1)

where ζ is the damping ratio and ωd is the damped natural
frequency of the bearing structure.

As the shaft rotates, this process occurs periodically every
time a defect hits another part of the bearing and its rate of
occurrence is equal to one of the BCF. In reality, there is a
slight random fluctuation in the spacing between impulses
because the load angle on each rolling element changes as the
rolling element passes through the load zone. Furthermore,
the amplitude of the impulse response will be modulated as
a result of the passage of the fault through the load zone,

x(t) =
∑

i

AiS
(
t − Ti

)
+ n(t), (2)

where S(t − Ti) is the waveform generated by the ith im-
pact at the time Ti, and Ti = iT + τi, where T is the aver-
age time between two impacts, and τi describe the random
slips of the rolling elements.Ai is the time varying amplitude-
demodulation, and n(t) is an additive background noise
which takes into account the effects of the other vibrations
in the bearing structure.

Figures 1 and 2 show the impulses and the acceleration
signals (d2x(t)/dt2) generated by the model in (2) with ran-
dom slip (τ) of 10 percent of the period T and signal to noise
ratio of 0.6 dB for outer-race and inner-race bearing faults,
respectively.

3. ENVELOPEDWAVELET POWER SPECTRUM

The waveform x(t) in (2) can be viewed as a carrier signal at a
resonant frequency of the bearing housing (high frequency)
modulated by the decaying envelope. The frequency of inter-
est in the detection of bearing defects is the modulating fre-
quency (low frequency). The goal of the enveloping approach
is to replace the oscillation caused by each impact with a sin-
gle pulse over the entire period of the impact.

The Laplace wavelet is a complex, analytical, and single-
sided damped exponential, and it is given by

Ψ(t) =
⎧
⎨

⎩
Ae−(β/

√
1−β2)ωcte− jωct , t ≥ 0,

0, t < 0,
(3)

where β is the damping factor that controls the decay rate
of the exponential envelope in the time domain and hence
regulates the resolution of the wavelet, and it simultaneously
corresponds to the frequency bandwidth of the wavelet in the
frequency domain. The frequency ωc determines the number
of significant oscillations of the wavelet in the time domain
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Figure 1: The simulated impulses (a) and the vibration signal (b) for a rolling bearing with outer-race fault.

0.160.140.120.10.080.060.040.020

Time (s)

−5
−4
−3
−2
−1
0

1

2

3

4

5

A
cc
el
er
at
io
n
(m

.s
−2
)

(a)

0.160.140.120.10.080.060.040.020

Time (s)

−8

−6

−4

−2

0

2

4

6

8

A
cc
el
er
at
io
n
(m

.s
−2
)

(b)

Figure 2: The simulated impulses (a) and the vibration signal (b) for a rolling bearing with inner-race fault.

and corresponds to the wavelet centre frequency in frequency
domain, and A is an arbitrary scaling factor. Figure 3 shows
the Laplace wavelet, its real part, imaginary part, and its spec-
trum.

It is possible to find optimal values of β and ωc for a
given vibration signal by adjusting the time-frequency reso-
lution of the Laplace wavelet to the decay rate and frequency
of impulses to be extracted. Kurtosis is an indicator that re-
flects the “peakiness” of a signal, which is a property of the
impulses and also it measures the divergence from a funda-
mental Gaussian distribution. A high kurtosis value indicates
high-impulsive content of the signal with more sharpness in
the signal intensity distribution. Figure 4 shows the kurtosis

value and the intensity distribution for a white noise signal,
pure impulsive signal, and impulsive signal mixed with noise.

The objective of the Laplace wavelet shape optimization
process is to find out the wavelet shape parameters (β and
ωc) which maximize the kurtosis of the wavelet transform
output;

Optimal
(
β,ωc

)

= max ·
[ ∑N

n=1 WT4(x(t),ψβ,ωc(t)
)

[∑N
n=1 WT2(x(t),ψβ,ωc(t)

)]2

]

.
(4)

The wavelet transform (WT) of a finite energy signal x(t),
with the mother wavelet ψ(t), is the inner product of x(t)
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Figure 3: (a) The Laplace wavelet, (b) the real part, (c) the imaginary part, and (d) its spectrum.

with a scaled and conjugate wavelet ψ∗a,b, since the analytical
and complex wavelet is employed to calculate the wavelet
transform. The result of the WT is also an analytical signal,

WT
{
x(t), a, b

} = 〈x(t),ψa,b(t)
〉 = 1√

a

∫

x(t)Ψ∗a,b(t)dt

= Re
[
WT(a, b)

]
+ j Im

[
WT(a, b)

]

= A(t)eiθ(t),

(5)

where ψa,b is a family of daughter wavelets, defined by the di-
lation parameter a and the translation parameter b, the factor

1/
√
a is used to ensure energy preservation. The time-varying

function A(t) is the instantaneous envelope of the resulting
wavelet transform (EWT) which extracts the slow time vari-
ation of the signal, and is given by

A(t) = EWT(a, b)

=
√{

Re
[
WT(a, b)

]}2
+
{
Im
[
WT(a, b)

]}2
.

(6)

For each wavelet, the inner product results in a series of coef-
ficients which indicate how close the signal is to that partic-
ular wavelet.
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Figure 4: (a) The noise signal (kurtosis = 3.0843), (b) the overall vibration signal (kurtosis = 7.7644), and (c) outer-race fault impulses
(kurtosis = 8.5312) with the corresponding intensity distribution curve.

To extract the frequency content of the enveloped corre-
lation coefficients, the scale power spectrum (WPS) (energy
per unit scale) is given by

WPS(a,ω) =
∫∞

−∞

∣
∣SEWT(a,ω)

∣
∣2dω, (7)

where SEWT (a,ω) is the Fourier transform of EWT(a, b).

The total energy of the signal x(t),

TWPS =
∫ ∣
∣x(t)

∣
∣2dt = 1

2π

∫

WPS(a,ω)da. (8)

4. IMPLEMENTATION OFWPS FOR BEARING
FAULT DETECTION

To demonstrate the performance of the proposed approach,
this section presents several application examples for the
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detection of localized bearing defects. In all the examples, the
Laplace wavelet is used as a WT base-function. The wavelet
parameters (damping factor and centre frequency) are opti-
mized based onmaximizing the kurtosis value for the wavelet
coefficients; see Figure 5.

4.1. Application to the simulation signals

For a rolling element bearing with pitch diameter of
51.16mm, ball diameter of 11.9mm, with 8 rolling elements
and 0◦ contact angle, the calculated BCF for an outer-race
fault is 107.36Hz, and for an inner-race fault is 162.18Hz
with shaft speed of 1797 rev/min. Figures 1 and 2 show the
simulated time domain fault impulses and the overall vi-
bration signal for the bearing with outer-race and inner-
race faults, respectively, based on the model described in
Section 2.

To evaluate the performance of the proposed method,
a scale-wavelet power spectrum comparison for the Laplace
wavelet and the widely used Morlet wavelet was carried out;
see Figure 6. It can be found that the amplitude of the power
spectrum increases further for the faulty bearing than the
normal one, and the power spectrum is concentrated in the
scale interval of [15–20] for Laplace wavelet compared with
speared power spectrum in wide range scales for Morlet
wavelet. That shows the increased effectiveness of the Laplace
wavelet over theMorlet wavelet for bearing fault impulses ex-
traction.

The FFT spectrum, the envelope spectrum using Hilbert
transform, and the Laplace-wavelet transform envelope spec-
trum for the simulated outer- and inner-race fault vibration
signals are shown in Figure 7. Figure 7 shows that the BCFs
are unspecified in the FFT spectrum and unclearly defined in
the envelope power spectrum but it is clearly identified in the
Laplace-wavelet power spectrum for both outer- and inner-
race faults. The TWPS effectively extracts the BCF, 105.5Hz
for outer-race fault and 164.1Hz for inner-race fault and its
harmonics, with side bands at rotational speed for inner-race
fault as a result of amplitude modulation and it is very close
to the calculated BCF.

To evaluate the robustness of the proposed technique to
extract the BCF for different signal to noise ratio (SNR), and
randomness in the impulses period (τ) as a result of slip vari-
ation, Figure 8 shows the TWPS for outer-race fault simu-
lated signals for different values of SNR, and τ as a percentage
of the pulses period (T).

4.2. Application to experimental data

A B&K 752A12 piezoelectric accelerometer was used to col-
lect the vibration signals for an outer-race defective, deep
groove, ball bearing (with same simulated specifications) at
different shaft rotational speeds. The vibration signals were
transferred to the PC through a B&K controller module type
7536 at a sampling rate of 12.8 KHz. Based on the bearing
parameters, the calculated outer-race fault characteristic fre-
quency is 0.05115x rpm; see Figure 9.
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Figure 5: The optimal values for Laplace wavelet parameters based
on maximum kurtosis for (a) simulated outer-race fault, (b) the
measured outer-race fault, (c) the CWRU vibration data.
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Figure 6: The wavelet-level power spectrum using (left column) Morlet wavelet, (right column) Laplace wavelet for new and outer-race
defective bearing.

With application of the TWPS, the power spectrum peak
values at the position of the outer-race characteristic fre-
quency and its harmonics are easily defined; see Figure 9. It is
shown that TWPS is sensitive to the variation of the BCF as a
result of variation in the shaft rotational speeds; see Table 1.

4.3. Application TWPS to vibration data

Using the data given by the CWRU bearing centre website
[26], for rolling bearings seeded with faults using electro-
discharge machining (EDM). The calculated defect frequen-
cies are 3.5848x shaft speed (Hz) for outer race and 5.4152x

shaft speed (Hz) for inner race. The time course of the vi-
bration signals for normal bearing and bearings with outer
and inner race faults at shaft rotational speed 1797 rpm with
its corresponding TWPS are shown in Figures 10–12, re-
spectively. The calculated BCF are 107.36Hz for outer-race
fault and 162.185Hz for inner-race fault. The TWPS for
the vibration data show spectrum peak values at 106.9Hz
for outer- race fault and its harmonics (Figure 11), and
161.1Hz for inner-race fault with its harmonics and side-
bands at shaft speed (30Hz) as a result of amplitude mod-
ulation (Figure 12), which are very close to the calculated
BCF.
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Figure 7: The simulated vibration signal power spectrum, the envelope power spectrum, and the Laplace-wavelet transform power spec-
trum, respectively, for rolling bearing with (left column) outer-race fault and (right column) inner-race fault.
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Figure 8: The TWPS for bearing with outer-race fault for different (left column) SNR and (right column) slip variation (τ).
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Figure 9: The measured vibration signals for rolling bearing with outer-race fault at different shaft rotational speed (a) 984 rpm, (b)
1389 rpm, and (c) 3531 rpm.
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Figure 10: The vibration signal (a) and the corresponding TWPS (b) for new rolling bearing (CWRU data).
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Figure 11: The vibration signal (a) and the corresponding TWPS (b) for rolling bearing with outer-race fault (CWRU data).

5. CONCLUSIONS

A new approach based on the Laplace-wavelet enveloped
power spectrum (TWPS) is proposed. The wavelet shape pa-
rameters (damping factor and the centre frequency) are op-
timized by maximizing the kurtosis value for the vibration
signal wavelet transform coefficients. The application of the
proposed technique for both the simulated and real bear-
ing vibration signals has shown the effectiveness of TWPS in

Table 1

Shaft speed (rpm) Calculated BCF (Hz) TWPS peak(Hz)

984 50.331 50

1389 71.047 68.750

3541 181.17 187.5

the extraction of the BCF and its harmonics, for outer- and
inner-race defective bearings from noisy vibration signals.
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Figure 12: The vibration signal (a) and the corresponding TWPS (b) for rolling bearing with inner-race fault (CWRU data).

APPENDIX

FAULT RELATED BEARING CHARACTERISTIC
FREQUENCIES (BCF)

Each bearing element has its own characteristic frequency of
defect. Those frequencies can be calculated from the kine-
matics relation, that is, the geometry of the bearing and its
rotating speed. For a bearing with a stationary outer race, the
above defect characteristic frequencies can be obtained [14]
as follows.

(i) Characteristic frequency of the outer race

fo(in.Hz) = 0.5z f
(
1− d

D
cosα

)
. (A.1)

(ii) Characteristic frequency of the inner race

fi(in.Hz) = 0.5z f
(
1 +

d

D
cosα

)
. (A.2)

(iii) Characteristic frequency of the rollers

fr(in.Hz) = f
D

d

[

1−
(
d

D
cosα

)2]

. (A.3)

(iv) Characteristic frequency of the cage

fC = f

2

[
1− d

D
cos(α)

]
, (A.4)

where z is the number of rollers, d is the diameter of the
rollers, D is the pitch diameter, α is the contact angle, and
f is the rotating speed of shaft.
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