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Acoustic analysis of speech signals is a noninvasive technique that has been proved to be an effective tool for the objective support
of vocal and voice disease screening. In the present study acoustic analysis of sustained vowels is considered. A simple k-means
nearest neighbor classifier is designed to test the efficacy of a harmonics-to-noise ratio (HNR)measure and the critical-band energy
spectrum of the voiced speech signal as tools for the detection of laryngeal pathologies. It groups the given voice signal sample into
pathologic and normal. The voiced speech signal is decomposed into harmonic and noise components using an iterative signal
extrapolation algorithm. The HNRs at four different frequency bands are estimated and used as features. Voiced speech is also
filtered with 21 critical-bandpass filters that mimic the human auditory neurons. Normalized energies of these filter outputs are
used as another set of features. The results obtained have shown that the HNR and the critical-band energy spectrum can be used
to correlate laryngeal pathology and voice alteration, using previously classified voice samples. This method could be an additional
acoustic indicator that supplements the clinical diagnostic features for voice evaluation.
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1. INTRODUCTION

Diseases that affect the larynx cause changes in the patient’s
vocal quality. Early signs of deterioration of the voice due to
vocal malfunctioning are normally associated with breath-
iness and hoarseness of the produced voice. The first tool
used to detect laryngeal pathology is subjective analysis of the
speech. Trained physicians perform a subjective evaluation of
the patient’s voice, which is followed by laryngeoscopy that
may cause discomfort to the patient. A complementary tech-
nique could be acoustic analysis of the speech signal, which
is shown to be a potentially useful tool to detect voice dis-
ease. This noninvasive technique is a fast low-cost indicator
of possible voice problems.

Any change in the anatomical structure because of
pathology in turn results in physiological function that al-
ters the vocal output [1–7]. The analysis methods found in
the literature are mainly based on the periodicity of vocal
fold vibration and the turbulence in the glottal flow resulting
frommalfunctioning of the vocal folds [8–17]. The periodic-
ity perturbations are associated with the measurement of jit-
ter and shimmer. Jitter is the variation between the successive

fundamental periods and shimmer is the variation between
successive magnitudes of the signal from cycle to cycle. The
turbulence in the glottal flow is usually quantified by the
noise components in the voiced speech spectrum. In this
study we focus on the vocal noise for the analysis of vocal
fold pathology.

Researchers have extensively used the vocal noise for the
evaluation of pathologic voice. Many noise features have
been used which are designed to quantify the relative noise
components in a speech signal. The prominent ones are the
harmonics-to-noise ratio (HNR), the normalized noise en-
ergy (NNE), and the glottal-to-noise-excitation ratio (GNE).
Yumoto et al. [11] proposed the HNR as ameasure of hoarse-
ness. But the estimation of HNR is based on the assumption
that a long stationary data segment is available for analy-
sis, which may not be realistic as the speech is highly non-
stationary. Kasuya et al. [12] proposed NNE as a novel and
effective acoustic measure to evaluate noise components in
pathologic voices. They have devised an adaptive comb fil-
tering method operating in the frequency domain to esti-
mate noise components and NNE from a sustained vowel
phonation. A fixed length (seven times the fundamental pitch
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period) voiced segment is used for the analysis. Manfredi
[13] used an adaptive window, whose length is adapted ac-
cording to the fundamental pitch period for the analysis.
The adaptive NNE proposed by them is particularly useful
for complete word utterances. Michaelis et al. [16] have pro-
posed a new acoustic measure called GNE for the objective
description of voice quality. This parameter is related to the
breathiness in the voiced speech and it indicates whether a
given voice signal originates from the vibration of the vocal
folds or from the turbulent noise generated in the vocal tract.

In this paper, we extract two different sets of features
from the acoustic analysis of voiced speech and further use
them to correlate laryngeal pathology and voice alteration on
a previously classified database of voice samples. The first fea-
ture set is the energy ratio of harmonics to noise components
(HNR) in the voiced speech signal at four different frequency
bands and the second set of features is based on the energy
spectrum at critical-band spacing [18]. A k-means nearest
neighbor classifier [19] is used separately on these sets of fea-
tures to test their efficacy as tools for the detection of laryn-
geal pathology. As the same classifier is used on the two fea-
ture sets independently, we get two different sets of classi-
fication results. As we have used a preclassified database of
voices, this allows us to make a comparison between the effi-
cacies of the two sets of features apart from their individual
efficiencies.

2. MATERIALS ANDMETHODS

2.1. Database

In the present study, we wanted to understand if HNR and
critical-band energy spectrum could be used as effective tools
for the classification of normal and pathologic voices. A
prior-labeled database is helpful in such a study to correlate
the results obtained. We have taken the speech signals from
such a database distributed by Kay Elemetrics Corporation.
This CD ROM database of acoustic records originally devel-
oped by Massachusetts Eye and Ear Infirmary (MEEI) Voice
and Speech Lab. [20] contains over 1400 voice signals of ap-
proximately 700 subjects. Included are the sustained phona-
tion and running speech samples from patients with a wide
variety of organic, neurological, traumatic, and psychogenic
disorders, as well as from 53 normal subjects. We have used
voice samples of sustained phonation of the vowel /a/. The
recordings were made in a controlled environment and data
were available at sampling frequencies of 25 KHz or 50KHz.
We have down sampled all the voice signals to a sampling
frequency of 16KHz. The normal voice records are about 5
seconds long, whereas the pathologic voice records are about
3 seconds long. 53 normal and 163 pathologic voice signals
have been used in our study as shown in Table 1. Approxi-
mately 50 percent of the signals of each group were consid-
ered for training (to estimate the prototype) and the remain-
ing for testing.

2.2. Estimation of HNR

One of the important characteristics of voiced speech is the
well-defined harmonic structure. The source for the voiced

Table 1: Details of the voice signals used in the study.

Laryngeal disease No. of samples

Normal 53

Adductor 13

Paralysis 53

Cyst 04

Leukoplakia 20

Vocal fold polyp 13

Polyp degenerative 17

Vocal fold edema 30

Vocal nodule 13

speech is often modeled as quasiperiodic glottal pulses. But
in reality, even the sustained vowel phonation consists of
some random part mainly due to turbulence of airflow
through the glottis (anterior and/or posterior glottis) and
due to pitch perturbations. A windowed segment s(n) of the
voiced speech signal is therefore assumed to have a peri-
odic component p(n) and a random component w(n), rep-
resented as

s(n) = p(n) +w(n), n = 0, 1, . . . ,M − 1, (1)

whereM is the length of the analysis window. The two com-
ponents cannot be directly separated because the random
component may have energy in the entire speech spectrum.
But one can get an estimate of the random component by
decomposing speech into periodic and random components.
We have used a method similar to the one proposed by Yeg-
nanarayana et al. [21] for the decomposition of the speech
into periodic and aperiodic components. The method in-
volves an initial approximation of the periodic and the ran-
dom components using the harmonicity criterion. This is
followed by an iterative reconstruction of the random com-
ponent in the region labelled as “periodic” based on discrete
Fourier transform (DFT) and inverse discrete Fourier trans-
form (IDFT) pairs.

2.2.1. Identification of harmonic and noise regions

The first step in the signal decomposition algorithm is to de-
rive a first approximation of periodic and aperiodic compo-
nents in the frequency domain. The spectrum of a windowed
voiced speech segment is schematically shown in Figure 1.
AnN point DFT of a Hamming windowed segment of length
M of the voiced speech is assumed. The harmonic peak re-
gion Pi has a width of 2N/M on either side of the peak fre-
quency ki corresponding to the ith harmonic of the funda-
mental frequency. 2N/M is the approximate bandwidth of
the Hamming window. This region contains both periodic
and aperiodic energy. In the harmonic dip region Di, it is as-
sumed that the periodic components have no energy and the
entire energy is due to random components. In order to ob-
tain nonempty dip region with d points, the window length
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Figure 1: Schematic representation of the spectrum of a windowed
voiced speech segment.

should satisfy [13]

M ≥ 4N
f0NT − (d + 1)

, (2)

where f0 is the fundamental frequency of phonation and T is
the sampling interval. Thus with a nonempty dip region, one
can identify the harmonic region and noise region as

Pi =
{
k | ki − 2N

M
≤ k ≤ ki +

2N
M

}
,

Di =
{
k | ki−1 + 2N

M
≤ k ≤ ki − 2N

M

}
,

(3)

where k = frequency number. A peak-searching algorithm is
used to initially locate the harmonic peak frequencies ki. This
algorithm determines the spectral peaks by searching for the
peaks in the intervals centered at each multiple of the fun-
damental frequency f0. The fundamental frequency is esti-
mated using the method described in Section 2.2.2 below.

2.2.2. Estimation of f0

Sufficient subglottal air pressure and vocal fold adduction
produce oscillation of the vocal folds and therefore voiced
sounds when the vocal fold tissues are pliable. The rate of vi-
bration is the fundamental frequency. The glottis opens and
closes, resulting in quasiperiodic flow of air. The instant of
closure of the glottis is referred to as the glottal closure in-
stant (GCI). During each period of voiced speech, a GCI oc-
curs. To detect this, Wendt and Petropulu [22] used a wavelet
function having a derivative property. When the speech sig-
nal is filtered by this function, maxima will occur at every
GCI. For many phonation cases, normal and abnormal, the
vocal folds do not come all the way together, and there is no

glottal closure. However, there can be a more prominent flow
reduction within a cycle, and therefore a greater acoustic ex-
citation at that time in the cycle. Many of the pathological
voices will not have closure, but will have stronger excita-
tion moments somewhere in the cycle. Such voiced speech
signals also exhibit prominent peaks when filtered through
the wavelet filtering function at these stronger excitation mo-
ments. Thus the time elapsed between two adjacent maxima
of the filtered signal represents the pitch period of the signal
at that moment. We propose an extension to this method to
estimate the pitch.

To construct a filtering function, the wavelet with the
derivative property described by Mallat and Zhong [23] is
combined with the bandwidth property of the wavelet trans-
form at different scales. Let ψ(t) be the mother wavelet with
derivative property. The functions

ψk(t) = 2k/2ψ
(
2kt
)
, φk(t) = 2k/2φ

(
2kt
)

(4)

represent Haar wavelet and scaling functions, respectively, at
scale k. Here φ(t) is a lowpass function and is the conjugate
mirror filter of ψ(t), which is a highpass function. As the ap-
proximate range of the fundamental frequency of the voiced
speech is between 60 and 500Hz [24], the final filtering func-
tion should have the same bandwidth. Thus we construct a
filtering function λ(t) as

λ(t) = φka(t)∗ ψkb(t), (5)

where ∗ denotes convolution. The scales ka and kb are given
by

ka =
⌈
log2

Fs
500

⌉
,

kb =
⌈
log2

Fs
60

⌉
,

(6)

where Fs is the bandwidth of the input speech signal.
The speech signal is passed through this filter. The filtered

signal shows dominant peaks at the GCIs. The peaks of the
filtered signal are detected using a peak detection algorithm
which identifies the peaks by detecting the points where the
slope polarity change occurs. For real speech, the filtered sig-
nal exhibits some spurious peaks which are to be eliminated
by using a suitable peak correctionmethod. Thresholding the
strength and the proximity of the adjacent peaks [25] is used
in the peak correction algorithm. That is, in the first stage of
correction, a peak is validated only if its amplitude is above a
threshold. The threshold is fixed at 25 percent of the average
peak amplitude. In the second stage, the average distance Da

between the two adjacent peaks is first estimated. Every peak
whose distance with its adjacent peak is shorter than 0.5Da or
longer than 2Da is then eliminated. This two-stage peak cor-
rection algorithm eliminates the spurious peaks and identi-
fies only the correct peaks. The average distance between the
consecutive peaks is then found to compute the pitch period
and hence the fundamental frequency f0.
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2.2.3. Estimation of harmonic and noise energies

By estimating the signal energies in the identified harmonic
and noise regions (Section 2.2.1), one can get only an ap-
proximate harmonics-to-noise ratio. The energy in a noise
region is assumed to be due to noise components only, but
in the harmonic region, the energy is a superposition of har-
monic and noise components. The noise energy can be es-
timated by signal extrapolation methods. In this paper, we
have used an iterative algorithm developed by Yegnanarayana
et al. [21] to reconstruct the noise components. The algo-
rithm is based on bandlimited signal extrapolation proposed
by Papoulis [26]. The noise component is reconstructed by
iteratively moving from the frequency domain to the time
domain and vice versa. For an M-length signal, an N-point
(N > M) DFT is first obtained. The iterations begin with
zero values in the frequency region identified as the har-
monic region and actual DFT values in the noise region. An
inverse DFT is then obtained and the first M points of the
resulting signal are retained. An N-point DFT is again ob-
tained and the harmonic region is forced to zero. The IDFT
is computed and this procedure is repeated for a few itera-
tions. It is shown [21] that for a finite duration signal with
known noise samples, the reconstructed noise component
converges to the actual noise component in the mean-square
sense, as the iterations grow. In fact, after a number of it-
erations (about 8 to 10), the noise components are recon-
structed with negligible error. After reconstructing the noise
components, the harmonic components are obtained by time
domain subtraction. From these components the harmonics-
to-noise energy ratio in the required frequency bands is esti-
mated.

2.3. critical-band energy spectrum

The effect of noise on speech has been found to change
the spectral characteristics. Marked differences are found in
the distribution of energy at critical-bands between clean
and noisy speech signals [27]. This difference factor was
effectively used to differentiate the clean speech from the
speech added with noise. We extend this idea to differ-
entiate pathologic voices from the normal ones, as the
voiced speech of subjects with vocal fold pathology has ad-
ditional noise components caused mainly by the incom-
plete closure of the glottis and improper vibration pat-
tern of the vocal folds. We have used energy spectra at
critical-bands because the center frequency and bandwidths
of the critical-bands roughly correspond to the tuning curves
of human auditory neurons. The human auditory system
is assumed to perform a filtering operation, which parti-
tions the audible spectrum into critical-bands [28]. Twenty
one critical-bands described in Table 2. [27] have been
used in this work. Thus the proposed automated analy-
sis mimics the human perceptual analysis of voice pathol-
ogy. These 21 bands cover the frequency range from 1 to
7.7KHz. The bandwidths at lower critical-bands are nar-
rower and they progressively increase as the center frequency
increases.

Table 2: Upper-edge frequencies, lower-edge frequencies, cen-
ter frequencies, and bandwidths for 21-channel filter-bank with
critical-band spacing.

Band
Lower-edge Upper-edge Center

Bandwidth (Hz)frequency frequency frequency

(Hz) (Hz) (Hz)

1 1 100 50 100

2 100 200 150 100

3 200 300 250 100

4 300 400 350 100

5 400 510 450 110

6 510 630 570 120

7 630 770 700 140

8 770 920 840 150

9 920 1080 1000 160

10 1080 1270 1170 190

11 1270 1480 1370 210

12 1480 1720 1600 240

13 1720 2000 1850 280

14 2000 2320 2150 320

15 2320 2700 2500 380

16 2700 3150 2900 450

17 3150 3700 3400 550

18 3700 4400 4000 700

19 4400 5300 4800 900

20 5300 6400 5800 1100

21 6400 7700 7000 1300

We have adopted a filter bank approach for the estima-
tion of energy. Sixth-order Butterworth bandpass filters are
used to obtain the 21 band filter bank. The filter bank ap-
proach is preferred due to its simple and inexpensive im-
plementation. This approach is particularly suitable when a
small set of parameters describing the spectral distribution
of energy has to be derived. The outputs from a bank of 21
bandpass filters typically provide a very efficient spectral rep-
resentation.

In the next section, we describe the extraction of the fea-
tures and the design of the classifier.

2.4. Feature estimation

2.4.1. Features based on HNR

One of the important characteristics of normal voiced speech
is that it exhibits a good harmonic structure even up to about
4 KHz. In contrast, the pathologic voices exhibit higher noise
levels and the noise is distributed across the entire speech
spectrum. The pathologic voices may have good harmonic
structure at low frequencies, and at higher frequencies the
harmonic energy decreases with the increase in noise energy.
This is evident from Figure 2 where the log magnitude spec-
tra of the estimated harmonic component and noise com-
ponents for a segment of speech corresponding to sustained
vowel /a/ uttered by both a normal and a pathologic subject
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Figure 2: Power spectra of the estimated harmonic and noise com-
ponents for the vowel segment /a/ corresponding to (a) a normal
subject and (b) a pathologic subject.

are shown. The harmonic and the noise components are ob-
tained by decomposing the segment of the speech signal us-
ing the method discussed in Section 2. The normal voice
shows a regular harmonic structure up to about 4 KHz with
relatively low noise energy. In the case of the pathologic voice,
the spectrum shows higher noise levels with deteriorated har-
monic structure even at lower frequencies. The harmonics-
to-noise energy ratio (HNR) at different frequency bands
can therefore be used for discriminating pathologic voices
from normal ones. In this study, we have used HNRs at
four different frequency bands as the features for the clas-
sification as shown in Table 3. These frequency bands are the

Table 3: The frequency bands in which the HNR values are esti-
mated.

Band Lower-edge Upper-edge Center

number frequency (Hz) frequency (Hz) frequency (Hz)

1 300 620.8 460.4

2 620.8 1248.5 925.6

3 1248.5 2658 1971.3

4 2658 5500 4079

standard bands used in many speech-processing applications
[27] and have logarithmic spacing that would approximate
the frequency response of human ear. We have experimented
with more than 4 frequency bands and no significant im-
provement in the results was found. Using frequencies above
5.5KHz also had no significant effect on the results because
both the normal and pathologic voices show low HNR above
this frequency.

The speech recordings corresponding to the sustained
vowel /a/ are sampled at 16KHz and digitized with 16- bit
resolution. The data are then segmented into overlapping
segments of length 1023 samples. This particular choice of
the segment length is based on the following issues. The ac-
curacy of the extrapolation algorithm for the decomposition
of the voice signal into harmonic and noise components is
poor for low-pitched voices, as the numbers of sample points
available in the harmonic dip region for the extrapolation
are fewer. At lower pitch, to have nonempty dip regions, the
frame length needs to be higher (see (2)). At the same time,
the data window at the higher pitch frequencies spans a large
number of pitch cycles. The pitch of the voice samples used in
the current study was in the range 90Hz to 220Hz. Thus we
found the segment length of 1023 points adequate. This also
suits the requirements of the iterative procedure based on
DFT and IDFT used for the decomposition of speech where
we have used 2048 point DFTs.

For each segment, the HNR at the four frequency bands
are estimated by the method described in Section 2. These 4
HNRs are then averaged over all the segments. The averaged
HNR values form the feature vector for the classifier.

2.4.2. Features based on energy spectrum

The voiced speech data (sustained phonation of vowel /a/)
are uniformly divided into 20ms frames. Each frame is fil-
tered through the 21-channel filter-bank, whose center fre-
quencies and bandwidths are taken according to critical-
band spacing. These 21-bands cover a frequency range of 1
to 7.7KHz. Energies of each of the 21-filter outputs are com-
puted and normalized to the total energy. This normalized
energy spectrum is used as a feature vector in this study.

Figure 3 shows an example of normalized energy spectra
for normal and pathologic voice signals. Here we have plot-
ted normalized energy (which is the sum of both harmonic
and noise energies) versus the frequency bands. It is observed
that for the healthy voices considered in the study, most of the
energy content is accumulated in critical-bands 5 through
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Figure 3: Normalized energy spectrum for normal and pathologic
voice samples.

10, which correspond to the frequency range of 400Hz to
1270Hz, whereas the pathologic voice does not show such
a pattern. Pathologic voices exhibited energy distributions
such that considerable energy is seen in lower bands also
(critical-bands 1 through 4). It is also evident from Figure 2
where one can see the pathologic voice having large har-
monic and noise energy at lower frequencies though the har-
monic energy falls rapidly at higher frequencies with the in-
crease in noise energy. However some pathologic voices show
a significant amount of energy at higher frequency bands
also.

2.5. Classifier

This section describes the design of a classifier to classify the
given voice signal to the normal or pathologic class, based
on the estimated acoustic features. The distribution func-
tions for these features are unknown and hence nonparamet-
ric methods of classification are necessary. There are several
techniques available, which include fitting an arbitrary den-
sity function to a set of samples, histogram techniques, and
kernel or window techniques [29]. Apart from these, there
are several nearest neighbor techniques, which do not explic-
itly use any density functions.

2.5.1. Nearest neighbor classification

This method assigns an unknown sample signal to that class
having most similar or nearest sample signal in the refer-
ence set or training set of signals. The nearest sample sig-
nal is found by using the concept of distance or metric. We
have used Euclidean distance as the metric. The Euclidean
distance in n-dimensional feature space, which is the usual
distance between the two points a = (a1, a2, . . . , an) and

b = (b1, b2, . . . , bn) is defined by

De(a, b) =
√√√√ n∑

i=1

(
bi − ai

)2
. (7)

In the present work, a simple k-means nearest neighbor clas-
sifier has been used. This is a variant of the nearest neighbor
technique. Here a prototype is computed from the reference
set of sample signals and a given test sample signal is clas-
sified as belonging to the class of the closest prototype. The
prototype is computed as the mean of feature vectors corre-
sponding to signals in the reference set belonging to a par-
ticular class. The prototype, referred to as a centroid vector,
is computed separately for both normal and pathologic voice
signals. This averaging process represents the training phase
of the classifier.

2.5.2. Classification based on HNR

Let HNRi j denote the harmonics-to-noise ratio at the ith fre-
quency band for the jth sample signal with i = 1, 2, 3, 4. Then
the centroid vector is

HNRi
c = 1

k

k∑
j=1

HNRi j , (8)

where c = nc (normal class) or pc (pathologic class) and k =
number of sample signals in the reference set belonging to
class c.

Two such centroid vectors are computed, one for normal
voices and the other for pathologic voices. For the test sample
signal, we calculate the Euclidean distance parameter D be-
tween the HNR feature vector corresponding to the test sam-
ple signal and the centroid vector. Thus we have two distance
measures:

Dnc =

√√√√√
4∑
i=1

(
HNRi

t −HNRi
nc)2,

Dpc =

√√√√√
4∑
i=1

(
HNRi

t −HNRi
pc)2,

(9)

where HNRi
t is the ith component of the HNR vector for

the test sample signal, HNRi
nc and HNRi

pc are the ith com-
ponents of the centroid vector corresponding to normal and
pathologic classes, respectively. Dnc and Dpc are the distances
between the test vector and the corresponding centroid vec-
tors.

The nearest neighbor rule is then applied to assign the
test sample signal to normal or pathologic class. The rule is if
Dpc < Dnc, then the test sample is considered as pathologic,
otherwise as normal.

2.5.3. Classification based on energy spectrum

We define spectral distance SD as the Euclidean distance be-
tween the feature vector (normalized energy values at the 21-
band critical-bands) corresponding to the test sample signal
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and that of the centroid vector as

SD =

√√√√√
21∑
i=1

(
EBi

t − EBi
c)2, (10)

where EBi
t denotes the ith normalized filter-bank energy

output of the test sample and EBi
c denotes the corresponding

energy of the centroid vector. For any given test sample, the
two spectral distances, one corresponding to the normal cen-
troid and the other corresponding to the pathologic centroid,
are estimated as

SDn =

√√√√√
21∑
i=1

(
EBi

t − EBi
nc)2,

SDp =

√√√√√
21∑
i=1

(
EBi

t − EBi
pc)2,

(11)

respectively, where EBi
nc and EBi

pc denote the ith compo-
nents of the centroid vectors corresponding to normal and
pathologic cases, respectively. Based on the above spectral
distance measures, the given test sample is classified into the
normal class if SDn ≤ SDp or into the pathology class other-
wise.

3. PERFORMANCE EVALUATION AND RESULTS

The following parameters were used to evaluate the perfor-
mance of the classifier.

(1) True positive (TP): the classifier detected pathology
when pathology was present.

(2) True negative (TN): the classifier detected normal
when normal voice was present.

(3) False positive (FP): the classifier detected pathology
when normal voice was present (false acceptance).

(4) False negative (FN): the classifier detected normal
when pathology was present (false rejection).

(5) Sensitivity (SE): likelihood that pathology will be de-
tected given that it is present.

(6) Specificity (SP): likelihood that the absence of pathol-
ogy will be detected given that it is absent.

(7) Accuracy: the accuracy with which the classifier is able
to classify the given sample to the correct group.

SE = 100 · TP
TP+FN

, SP = 100 · TN
TN+FP

,

accuracy = 100 · TN+TP
TN+TP+FN+FP

.

(12)

The results are depicted in Table 4. These results were cal-
culated based on the number of samples used for testing.

4. DISCUSSIONS

The HNR based features provided lower false rejection
and thus higher sensitivity than the critical-band energy-
spectrum-based feature set. In fact, 4 pathologic cases were

Table 4: Results.

Features (%) Sensitivity (%) Specificity (%) Accuracy (%)

HNR 94.94 92.31 94.28

Energy
91.14 96.15 92.38

spectrum

rejected falsely out of 79 test cases by the first classifier,
whereas 7 of them were falsely rejected by the other clas-
sifier. Though significant difference in percentile specificity
was seen, the two sets of features provided low false accep-
tance. The large difference (about 4%) in the specificity was
because the number of normal subjects used in the study was
small. 26 normal subjects were used for testing the classi-
fiers; the classifier based on HNR features misclassified two
of them while the other misclassified one of them. It was ob-
served that for all the samples that were misclassified, there
was a large amount of overlap between the features (HNR
and energy spectrum) and the two corresponding estimated
prototypes (centroids).

The frequency bands used for the estimation of HNR
cover frequencies up to 5.5KHz, whereas the critical-band
energy spectrum stops at 7.7KHz. This does not alter the re-
sults significantly as seen in Table 4. This is also evident from
Figures 2 and 3, which show that there is no significant spec-
tral energy in the voiced speech above about 5 KHz. The low
harmonic energy above 5KHz results in low HNR for both
normal and pathologic cases. Hence using HNR above 5KHz
will not improve the classifier efficiency.

We have considered mainly vocal fold pathologies and
normal voices in this study. The method works well for all
these cases. The prototypes for individual pathologic cases
were not considered because of small sample sizes and hence
a comparison of the performance of the classifier in separat-
ing individual pathologic cases from normal is not reported
in this paper. We have tried interpathology classification us-
ing these features, but the results were poor.

The results shown in Table 4 appear to be promising in
separating the normal from pathologic voice samples. These
results are comparable to those reported by several other
research studies [30–33]. In [30], a voice analysis system
was developed for the screening of laryngeal diseases using
four different types of classifiers based on time and cepstral
domain parameters derived from the speech signal of sus-
tained phonation of the vowel /a/. Overall classification ac-
curacy of 93.5% was reported with a test data set consist-
ing of 50 normal and 150 pathologic subjects. In [31], au-
tomatic detection of pathologies in voice was done based on
“classic” parameters, that is, shimmer, jitter, energy balance,
spectral distance, and newly proposed higher-order statistics
(HOS)-based parameters. Classification scores of 94.4% and
98.3%, respectively, were obtained using speech data from
100 healthy and 68 pathologic speakers. Though the results
are superior to ours, the method is computationally more
complex as 5 vowels are analyzed for each speaker and neu-
ral network classifiers are used. In more recent studies found
in the literature [32, 33], data from the Kay-Elemetrics dis-
ordered voice database have been used for the separation
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of pathological voices from normal ones. This is the same
database that we used in the present study. In [32], a multi-
layer perceptron network was used onmel-frequency cepstral
coefficients (MFCC) to achieve a classification rate of 96%.
As in our study, the sustained vowel phonation /a/ was used
but the classification was done on a different set of patho-
logic voice samples (53 normal and 82 pathologic cases). In
another recent study [33], a joint time frequency approach
was proposed for the discrimination of pathologic voices.
Continuous speech data from 51 normal and 161 patho-
logic speakers were analyzed and overall classification accu-
racy of 93.4%was reported using linear discriminant analysis
(LDA). The method proposed by us in this paper has the ad-
vantage that the k-means nearest neighbor classifiers are easy
to implement with minimum computational cost. Though
the critical-band energy-spectrum-based classifier has com-
paratively less accurate results, the parameterization is sim-
pler and does not require the estimation of the pitch and
noise.

It is well known that laryngeal pathology can lead to a
voice disorder. However, all voice disorders are not due to
laryngeal pathology. Acoustical variations with normal la-
ryngeal structure and functions, as well as normal acousti-
cal parameters with variation in the laryngeal organs, have
been reported in the literature [34, 35]. The results presented
here are from an explorative study to look at the efficacy of
HNR and energy spectrum at critical-band spacing as diag-
nostic tools. Both methods described in this paper may give
false results in the case of normal voice produced by altered
laryngeal function and “pathological” sounding voices be-
cause of some muscular imbalance due to behavioral causes
or style settings for artistic purposes. However, such cases can
be eliminated while recording, by a suitable screening proce-
dure.

5. CONCLUSIONS

A simple k-means nearest neighbor classifier is designed for
the classification of pathologic voices. The harmonics-to-
noise ratio and energy spectrum at critical-band spacing of
speech signals are demonstrated as tools for the differen-
tial classification of laryngeal pathology versus normal voice.
This can be used as a tool to supplement the perceptual
evaluation of speech for the detection of suspected laryn-
geal pathologies. The method has the advantage that a com-
paratively shorter length of speech data is sufficient for the
analysis. The HNR-based classifier makes use of 4 frequency
bands, while the energy spectrum based classifier makes use
of 21. The 4 bands used in the first classifier as well as the
21 bands used in the second classifier correspond to the
frequency response of auditory neurons of the human ear.
Choice of only 4 frequency bands in the first classifier reduces
the dimensionality from 21 to 4 when compared to the sec-
ond classifier. Though the first method has the advantage of
working on reduced dimensional features, the computational
gain is used up by the need for the extraction of fundamen-
tal frequency and the estimation of noise components, which
are computationally expensive. For the pathologic voices,

estimation of fundamental frequency ( f0) is difficult and for
very breathy, almost aphonic voices, the filtered speech may
not have dominant peaks or the peaks may be compara-
ble to noise peaks leading to erroneous pitch estimation. In
such cases the energy-spectrum-based classifier is preferred,
though this method is comparatively less accurate.
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