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1. INTRODUCTION

The recent paper by Zheng and Kaiser [1] derived various
expressions for the channel capacity of multiantenna sys-
tems with the Nakagami fading channel. Most of these are
expressed in terms of the integral
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0
log
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uk/2−1 exp(−u)du, (1)

see, for example, [1, equation (14)]. The paper provided a re-
currence relation (see [1, equation (18)]) for calculating (1).
Here, we show that one can derive explicit expressions for (1)
in terms of well-known functions.

2. EXPLICIT EXPRESSIONS FOR (1)

We calculate (1) by direct application of certain formulas in
[2]. For k > 0, application of [2, equation (2.6.23.4)] yields
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where Ψ(·) denotes the digamma function defined by

Ψ(x) = d logΓ(x)
dx

, (3)

and 1F1 and 2F2 are the hypergeometric functions defined by
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respectively, where ( f )k = f ( f +1) · · · ( f +k−1) denotes the
ascending factorial. If k = 2, then by [2, equation (2.6.23.5)]
one can reduce (2) to

J(2,β) = − exp(β)Ei(−β), (5)

where Ei(·) denotes the exponential integral defined by

Ei(x) =
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−∞
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t
dt. (6)

If k = 1, then by using the facts that
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where γ = 0.5772 · · · is the Euler’s constant and erfi(·) de-
notes the imaginary error function defined by

erfi(x) = 2√
π

∫ x

0
exp
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)
dt, (8)
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one can reduce (2) to
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If k = 3, then by using the facts that
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one can reduce (2) to
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3. DISCUSSION

We expect that the expression given by (2) and its partic-
ular cases could be useful with respect to channel capac-
ity modeling of multiantenna systems with Nakagami fad-
ing. The given expressions involve the digamma, exponential
integral, imaginary error, and the hypergeometric functions
and these functions are well known and well established (see
[3, Sections 8.17, 8.21, 8.36, and 9.23]). Numerical routines
for computing these functions are widely available, see, for
example, Maple and Mathematica.
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