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1Grupo de Investigación en Bioingeneŕıa, Electrónica y Telemedicina, Departamento de Ingeneŕıa Electrónica,
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This paper reviews the current status of principal component analysis in the area of ECG signal processing. The fundamentals of
PCA are briefly described and the relationship between PCA and Karhunen-Loève transform is explained. Aspects on PCA related
to data with temporal and spatial correlations are considered as adaptive estimation of principal components is. Several ECG appli-
cations are reviewed where PCA techniques have been successfully employed, including data compression, ST-T segment analysis
for the detection of myocardial ischemia and abnormalities in ventricular repolarization, extraction of atrial fibrillatory waves for
detailed characterization of atrial fibrillation, and analysis of body surface potential maps.
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1. INTRODUCTION

Principal component analysis (PCA) is a statistical technique
whose purpose is to condense the information of a large set of
correlated variables into a few variables (“principal compo-
nents”), while not throwing overboard the variability present
in the data set [1]. The principal components are derived as
a linear combination of the variables of the data set, with
weights chosen so that the principal components become
mutually uncorrelated. Each component contains new infor-
mation about the data set, and is ordered so that the first
few components account for most of the variability. In signal
processing applications, PCA is performed on a set of time
samples rather than on a data set of variables. When the sig-
nal is recurrent in nature, like the ECG signal, the analysis
is often based on samples extracted from the same segment
location of different periods of the signal.

Signal processing is today found in virtually any system
for ECG analysis, and has clearly demonstrated its impor-
tance for achieving improved diagnosis of a wide variety of
cardiac pathologies. Signal processing is employed to deal

with diverse issues in ECG analysis such as data compres-
sion, beat detection and classification, noise reduction, sig-
nal separation, and feature extraction. Principal component
analysis has become an important tool for successfully ad-
dressing many of these issues, and was first considered for
the purpose of efficient storage retrieval of ECGs. Over the
years, this issue has remained central as a research topic, al-
though the driving force has gradually changed from hav-
ing been tiny hard disks to become slow transmission links.
Noise reduction may be closely related to data compression
as reconstruction of the original signal usually involves a set
of eigenvectors whose noise level is low, and thus the recon-
structed signal becomes low noise; such reduction is, how-
ever, mostly effective for noise with muscular origin. Classi-
fication of waveform morphologies in arrhythmia monitor-
ing is another early application of PCA, in which a subset of
the principal components serves as features which are used to
distinguish between normal sinus beats and abnormal wave-
forms such as premature ventricular beats.

A recent application of PCA in ECG signal processing is
robust feature extraction of various waveform properties for
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the purpose of tracking temporal changes due to myocardial
ischemia. Historically, such tracking has been based on lo-
cal measurements derived from the ST-T segment, however,
such measurements are unreliable when the analyzed signal
is noisy. With correlation as the fundamental signal process-
ing operation, it has become clear that the use of principal
components offer a more robust and global approach to the
characterization of the ST-T segment. Signal separation dur-
ing atrial fibrillation is another recent application of PCA, the
specific challenge being to extract the atrial activity so that
the characteristics of this common arrhythmia can be stud-
ied without interference from ventricular activity. Such sep-
aration is based on the fact that the two activities originate
from different bioelectrical sources; separation may exploit
temporal redundancy among successive heartbeats as well as
spatial redundancy when multilead recordings are analyzed.

The purpose of the present paper is to provide an
overview of PCA in ECG signal processing. Section 2 con-
tains a brief description of PCA fundamentals and an expla-
nation of the relationship between PCA andKarhunen-Loève
transform (KLT). The remaining sections of the paper are
devoted to the use of PCA in ECG applications, and touch
upon possibilities and limitations when applying this tech-
nique. The present overview is confined to those particular
applications where the output of PCA, or the KLT, is con-
sidered, whereas applications involving general eigenanaly-
sis of a data matrix are left out. The latter type of appli-
cations include singular-value-decomposition-(SVD)-based
techniques for ECG noise reduction and extraction of the fe-
tal ECG [2–7]. Another such application is the measurement
of repolarization heterogeneity in terms of T wave loop mor-
phology, where the ratio between the two most significant
eigenvalues has been incorrectly denoted as PCA ratio, see,
for example, [8, 9].

2. METHODS

Principal component analysis in ECG signal processing takes
its starting point from the samples of a segment located in
some suitable part of the heartbeat. The location within the
beat differs from one application to another and may in-
volve the entire heartbeat or a particular activity such as the
P wave, the QRS complex, or the T wave. Before the samples
of a segment can be extracted, however, a fiducial point must
be determined so that the exact segment location within the
beat can be defined. Information on the fiducial point is typ-
ically provided by a QRS detector and, sometimes, in com-
bination with a subsequent algorithm for wave delineation
[10]. Accurate time alignment of the different segments is a
key point in PCA, and special care must be taken when per-
forming this step.

The signal segment of a beat is represented by the column
vector

x =

⎡
⎢⎢⎢⎢⎣

x(1)
x(2)
...

x(N)

⎤
⎥⎥⎥⎥⎦
, (1)

where N is the number of samples of the segment. The seg-
ment is often extracted from several successive beats, thus re-
sulting in an ensemble of M beats. The entire ensemble is
compactly represented by the N ×M data matrix,

X =
[
x1 x2 · · · xM

]
. (2)

The beats x1, . . . , xM can be viewed as M observations of the
random process x. While this formulation suggests that all
beats considered originate from one patient, the beats may
alternatively originate from a set of patients depending on
the purpose of the analysis.

2.1. Principal component analysis

The derivation of principal components is based on the as-
sumption that the signal x is a zero-mean random process
being characterized by the correlation Rx = E[xxT]. The
principal components of x result from applying an orthonor-
mal linear transformationΨ = [ψ1 ψ2 · · · ψN ] to x,

w = ΨTx, (3)

so that the elements of the principal component vector w =
[w1 w2 · · · wN ]T becomemutually uncorrelated. The first
principal component is obtained as a scalar product w1 =
ψT
1 x, where the vector ψ1 is chosen so that the variance of

w1,

E
[
w2
1

] = E
[
ψT
1 xx

Tψ1

] = ψT
1Rxψ1, (4)

is maximized subject to the constraint that ψT
1 ψ1 = 1. The

maximal variance is obtained when ψ1 is chosen as the nor-
malized eigenvector corresponding to the largest eigenvalue
of Rx, as denoted λ1; the resulting variance is

E
[
w2
1

] = ψT
1Rxψ1 = λ1ψ

T
1 ψ1 = λ1. (5)

Subject to the constraint that w1 and the second principal
component w2 should be uncorrelated, w2 is obtained by
choosing ψ2 as the eigenvector corresponding to the second
largest eigenvalue of Rx, and so on until the variance of x
is completely represented by w. Accordingly, to obtain the
whole set of N different principal components, the eigenvec-
tor equation for Rx needs to be solved,

RxΨ = ΨΛ, (6)

where Λ denotes a diagonal matrix with the eigenvalues
λ1, . . . , λN . Since Rx is rarely known in practice, the N × N
sample correlation matrix, defined by

R̂x = 1
M

XXT , (7)

replaces Rx when the eigenvectors are calculated in (6).
Applying PCA to an ensemble of beats X, the associ-

ated pattern of principal components reflects the degree of
morphologic beat-to-beat variability: when the eigenvalue
associated to the first principal component is much larger
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than those associated to other components, the ensemble ex-
hibits a low morphologic variability, whereas a slow fall-off
of the principal component values indicates a large variabil-
ity. In most applications, the main goal of PCA is to con-
centrate the information of x into a subset of components,
that is, w1, . . . ,wK , where K < N , while retaining the physi-
ological information (note that typically M � N , otherwise
K < min(N ,M)). The choice of K may be guided by various
statistical performance indices [1], of which one index is the
degree of variation RK , reflecting how well the subset of K
principal components approximates the ensemble in energy
terms,

RK =
∑K

k=1 λk∑N
k=1 λk

. (8)

In practice, however, K is usually chosen so that the perfor-
mance is clinically acceptable and that no vital signal infor-
mation is lost.

The above derivation results in principal components
that characterize intrabeat correlation. However, it is equally
useful to define anM ×M sample correlation matrix

R̂•x =
1
N
XTX, (9)

in order to characterize interbeat correlation. In this case, the
principal components are computed for each sample n rather
than for every beat as was done in (3),

w(n) = Ψ•Tx(n), (10)

where

x(n) =

⎡
⎢⎢⎢⎢⎣

x1(n)
x2(n)
...

xM(n)

⎤
⎥⎥⎥⎥⎦
, (11)

andΨ•T is the eigenvector matrix of R̂•x .
Figure 1 illustrates the properties of the two types of sam-

ple correlation matrices in (7) and (9), respectively, by pre-
senting the related eigenvalues and eigenvectors and the re-
sulting principal components. The analyzed signal is a single-
lead ECG which has been converted into a data matrix X so
that each of its columns contains one beat, beginning just be-
fore the P wave.

When M � N , it is much faster to diagonalize R̂•x than
R̂x. This property can be realized by premultiplying both
sides of

XTXψ•k = λkψ
•
k (12)

by X, thus yielding

XXTXψ•k = λkXψ•k. (13)

Hence, Xψ•k is an eigenvector of R̂x and the eigenvector ψk
can be obtained as

ψk = Xψ•k , (14)

requiring far less computations than when diagonalizing R̂x.
From now on, the bullet (•) notation is discarded since it is
obvious from the context which of the two correlation ma-
trices is dealt with.

The above assumption of x being a zero-mean process
can hardly be considered valid when the beats x1, . . . , xM
originate from one subject and have similar morphology.
While it may be tempting to apply PCA on X once the
mean beat has been subtracted from each xi, such an ap-
proach would discard important information. The common
approach is therefore to apply PCA directly on X, implying
that the analysis no longer maximizes the variance in (4),
but rather the energy. Figure 2 illustrates PCA for the two-
dimensional case (i.e., N = 2) when the mean is either unal-
tered or subtracted.

2.2. Relationship to the Karhunen-Loève transform

The KLT is derived as the optimum orthogonal transform for
signal representation in terms of the minimum mean square
error (MSE) [11, 12]. Similar to PCA, it is assumed that x is a
random process characterized by the correlationmatrix Rx =
E[xxT]. The orthonormal linear transform of x is obtained
by

w = ΦTx, (15)

where the set of basis functions Φ = [ϕ1 ϕ2 · · · ϕN ] is
to be determined so that x can be accurately represented in
the minimumMSE sense using a subset of functions and the
KLT coefficients w1, . . . ,wK . Decomposing x into a signal es-
timate x̂, involving the first K (< N) basis functions, and a
truncation error v,

x = Φw = x̂ + v (16)

with

x̂ =
K∑

k=1
wkϕk, (17)

v =
N∑

k=K+1
wkϕk, (18)

the goal is to choose Φ so that the truncation error E =
E[vTv] is minimized. It can be shown that the optimal set
of basis functions is produced by the eigenvector equation
for Rx,

RxΦ = ΦΛ, (19)

where the columns of Φ contain the eigenvectors of Rx and
the corresponding eigenvalues λ1, . . . , λN are contained in the
diagonal matrix Λ. The MSE truncation error E is given by

E =
N∑

k=K+1
λk (20)

which is minimized when the N − K smallest eigenvalues
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Figure 1: Transform-based representation of an ECG signal (a) segmented to include the whole beat (vertical lines) and produce the data
matrix X. The eigenvectors (apart from a DC level) and principal components are displayed for R̂x obtained as (b) the intrabeat correlation
matrix defined in (7), or (c) the interbeat correlation matrix defined in (9).

are chosen since the sum of the eigenvalues then reaches its
minimum value. This choice leads to that the eigenvectors
corresponding to the K largest eigenvalues should be used as
basis functions in (17) in order to achieve the optimal repre-

sentation property. From this result, it can be concluded that
the PCA and KLT produce identical results as they both make
use of the eigenvectors of Rx to transform x into the principal
components/KLT coefficients w, that is,Ψ ≡ Φ.
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Eigenvectors with origin at [0 0] result from non-zero mean data,
whereas eigenvectors with origin at the gravity center of the data re-
sult from data when mean is subtracted; note that either variance or
energy is maximized depending on the case considered.

2.3. Singular value decomposition

The eigenvectors associated with PCA or the KLT can also
be determined directly from the data matrix X using SVD,
rather than from Rx. The SVD states that an N ×M matrix
can be decomposed as [13]

X = UΣVT , (21)

whereU is anN×N orthonormal matrix whose columns are
the left singular vectors, and V an M ×M orthonormal ma-
trix whose columns are the right singular vectors. The matrix
Σ is an N ×M nonnegative diagonal matrix containing the
singular values σ1, . . . , σN ,

Σ =

⎡
⎢⎢⎢⎢⎣

σ1 0 · · · 0 · · · 0
0 σ2 · · · 0 · · · 0
...

...
. . .

...
. . .

...
0 0 · · · σN · · · 0

⎤
⎥⎥⎥⎥⎦
, (22)

assuming that N < M.
Using the SVD, the sample correlation matrix R̂x in (7)

can be expressed in terms of U and a diagonal matrix Λ
whose entries are the normalized and squared singular val-
ues σ21 /M, . . . , σ2M/M,

R̂x = 1
M

XXT = 1
M

UΣVTVΣTUT = UΛUT . (23)

Comparing (23) with (6) and (19), it is obvious that the
eigenvectors associated with PCA and the KLT are obtained
as the left singular vectors ofU, that is,Ψ = U, and the eigen-
values λk as σ2k /M. In a similar way, the right singular vectors
of V contain information on interbeat correlation, since they
are associated with the sample correlation R̂x in (9).

2.4. Multilead analysis

Since considerable correlation exists between different ECG
leads, certain applications such as data compression of multi-
lead ECGs can benefit from exploring interlead information
rather than just processing one lead at a time. In this section,
the single-lead ECG signal of (1) is extended to the multilead
case by introducing the vector xi,l, where the indices i and l
denote beat and lead numbers, respectively. TheN×Lmatrix
Di contains all L leads of the ith beat,

Di =
[
xi,1 xi,2 · · · xi,L

]
. (24)

2.4.1. Lead piling

A straightforward approach to applying PCA/KLT on multi-
lead ECGs is to pile up the leads xi,1, . . . , xi,L of the ith beat
into an LN × 1 vector x′i , defined by

x′i =

⎡
⎢⎢⎢⎢⎣

xi,1
xi,2
...

xi,L

⎤
⎥⎥⎥⎥⎦
. (25)

The piling operation is illustrated in Figure 3 for the case
with L = 2. Once all beats have been piled up into a set ofM
vectors, the ensemble of beats is represented by the LN ×M
multilead data matrix

X′ =
[
x′1 x′2 · · · x′M

]
. (26)

Accordingly, X′ replaces X in the above calculations required
for determining the eigenvectors of the sample correlation
matrix. Once PCA/KLT has been performed on the piled vec-
tor, the resulting eigenvectors are “depiled” so that the de-
sired principal components/KLT coefficients can be deter-
mined for each lead.

2.4.2. Lead correlation

In certain studies, the SVD is applied directly to themultilead
data matrix Di, thus bypassing the above lead piling opera-
tion. Similar to the single-lead case above, the related left sin-
gular vectors of U contain temporal information, however,
the right singular vectors of V contain information on in-
terlead correlation (note that this case resembles the above-
mentioned situation where interbeat correlation was ana-
lyzed, cf. (9)). Hence, by considering all L leads at a certain
time n, represented with the vector

xi(n) =

⎡
⎢⎢⎢⎢⎣

xi,1(n)
xi,2(n)

...
xi,L(n)

⎤
⎥⎥⎥⎥⎦
, (27)
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Figure 3: Concatenation of a two-lead ECG signal containing two beats. (a) Each beat of the two leads is piled up into (b) one single vector.
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Figure 4: (a) The standard 12-lead ECG (V1, . . . ,V6, I , and II from top to bottom) and (b) its KL transform, obtained using (28), which
concentrates the signal energy to only three of the leads.

the PCA/KLT can be used to concentrate the information
into fewer leads, using

wi(n) = VTxi(n), n = 1, . . . ,N. (28)

This lead-reducing transformation is illustrated by Figure 4
for the standard 12-lead ECG (only 8 leads are unique for
this lead system). Using the samples of the displayed signal
segment to estimate Rx, it is evident that the energy of the
original leads is redistributed so that only 3 out of the 8 trans-
formed leads wi(n) contain significant energy; the remain-
ing leads mostly account for noise although small residues of
ventricular activity can be observed.

2.4.3. Independent time-lead correlation

A major disadvantage with the lead piling is that the total
number of computations amounts toO(N3L3) [14]. One ap-
proach to reduce complexity is to consider the following se-
ries expansion of the data matrix D:

D =
N∑

n=1

L∑

l=1
wn,lBn,l, (29)

where Bn,l denotes a two-dimensional basis function, de-
pending on time n and lead l. In certain situations, it is
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reasonable to assume that the basis functions are separable
and described by rank-one matrices,

Bn,l = tnsTl , (30)

where the time vector tn constitutes the nth column of the
N × N matrix T, and the lead vector sl constitutes the lth
column of the L×Lmatrix S; both T and S are assumed to be
full rank. Then, the series expansion in (29) can be expressed
in matrix form as

D = TWST , (31)

where W is an N × L matrix formed by the coefficients wn,l,
determined from D by

wn,l = tTnDsl . (32)

When the correlation function is separable such that

E
[
xi,l1
(
n1
)
xi,l2
(
n2
)] = rt

(
n1,n2

)
rs
(
l1, l2

)
, (33)

the correlation matrix of the piled vector x′ can be expressed
as a Kronecker product,

Rx′ = Rt ⊗ Rs, (34)

where Rt and Rs characterize the temporal and spatial corre-
lations, respectively. It has been shown that the eigenvectors
of Rx′ can be computed as the outer product of the eigenvec-
tors of Rt and Rs, respectively [15]; these two sets of eigen-
vectors thus constitute the vectors tn and sl which define the
rank-one matrices Bn,l in (30). The sample correlation ma-
trices of Rs and Rt are obtained by

R̂s = 1
MN

M∑

i=1

N∑

n=1
xi(n)xi(n)T ,

R̂t = 1
ML

M∑

i=1

L∑

l=1
xi,lxTi,l,

(35)

respectively. With the assumption of a separable correla-
tion function, the computational complexity is reduced from
O(N3L3) to O(N3 + L3).

2.5. Adaptive coefficient estimation

In certain applications, truncation of the series expansion
intoK basis functions, (cf. (17)), is employed for the purpose
of improving the signal-to-noise ratio (SNR). Interestingly,
the SNR can be further improved when the signal is recur-
rent since the basis function representation can be combined
with adaptive filtering techniques. Such techniques make it
possible to track time-varying changes in beat morphology
even at relatively low SNRs. The main approaches to adap-
tive coefficient estimation are the following.

(i) the instantaneous least mean square (LMS) algo-
rithm with deterministic reference input. The coefficients are
adapted at every time instant, producing a vector w(n) [16–
20];

(ii) the block LMS algorithm. The coefficients are adapt-
ed only once for each beat “block,” producing a vectorwi that
corresponds to the ith beat [21].

Although the instantaneous LMS algorithm is the adap-
tive technique that has received most attention in biomedical
signal processing, the block LMS algorithm represents a nat-
ural extension of the above series expansion truncation, and
is therefore briefly considered below. This algorithm can be
viewed as a marriage of single-beat analysis, relying on the
inner product computation to obtain the KLT coefficients,
and the conventional LMS algorithm. In addition, the block
LMS algorithm offers certain theoretical advantages over the
instantaneous LMS algorithm with respect to bias and excess
MSE (i.e., the error due to fluctuations in coefficient adapta-
tion that cause the minimumMSE to increase).

The derivation of the block LMS algorithm takes its start-
ing point in the MSE criterion, defined by

Ewi−1 = E
[(
xi −Φswi−1

)T(
xi −Φswi−1

)]
, (36)

where the basis function matrix Φ has been partitioned into
signal and noise subspaces,

Φ =
[
Φs Φv

]
. (37)

The block LMS algorithm iteratively finds the coefficient vec-
tor by making use of the steepest descent algorithm [21],

wi = wi−1 − 1
2
μ∇wi−1Ewi−1 , (38)

where μ denotes the step size. Following substitution of the
gradient expression and replacement of the expected value
with its instantaneous estimate, the block LMS algorithm is
given by

wi = (1− μ)wi−1 + μΦT
s xi. (39)

The algorithm is initialized by w0 = 0 which seems to be a
natural choice since, apart from μ, it leads to the estimator
of w1, that is, w1 = μΦT

s x1. However, initialization to the
inner product of the first beat, that is, w0 = ΦT

s x1, reduces
the initial convergence time sincew1 = ΦT

s x1 [23]. The block
LMS algorithm remains stable for 0 < μ < 2.

The block LMS algorithm reduces to single-beat analysis
when μ = 1, since (39) then becomes identical to (15). When
a complete series expansion is considered, that is, K = N , the
block LMS algorithm becomes identical to conventional ex-
ponential averaging. However, for the case of most practical
interest, that is, K < N , the block LMS algorithm performs
exponential averaging of the coefficient vector: an operation
which produces a less noisy estimate of the coefficient vector,
but also less capable of tracking dynamic signal changes.

For the steady-state condition when xi is composed of a
fixed signal component s and a time-varying noise compo-
nent vi, the block LMS algorithm can, in contrast to the in-
stantaneous LMS algorithm, be shown to produce a steady-
state coefficient vector w∞ which is an unbiased estimate of
the optimal MSE solution [21]. Another attractive property
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Figure 5: (a) Plot of the two-sample data x(1) and x(2) generated by the hidden factor φ, see text, with Gaussian white noise added. The
straight line represents the first eigenvector that results from PCA, whereas the circle represents the parametric curve that results from
nonlinear PCA. It is clear that the projection error on the straight line is much larger than on the elliptic curve, and therefore nonlinear
PCA has a superior concentration capability in this particular example. (b) An example of a nonlinear function (polynomial) capturing the
dependency between the two largest principal components. (Reprinted from [22] with permission.)

of the block LMS algorithm is that its excess MSE is given by

Eex(∞) = μK

(2− μ)N
σ2v , (40)

where σ2v denotes the variance of the noise component. This
expression does not involve any term due to the truncation
error as does the excess MSE for the instantaneous LMS al-
gorithm, and therefore, the block LMS algorithm is always
associated with a lower excess MSE [10]. This property be-
comes particularly advantageous when the signal energy is
concentrated to a few basis functions.

2.6. Nonlinear principal component analysis

In certain situations, it is possible to further concentrate
the variance of the principal components using a nonlinear
transformation, making the signal representation even more
compact than with linear PCA. This property can be illus-
trated by the two-sample data vector x = [x(1) x(2)]T =
[cos(φ) sin(φ)]T , being completely defined by the uniformly
distributed angle φ [24]. Applying PCA to samples result-
ing from different outcomes of φ, it is evident that the first
principal component does not approximate the data ade-
quately, see Figure 5(a). The parametric curve determined
by the “hidden” factor φ, nonlinearly related to the samples
through φ = h(x) = cos−1(x(1)), produces a much better ap-
proximation. It is evident from Figure 5(a) that the use of φ
contributes to a lower error since the error between the ellip-
soid and the data is much smaller than the error with respect
to the straight line. Using ECG data, Figure 5(b) presents an
example in which a nonlinear function (polynomial) cap-
tures the relations between the two largest principal com-
ponents. In this case, the nonlinear, polynomial, relation is
shown in the PCA domain rather than in the data domain,

but equivalent relations could be displayed in the data do-
main.

In general, it is assumed that the signal x = [x(1) · · ·
x(N)]T is generated by some underlying feature vector φ =
[φ1 · · · φK ]T , K ≤ N , through N nonlinear continuous
decoding functions fromRK toR, x(1) = g1(φ), . . . , x(N) =
gN (φ), which have the inverse coding functions from RN

to R, φ1 = h1(x), . . . ,φK = hK (x). The coding function
h = [h1 · · · hK ]T fromRN toRK and the decoding func-
tion g = [g1 · · · gN ]T from RK to RN are members of
some setsFc andFd of nonlinear functions, respectively. The
goal of nonlinear PCA (NLPCA) is to minimize the nonlin-
ear reconstruction mean square error

ε = E
[(
x− g

(
h(x)

))2]
(41)

for an optimum choice of g and h in the sets Fc and Fd, re-
spectively. The solution will depend on the choice of Fc and
Fd as well as the signal x. Linear PCA represents a particular
case of NLPCA in which the two spaces are related to each
other through linear mapping.

Unfortunately, there are in general an infinite number of
solutions to the NLPCA minimization problem so that the
hidden parameters are not unique. In fact, if a pair of func-
tions, h1(·) and g1(·), achieves the minimum error, so does
any pair h1(q−1(·)), q(g1(·)) for any invertible function q(·).
However, by keeping either g or h fixed, a set can be deter-
mined which gives a unique result [24, 25]:

(i) the set Fd = {l(φ) for all φ ∈ RK} of contours l(φ) =
{x : h(x) = φ} for the function h;

(ii) the set Fc is constituted by the K-parametric surface
C = {g(φ) for all φ ∈RK} generated by g.

Here, C denotes the so-called K-parametric nonlinear prin-
cipal component surface of x, which in Figure 5 is repre-
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sented by the surface curve from R1 to R2, that is, x =
g(φ) = [cos(φ0) sin(φ0)]T .

3. DATA COMPRESSION

Since a wide range of clinical examinations involves ECG sig-
nals, huge amounts of data are produced not only for im-
mediate scrutiny, but also for database storage for future re-
trieval and review. Although hard disk technology has un-
dergone dramatic improvements in recent years, increased
disk size is parallelled by the ever-increasing wish of physi-
cians to store more information. In particular, the inclusion
of additional ECG leads, the use of higher sampling rates and
finer amplitude resolution, the inclusion of noncardiac sig-
nals such as blood pressure and respiration, and so on, lead
to rapidly increasing demands on disk size. An important
driving force behind the development of methods for data
compression is the transmission of ECG signals across pub-
lic telephone networks, cellular networks, intrahospital net-
works, and wireless communication systems. Transmission
of uncompressed data is today too slow, making it incom-
patible with real-time demands that often accompany many
ECG applications.

3.1. Single-lead compression

Transform-based data compression assumes that a more
compact signal representation exists than that of the time-
domain samples which packs the energy into a few coeffi-
cients w1, . . . ,wK . These K coefficients are retained for stor-
age or transmission while the remaining coefficients are dis-
carded as they are near zero. Transform-based compression
is usually lossy since the reconstructed signal is allowed to
differ from the original signal, that is, the truncation error v
is not retained. Although a certain amount of distortion can
be accepted in the reconstructed signal, it is absolutely essen-
tial that the distortion remains small enough in order not to
alter the diagnostic content of the ECG. Several different sets
of basis functions have been investigated for ECG compres-
sion purposes, and the KLT is one of the most popular as it
minimizes the MSE of approximation [26–32].

Transform-based compression requires that the ECG first
be partitioned into a series of successive blocks, where each
block is subjected to data compression. The signal may be
partitioned so that each block contains one beat. Each block
is positioned around the QRS complex, starting at a fixed dis-
tance before the QRS, including the P wave and extending be-
yond the end of the T wave to the beginning of the next beat.
Since the heart rate varies, the distance by which the block
extends after the QRS complex is adapted to the prevailing
heart rate. Hence, the resulting blocks vary in length, intro-
ducing a potential problem in transform-based compression
where a fixed block length is assumed. This problem may be
solved by padding too short blocks with a suitable sample
value, whereas too long blocks can be truncated to the de-
sired length. The use of variable block lengths has been stud-
ied in detail in [33, 34]; the results show that variable block
lengths produce better compression performance than fixed

blocks. It should be noted that partitioning of the ECG is
bound to fail when certain chaotic arrhythmias are encoun-
tered such as ventricular fibrillation during which no QRS
complexes are present.

A fixed number of KL basis functions are often consid-
ered for data compression, where the choice of K may be
based on considerations related to overall performance ex-
pressed in terms of compression ratio and reconstruction er-
ror. The performance of the KLT can be described by the
index Rk, defined in (8), which reflects how well the origi-
nal signal is approximated by the basis functions. While this
index describes the performance on the chosen ensemble of
data as an average, it does not provide information on the
reconstruction error in individual beats. Therefore, it may be
appropriate to include a criterion for quality control when
K is chosen. Since the loss of morphologic detail causes in-
correct interpretation of the ECG, the choice of K can be
adapted for every beat to the properties of the reconstruction
error (x− x̂), where the estimate x̂ is determined from the K
most significant basis function [32], (cf. (17)). The value ofK
may be chosen such that the root mean square (RMS) value
of the reconstruction error does not exceed the error toler-
ance ε, whereas a more demanding approach is to choose
K such that none of the reconstruction errors of the entire
block exceeds ε. Yet another approach to the choice of K may
be to employ an “analysis-by-synthesis” algorithm which is
designed to ensure that the errors in ECG amplitudes and
durations do not become clinically unacceptable [35, 36].

By letting K be variable, one can fully control the qual-
ity of the reconstructed signal, however, one is also forced to
increase the amount of side information since the value of K
must be stored for every data block. If the basis functions are
a priori unknown, a larger number of basis functions must
also be part of the side information. Figure 6 illustrates sig-
nal reconstruction for a fixed number of basis functions and
a number determined by an RMS-based quality control crite-
rion. In this example, the indicated error tolerance is attained
by using different numbers of basis functions for each of the
three displayed beats.

The estimation of Rx can be based on different types of
data sets. The basis functions are labeled “universal” when
the data set originates from a large number of patients, and
“subject-specific” when the data set originates from a single
recording. While it is rarely necessary to store or transmit
universal basis functions, subject-specific functions need to
be part of the side information. Still, subject-specific basis
functions offer superior energy concentration of the signal
because these functions are better tailored to the data, pro-
vided that the ECG contains few beat morphologies. Figure 7
illustrates the latter observation by presenting the recon-
structed signal for both types of basis functions. One ap-
proach to reduce the side information is to employ wavelet
packets since these approximate to the KLT by efficiently cod-
ing the basis functions [37].

A limitation of the KL basis functions comes to light
when compressing ECGs with considerable changes in heart
rate and, consequently, changes in the position of the T wave.
Such ECG changes are observed, for example, during the
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Figure 6: Quality control and KLT-based data compression. (a) A fixed number of basis functions (K = 6) is used for signal reconstruction.
(b) The number of basis functions is chosen so that the RMS error, denoted as ε, between the original and reconstructed signals is always
below 40 μV. For ease of interpretation, the residual ECG is plotted with a displacement of −3mV.

course of a stress test. Since the basis functions account for
the T wave occurrence at a fixed distance from the QRS com-
plex, the basis functions become ill-suited for representing
beats whose T waves occur earlier or later than this interval.
As a result, additional basis functions are required to achieve
the desired reconstruction error, thus leading to less efficient
compression. The representation efficiency can be improved
by resampling of the ST-T segment in relation to the length
of the preceding RR interval.

A nonlinear variant of PCA has also been considered
for single-lead data compression, the goal being to exploit
the nonlinear relationship between different principal com-
ponents [22]. The method is based on the assumption that
higher-order components can be estimated from knowledge
of the first k components by ŵi = fi,k(w1, . . . ,wk), i > k, with-
out having to store the higher-order components (k was set
to 1 in [22]). Although the coefficients that define the nonlin-
ear functions must be stored, their storage requires very few
bytes. One way to model the nonlinear relationship is to use
a polynomial with a small number of coefficients (typically 7
or 8), see Figure 5(b).

3.2. Multilead compression

With transform-based methods, interlead correlation may
be dealt with in two steps, namely, a transformation which
concentrates the signal energy spread over the available L
leads into a few leads, followed by compression of each trans-
formed lead using a single-lead technique. Following con-

centration of the signal energy using the transform in (28),
different approaches to data compression may be applied to
the transformed leads, of which the simplest one is to just
retain those leads whose energy exceeds a certain limit. Each
retained lead is then compressed using the above single-lead
methods, or some other compression techniques. If a more
faithful reconstruction of the ECG is required, leads with less
energy can be retained, although they will be subjected to
more drastic compression than the other leads [38].

A unified approach, which jointly deals with intersam-
ple and interlead redundancy, is to pile all segmented leads
xi,1, . . . , xi,L into a single vector x′i subjected to compression
using any of the single-lead transform-based methods de-
scribed above [29, 39]. Applying the KLT, lead piling offers
a more efficient signal representation than does the two-
step approach, although the calculation of basis functions
through diagonalization of the LN×LN correlation matrix is
much more costly, in terms of computational measures, than
for the L× Lmatrix in (9). However, when it is reasonable to
assume that the time-lead correlation is separable, (cf. (30)),
the computational load can be substantially reduced.

4. MYOCARDIAL ISCHEMIA

Myocardial ischemia arises when the blood flow to cardiac
cells is reduced, caused by occlusion or narrowing of one or
more of the coronary arteries. As a result, the demand for
oxygenated blood to the heart muscle increases, especially
during exercise or mental stress. A temporary reduction in
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Figure 7: Transform-based data compression using the KL basis functions derived from either (a) a huge database including thousands of
ECGs from different subjects or (b) subject-specific data. The basis functions ϕk and associated eigenvalues λk are presented as are the 30
largest coefficients of the original ECG’s KLT. The ECGs are reconstructed withK = 8 and 2 for universal and subject-specific basis functions,
respectively. For ease of interpretation, the residual ECG is plotted with a displacement of −2mV.

flow often causes chest pain or discomfort (angina pectoris),
but can also be completely unrelated to chest pain (silent is-
chemia). Ischemia is associated with electrical instability of
the heart that may initiate life-threatening ventricular tach-
yarrhythmias such as ventricular fibrillation.

Myocardial ischemia is usually manifested in the ECG as
morphologic changes of the ST segment and T wave, jointly
referred to as ST-T changes, but may also occur unnoticed.
While the normal ST segment starts at the isoelectric line and
curves smoothly upwards into the T wave, the ischemic ST
segment is instead horizontal or slopes downwards and may
start well below the isoelectric line. An ST segment which
drops below the isoelectric line is referred to as an ST depres-
sion. An ischemic T wave is often more flat than a normal T

wave and may exhibit biphasic morphology or negative po-
larity.

Electrocardiographic monitoring during exercise, ambu-
latory conditions, or in the coronary care unit is essential
since it is of interest to detect ischemic ST-T changes. Histor-
ically, suchmonitoring has been based on local amplitude in-
dices, such as the amplitude 60milliseconds after the J point.
However, it is clear that local indices only provide a very
limited characterization of the ST-T segment, and therefore,
it is important to develop methods which also characterize
segment morphology. One such method is based on the as-
sumption that a reduced set of KLT coefficients can be used
to detect ischemia [34, 40, 41]; each coefficient reflecting
to what degree different segment morphologies are present.
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Figure 8: The series of the most significant KLT coefficient w1(i)
obtained from a patient undergoing balloon inflation in a coronary
artery. The four beats (upper panel) correspond to the times indi-
cated by the arrows on the w1(i) series (lower panel). Note that the
ST-T segment is initially positive, as reflected by positive values of
w1(i), but later changes polarity is inverted and exhibits consider-
able variation in magnitude.

This method is illustrated by Figure 8, where the ischemic
episode is well-reflected by the drastic changes that occur in
the most significant KL coefficient. It has been shown that
this method offers better performance, that is, higher sensi-
tivity and specificity, than the classical indices [42].

Using a universal data set of 100 000 beats, it has been
shown that four KLT coefficients are sufficient to represent
90% of the ST-T segment energy [34]. Before the correlation
matrix of the data set is estimated, it is essential to remove
baseline wander so as to not account for that unwanted ac-
tivity in the analysis. Moreover, it may be necessary to “nor-
malize” the ST-T segment with respect to heart rate to ob-
tain more efficient signal representation; signals recorded at
widely different heart rates should be resampled so that the
ST-T segments become more comparable. The resampling
strategy has been shown to improve the energy representa-
tion by 5% when considering the first two KLT coefficients
[34].

Although the estimation of KLT coefficients can be done
with (15), it is suitable to use adaptive techniques, (cf. (39)),
to better cope with noise when the ECG is recorded during
exercise or ambulatory conditions. Such techniques can be
employed with advantage since ischemia-induced ST-T seg-
ment changes are gradual, taking place over several beats.
Thus, a relatively small value of μ attenuates noise while still
allowing ischemic changes to be tracked, see Figure 9. For ex-
ample, a value of μ resulting in a convergence time of 2.5
beats improves the SNR of the coefficient series by a factor
10 without affecting the ability to track changes.

Ischemic changes are more easily detected when multi-
ple leads are considered, suggesting that the coefficients of
different leads should be jointly analyzed. Therefore, the de-
tection of ischemic episodes is usually based on a series of

coefficients that accumulates the information of individual
leads, for example, using

w2
i =

L∑

l=1
w2
i,l . (42)

Here, squaring prevents that changes in one lead compensate
those of another lead with the opposite sign. Thresholding
combined with ad hoc criteria are usually applied to the re-
sulting w2

i series for the purpose of detecting the occurrence
of ischemic episodes [40, 43]. It should be noted that spatial
information, as provided by the different coefficient series’
wi,l, has also been found valuable for identification of the oc-
cluded artery [44].

Unfortunately, ST-T segment changes are not univocal to
ischemia, but a change in body position is oftenmanifested as
a shift in the electrical axis that may be misclassified as an is-
chemic event. In fact, body-position-induced changes in ST-
T amplitude exceeding 400 μV are not uncommon. However,
the occurrence of a body position change (BPC) can be dis-
tinguished by analyzing the signature of the KLT coefficients
of the QRS complex. While the QRS KLT coefficients change
considerably during a BPC, these coefficients are much less
influenced when an ischemic episode occurs [45].

5. VENTRICULAR REPOLARIZATION

The study of temporal and spatial heterogeneities of ventric-
ular repolarization is essential when investigating cardiac ab-
normalities such as left ventricular hypertrophy, or the long
QT syndrome prone to ventricular tachyarrhythmias that
may eventually lead to sudden cardiac death [46]. Tempo-
ral information on the repolarization has traditionally been
synonymous to the QT interval measurement. However, the
length of this interval depends on heart rate and must there-
fore be corrected before evaluating its diagnostic impact. Sev-
eral correction techniques exist, ranging from simple Bazett’s
correction [47] to more advanced corrections which account
for individual dependencies and preceding RR intervals [48].

Spatial information on repolarization is often quantified
by QT dispersion (QTd), measured as the maximum differ-
ences between QT intervals measure of available leads [49].
More recently, this measurement has been seriously ques-
tioned, suggesting that QTd is more a result of different ST-T
loop projections on different leads rather than true disper-
sion of the repolarization [50]. This limitation, together with
the fact that temporal indices only partially can describe re-
polarization, has spawned various efforts to develop repolar-
ization indices that better characterize the information con-
tained in the ST-T segment. Other characteristics related to T
wave morphology may have important clinical implications.
These efforts resulted in some PCA-based techniques whose
aim is to extract valuable information from the T wave [8].

The total cosine R-to-T descriptor TCRT is defined as the
cosine angle between the dominant vectors of depolarization
and repolarization as measured in a three-dimensional loop
[5, 51, 52]. The three dominant transformed leads are com-
puted according to (28) to form the dipolar signal sD(n) =
[w1(n) w2(n) w3(n)]T , but where the segmented matrix D
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Figure 9: Ischemia and ST-T segment analysis during noisy conditions. The KLT coefficient series’ w1(i) and w2(i) are obtained using either
(a) the inner product or (b) the inner product combined with adaptive estimation. Note the significant reduction in noise level from (a) to
(b), while the information on ischemia episodes remains essentially unchanged.

includes the complete heart beat, that is, the PQRST com-
plex. In addition, the fiducial point of the QRS complex, de-
noted as nQRS, is assumed to be available from some algo-
rithm for waveform delineation; a QRS interval from noQRS
to neQRS centered around nQRS and lasting for 30milliseconds
is defined, and the T wave peak position nT is estimated as
the position where the module signal sTD(n)sD(n) reaches its
maximum, restricted to be in the ST-T segment. Then, the
index TCRT is defined by

TCRT = 1
neQRS − noQRS + 1

neQRS∑

n=noQRS
cos∠

(
sD(n), sD

(
nT
))
.

(43)

When a comparison of the ventricular gradient is to be
made from beats at different stages of the same recording,
hypothesizing that only the T vector changes with repolariza-
tion heterogeneity, the gradient can be estimated with respect
to a fixed reference called “total angle principal component-
to-T” TPT, reducing the uncertainty of estimating the depo-
larization reference [53]. This reference u can be taken to be
the dominant direction, u = [1 0 0]T , of the dipolar de-
composition, resulting in

TPT = ∠
(
u, sD

(
nT
))
. (44)

Another repolarization index is the total morphology
dispersion TMD, computed by first recovering the original
signals D, (cf. (24)), after truncating the SVD transforma-
tion to the dipolar components. This is done by splitting the
V = [V3 VL−3] and obtaining

x̂(n) = V3VT
3 x(n). (45)

This new signal x̂(n) is again processed to produce an SVD-
decomposed signal, but now restricted to the ST-T segment,
obtaining the transformation matrix V̌ from which we con-
centrate on the first two transformed leads V̌2 assumed to
contain the more important information of the ST-T seg-
ment. By analyzing the reconstruction equation in (45), now
applied to V̌2, x̌(n) = V̌2V̌T

2 x̂(n), it is obvious that the rows
of V̌2 = [φ1 · · · φL]

T , with φl (2 × 1) reconstruction vec-
tors which can be interpreted as the direction into which the
SVD-transformed signal needs to be projected to recover an
estimate of the original lead in x̌(n). The angle between two
directions, relative to each pair of leads l1 and l2, can then be
calculated as

αl1,l2 = ∠
(
φl1

φl2

)
, (46)

thus measuring the difference in shape between leads l1 and
l2 (a small angle implies similar shape). The TMD index is
defined as

TMD = 1
L(L− 1)

L∑

l1,l2=1
l1 �=l2

∠
(
φl1

φl2

)
, (47)

which reflects the mean dispersion in the projection of the
repolarization ST-T segment. A variant on TMD has been
proposed in which φl is multiplied with its corresponding
eigenvalue [5]; however, this index is more difficult to inter-
pret in geometrical terms.

Microvolt beat-to-beat alternations in T wave mor-
phology are related to dispersion of repolarization and are
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Figure 10: (a) An ECG signal with pronounced T wave alternans during the acute phase of ischemia which has resulted in pronounced ST
elevation. (b) The corresponding principal component series w1(i), and (c) the beatquency spectrum. Note the marked peak at 0.5 cycles by
beat (1/b) which reflects the alternans behavior.

considered a presage of malignant ventricular arrhythmias
that often lead to sudden cardiac death [54]. The morpho-
logic alternations follow in which every other T wave has the
same morphology. Since most of T wave alternans is a phe-
nomenon in the microvolt range, it cannot be perceived by
the naked eye from a standard ECG print-out, but requires
signal processing techniques for its detection and quantifica-
tion [55]. Since the alternans pattern cannot be expected to
occur within a well-defined interval of the ST-T segment, it
would be helpful to detect and characterize this pattern us-
ing a small set of the principal components. Calculation of
the principal components from successive beats followed by
spectral analysis of the resulting series of principal compo-
nents is a powerful approach to characterize the oscillatory
behavior of the ST-T segment. The alternans pattern can be
detected by analyzing the power of the 0.5 beatquency of the
series [56], see the example in Figure 10 where only the most
significant principal component w1(i) is spectrally analyzed.

6. ATRIAL FIBRILLATION

Atrial fibrillation (AF), the most common arrhythmia en-
countered in clinical practice, has a very complex incom-
pletely understood pathophysiology with various triggers
and substrates interacting in multiple ways. Clinically, AF is
characterized by progression from paroxysmal to persistent
AF, failure to restore and maintain sinus rhythm, but also in-
creased risk of thrombogenesis and embolism [57]. Results of
various therapeutic interventions are often disappointing, at
least in part due to their empirical application. Subsequently,
the search for diagnostic tools to better characterize the dis-
ease process in order then to better guide therapeutic deci-
sions has been advocated [58]. It is a common observation
that fibrillation waves of the surface ECG have various ap-
pearances, ranging from fine to coarse and from disorganized

to organized and that the ventricular rate response varies in a
rather unpredictable fashion. Even though the first ECG doc-
umentation of human AF was made by Einthoven 100 years
ago [59], it was just until very recently when ECG analysis of
fibrillatory waves was suggested for exploring AF pathophys-
iology and predicting response to therapy [60, 61]. The ex-
traction of atrial signals during AF requires advanced signal
processing techniques since atrial and ventricular activities
overlap in time and frequency, and therefore cannot be sep-
arated by linear filtering. Average beat subtraction was ini-
tially suggested for atrial signal extraction, relying on the fact
that AF is uncoupled to ventricular activity. Hence, subtrac-
tion of the average QRST complex produces a residual signal
which is the atrial fibrillatory signal [60–62]. More recently,
new approaches based on PCA have also been proposed for
improved estimation of the atrial signal. In this section we
present two differentmethodologies for analysis of single and
multilead recordings [63, 64].

6.1. Single-lead analysis

A single-lead approach to estimate the atrial signal is valuable
for analysis of Holter recordings, being acquired during one
or several days. Although modern Holter devices are capa-
ble of recording the standard 12-lead ECG, 3-lead devices are
commonly employed; even so, it is rather common to record
only two leads. Holter recordings are required when it is of
interest to monitor paroxysmal AF, that is, when AF initiates
and terminates spontaneously, and hence the occurrence of
an AF episode is unpredictable.

The spatial information provided by Holter recordings is
very limited, thus rendering the multilead PCA less useful.
However, the ECG signal also presents a high degree of tem-
poral redundancy which can be exploited in order to can-
cel the ventricular activity [64]. Indeed, the QRST waveform
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Atrial subspace
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Atrial
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PCA based on the interbeat correlation matrix in (9)

x1 x2 � � � xi � � �

Figure 11: Block diagram of interbeat PCA to estimate the atrial activity during AF. The principal components are obtained by (10), and
each of the signals in the different subspaces is given by wk(n). The reconstruction is made from the partitioned transformation matrix
Ψ = [ΨVA ΨAA ΨN

]
, generating the reconstructed atrial signal xAA(n) using xAA(n) = ΨAAw(n) and concatenating back to recover the atrial

signal displayed at the bottom.

usually exhibits a recurrent pattern, although different QRST
morphologies as well as minor variations in the QRST wave-
form may occur. For the case when several consecutive beats
from the same lead are extracted and PCA is applied to ex-
ploit interbeat redundancy, the principal components, or-
dered according to the eigenvalue sequence, are interpreted
as follows.

(1) The most significant component is related to the
main QRST waveform. In case of several QRST morpholo-
gies, a principal component will represent each of the pat-
terns.

(2) The next few components correspond to dynamics of
the QRST waveform. In case of a very regular QRST mor-
phology, these components may be missing.

(3) Subsequently, there are several components related to
the atrial activity.

(4) The remaining components correspond to noise.
In addition to the components, PCA outputs the projec-

tion of each component has on each beat. Taking these con-
siderations into account, the QRS complex and Twave can be
removed at each beat by considering the projections of the
ventricular components and removing them from the ECG
signal. Equivalently, the same result would be obtained by es-
timating the atrial activity at each beat from the projections
of the nonventricular components (Figure 11).

Cancellation of ventricular activity using the single-lead
approach is closely related to adaptive template subtraction,
but with the advantage that dynamics in the QRST wave-
form are also considered, thus producing a more accurate es-
timate of the atrial signal. This technique has been applied to
discriminate nonterminating from terminating AF episodes

from Holter recordings [65]. Spectral analysis of the esti-
mated atrial signal revealed that terminating AF had a lower
frequency (3.75–5.5Hz) than nonterminating AF recordings
(5.5–8Hz) for the patients under study.

6.2. Multilead analysis

The atrial signal can be extracted by exploiting the spatial in-
formation in multilead ECGs. By applying PCA to the 12-
lead ECG, it is possible to remove redundant information
contained in the different leads and synthesize them such that
the principal components are uncorrelated. Hence, the most
representative component is the one which corresponds to
the ventricular activity since this activity exhibits the largest
energy, whereas the next few components correspond to vari-
ability in ventricular activity (cf. the single-lead case above).
Among the next principal components, it is possible to find
a signal which corresponds to the atrial activity. Figure 12
shows an example where PCA is applied to an AF episode,
where the atrial activity can be identified as the fourth prin-
cipal component, whereas the three first components contain
ventricular activity. The detection of the atrial component
can be performed using the FFT, since the extracted signal
typically exhibits a dominant frequency peak between 3 and
12Hz. The suitability of PCA for the extraction of the atrial
signal has been proposed and validated in [63].

It should be noted that the goal in the AF application is
to search for a particular component, instead of maximizing
variance or minimizing the MSE. This concept is closely re-
lated to blind source separation (BSS) models [66], where
the purpose is to estimate a set of independent sources from
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Figure 12: Example of atrial signal extraction during AF using a
multilead PCA approach. (a) The original 8 ECG leads, where x1
and x2 are I and II limb leads, and x3 to x8 are the precordial leads,
and (b) the corresponding principal components.

the observation of mixtures. Indeed, a BSS-based solution
that not only exploits second-order statistics but also higher-
order statistics to estimate the fibrillatory wave has been pro-
posed [67].

So far, PCA has been applied to extract atrial signals for
monitoring the effects of (1) antiarrhythmic drugs [63] and
(2) linear atrial ablation [68]. After extraction of fibrillatory

waves, FFT has been applied to detect the main frequency,
which was shown to decrease with the administration of ei-
ther amiodarone (from 5.8Hz to 4.9Hz), flecainide (from
5.3Hz to 4.7Hz), or sotalol (from 5.9Hz to 4.9Hz) [63].
Similarly, fibrillatory frequency changes in response to lin-
ear left atrial ablation have been monitored and the effect
on fibrillatory frequency of roof and mitral isthmus lines
have been quantified [68]. Fibrillatory frequency decreased
from 5.66Hz to 5.15Hz with a greater decrease after left
atrial roof ablation compared with mitral isthmus ablation
(0.31Hz versus 0.10Hz). Even though there was a trend to
lower baseline frequencies with successful ablation, this study
was not powered to predict outcome, although an invasive
study supports this conclusion [69].

7. BODY SURFACE POTENTIALMAPPING

Body surface potential mapping (BSPM) refers to the record-
ing and analysis of temporal and spatial distributions of ECG
potentials acquired multiple sites on the torso. In contrast
to the analysis of the 12-lead ECG, where wave amplitudes,
intervals, and morphology are usually considered, BSPM is
rather considered in terms such as the shape of the poten-
tial distribution and the number and location of extrema.
Since the electrodes that define such a map are closely spaced
on the body surface, therefore containing considerable re-
dundancy, PCA-based methods have been employed for data
compression. It has been shown that spatial redundancy can
be substantially reduced using the definition in (28) [70, 71],
thereby resulting in a subset of leads which contains much
richer information than subsets of the original leads of the
same size. From such a subset of leads, better separation can
be made of different types of patients [72, 73].

The analysis of a body surface potential map is partic-
ularly attractive and challenging since the map contain most
of the electrocardiographic information that can be retrieved
noninvasively. There is evidence that subjects at risk for ven-
tricular tachycardia (VT) have unique map characteristics
[74], for example, the spatial distribution of QRST integral
has been found useful to stratify patients at risk for VT [75].
Results similar to those based on the QRST integral can be
obtained for principal components obtained from (3), using
either lead piling or basis functions forced to have the sep-
arable structure in (30). In both cases, susceptibility to VT
can be predicted by the principal components [76], yield-
ing results in terms of sensitivity and specificity similar to
those based on the QRST integral [75]. Figure 13 illustrates
the use of lead piling combined with (3), and the far less com-
putationally demanding approach with separable basis func-
tions. Figure 14 displays the basis functions Bn,l of order 14
that result from lead piling, reflecting that there is no exact
temporal behavior from lead to lead, although a certain con-
sistency can be observed. Figure 15 displays the basis func-
tions Bn,l when the separable structure is assumed, using the
correlation matrix estimates in (35); note the identical tem-
poral behavior from lead to lead. The small differences be-
tween these two approaches are also reflected by the small
differences found in clinical classification [76].
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Figure 13: Data matrix Di with one beat from a BSPM recording. The signal from lead l is plotted around the torso location where the
sensing electrode is located. The torso is displayed in an unfolded format, the right subplot corresponds to the back, the left one to the front,
and the middle hole corresponds to the left axile.
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Figure 14: Basis function Bn,l derived from the BSPM data displayed in Figure 13, using lead piling (Bn,l is obtained by depiling the eigen-
vector of order 14).

8. CONCLUSIONS

Several PCA-based strategies are available which exploit the
fact that the ECG signal exhibits intrabeat, interbeat, and

interlead redundancy. Although the underlying principle is
the same in all ECG applications, the results are obtained and
interpreted in quite diverse ways. In some applications, the
goal is to find a more compact representation of the signal,
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Figure 15: Basis function Bn,l = tnsTl derived from the BSPM data displayed in Figure 13, assuming a separable structure of the time-lead
correlation matrix (n = 1, l = 7).

while in others it is to search for specific patterns or to ex-
tract a certain physiologic activity. In other applications, PCA
may serve as a powerful, intermediate step when addressing
problems related to noise reduction and beat classification.
To date, PCA has been used to solve signal processing issues,
most notably ECG data compression, as well as clinically ori-
ented issues related to the characterization and diagnosis of
myocardial ischemia, ventricular repolarization, and AF. In
the future, PCA will continue to play an important role, for
example, in electrical imaging of the heart—this application
comprises large amounts of data which may call for methods
that exploit all three types of signal redundancies.
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