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The simulation of electromagnetic wave propagation in time-variant wideband multiple-input multiple-output mobile radio
channels using a geometry-based channel model (GCM) is computationally expensive. Due to multipath propagation, a large
number of complex exponentials must be evaluated and summed up. We present a low-complexity algorithm for the implementa-
tion of a GCM on a hardware channel simulator. Our algorithm takes advantage of the limited numerical precision of the channel
simulator by using a truncated subspace representation of the channel transfer function based on multidimensional discrete pro-
late spheroidal (DPS) sequences. The DPS subspace representation offers two advantages. Firstly, only a small subspace dimension
is required to achieve the numerical accuracy of the hardware channel simulator. Secondly, the computational complexity of the
subspace representation is independent of the number of multipath components (MPCs). Moreover, we present an algorithm for
the projection of each MPC onto the DPS subspace in O(1) operations. Thus the computational complexity of the DPS subspace
algorithm compared to a conventional implementation is reduced by more than one order of magnitude on a hardware channel
simulator with 14-bit precision.
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1. INTRODUCTION

In mobile radio channels, electromagnetic waves propagate
from the transmitter to the receiver via multiple paths. A
geometry-based channel model (GCM) assumes that ev-
ery multipath component (MPC) can be modeled as a
plane wave, mathematically represented by a complex expo-
nential function. The computer simulation of time-variant
wideband multiple-input multiple-output (MIMO) chan-
nels based on a GCM is computationally expensive, since
a large number of complex exponential functions must be
evaluated and summed up.

This paper presents a novel low-complexity algorithm for
the computation of a GCM on hardware channel simulators.
Hardware channel simulators [1–5] allow one to simulate
mobile radio channels in real time. They consist of a pow-
erful baseband signal processing unit and radio frequency
frontends for input and output. In the baseband processing
unit, two basic operations are performed. Firstly, the channel
impulse response is calculated according to the GCM. Sec-
ondly, the transmit signal is convolved with the channel im-

pulse response. The processing power of the baseband unit
limits the number of MPCs that can be calculated and hence
the model accuracy. We note that the accuracy of the channel
simulator is limited by the arithmetic precision of the base-
band unit as well as the resolution of the analog/digital con-
verters. On the ARC SmartSim channel simulator [2], for ex-
ample, the baseband processing hardware uses 16-bit fixed-
point processors and an analog/digital converter with 14-bit
precision. This corresponds to a maximum achievable accu-
racy of Emax = 2−13.

The new simulation algorithm presented in this paper
takes advantage of the limited numerical accuracy of hard-
ware channel simulators by using a truncated basis expan-
sion of the channel transfer function. The basis expansion
is based on the fact that wireless fading channels are highly
oversampled. Index-limited snapshots of the sampled fad-
ing process span a subspace of small dimension. The same
subspace is also spanned by index-limited discrete prolate
spheroidal (DPS) sequences [6]. In this paper, we show that
the projection of the channel transfer function onto the DPS
subspace can be calculated approximately but very efficiently
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in O(1) operations from the MPC parameters given by the
model. Furthermore, the subspace representation is indepen-
dent of the number of MPCs. Thus, in the hardware sim-
ulation of wireless communication channels, the number of
paths can be increased andmore realistic models can be com-
puted. By adjusting the dimension of the subspace, the ap-
proximation error can be made smaller than the numerical
precision given by the hardware, allowing one to trade accu-
racy for efficiency. Using multidimensional DPS sequences,
the DPS subspace representation can also be extended to sim-
ulate time-variant wideband MIMO channel models.

One particular application of the new algorithm is the
simulation of Rayleigh fading processes using Clarke’s [7]
channel model. Clarke’s model for time-variant frequency-
flat single-input single-output (SISO) channels assumes that
the angles of arrival (AoAs) of the MPCs are uniformly
distributed. Jakes [8] proposed a simplified version of this
model by assuming that the number of MPCs is a multiple of
four and that the AoAs are spaced equidistantly. Jakes’ model
reduces the computational complexity of Clarke’s model by
a factor of four by exploiting the symmetry of the AoA dis-
tribution. However, the second-order statistics of Jakes’ sim-
plification do not match the ones of Clarke’s model [9] and
Jakes’ model is not wide-sense stationary [10]. Attempts to
improve the second-order statistics while keeping the re-
duced complexity of Jakes’ model are reported in [6, 9–14].
However, due to the equidistant spacing of the AoAs, none of
these models achieves all the desirable statistical properties of
Clarke’s reference model [15]. Our new approach presented
in this paper allows us to reduce the complexity of Clarke’s
original model by more than an order of magnitude without
imposing any restrictions on the AoAs.

Contributions of the paper

(i) We apply the DPS subspace representation to derive a
low-complexity algorithm for the computation of the
GCM.

(ii) We introduce approximate DPS wave functions to cal-
culate the projection onto the subspace in O(1) oper-
ations.

(iii) We provide a detailed error and complexity analysis
that allows us to trade efficiency for accuracy.

(iv) We extend the DPS subspace projection to multiple di-
mensions and describe a novel way to calculate multi-
dimensional DPS sequences using the Kronecker prod-
uct formalism.

Notation. Let Z, R, and C denote the set of integers, real
and complex numbers, respectively. Vectors are denoted by
v and matrices by V. Their elements are denoted by vi and
Vi,l, respectively. Transposition of a vector or a matrix is in-
dicated by ·T and conjugate transposition by ·H. The Eu-
clidean (�2) norm of the vector a is denoted by ‖a‖. The
Kronecker product and the Khatri-Rao product (columnwise
Kronecker product) are denoted by ⊗ and �, respectively.
The inner product of two vectors of length N is defined as
〈x, y〉 = ∑N−1

i=0 xi y
∗
i , where ·∗ denotes complex conjugation.

If X is a discrete index set, |X| denotes the number of el-
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Figure 1: GCM for a time-variant frequency-flat SISO channel. Sig-
nals sent from the transmitter, moving at speed v, arrive at the re-
ceiver via different paths. Each MPC p has complex weight ηp and
Doppler shift ωp [16].

ements of X . If X is a continuous region, |X| denotes the
Lebesgue measure of X . An N-dimensional sequence vm is a
function fromm ∈ ZN onto C. For an N-dimensional, finite
index set I ⊂ ZN , the elements of the sequence vm, m ∈ I ,
may be collected in a vector v. For a parameterizable func-
tion f , { f } denotes the family of functions over the whole
parameter space. The absolute value, the phase, the real part,
and the imaginary part of a complex variable a are denoted
by |a|, Φ(a), 
a, and �a, respectively. E{·} denotes the ex-
pectation operator.

Organization of the paper

In Section 2, a subspace representation of time-variant
frequency-flat SISO channels based on one-dimensional DPS
sequences is derived. The main result of the paper, that is,
the low-complexity calculation of the basis coefficients of the
DPS subspace representation, is given in Section 3. Section 4
extends the DPS subspace representation to higher dimen-
sions, enabling the computer simulation of widebandMIMO
channels. A summary and conclusions are given in Section 5.
Appendix A proposes a novel way to calculate the multidi-
mensional DPS sequences utilizing the Kronecker product.
Appendix B gives a detailed proof of a central theorem. A list
of symbols is defined in Appendix C.

2. THE DPS SUBSPACE REPRESENTATION

2.1. Time-variant frequency-flat SISO geometry-based
channelmodel

We start deriving the DPS subspace representation for the
generic GCM for time-variant frequency-flat SISO channels
depicted in Figure 1. The GCM assumes that the channel
transfer function h(t) can be written as a superposition of
P MPCs:

h(t) =
P−1∑

p=0
ηpe

2π jωpt, (1)

where each MPC is characterized by its complex weight ηp,
which embodies the gain and the phase shift, as well as its
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Figure 2: Doppler spectrum H(ν) of the sampled time-variant
channel transfer function hm. The maximum normalized Doppler
bandwidth 2νDmax is much smaller than the available normalized
channel bandwidth.

Doppler shift ωp. With 1/TS denoting the sampling rate of
the system, the sampled channel transfer function can be
written as

hm = h
(
mTS

) =
P−1∑

p=0
ηpe

2π jνpm, (2)

where νp = ωpTS is the normalized Doppler shift of the pth
MPC. We refer to (2) as the sum of complex exponentials
(SoCE) algorithm for computing the channel transfer func-
tion hm.

We assume that the normalized Doppler shifts νp are
bounded by the maximum (one-sided) normalized Doppler
bandwidth νDmax, which is given by the maximum speed vmax

of the transmitter, the carrier frequency fC, the speed of light
c, and the sampling rate 1/TS,

∣
∣νp

∣
∣ ≤ νDmax = vmax fC

c
TS. (3)

In typical wireless communication systems, the maximum
normalized Doppler bandwidth 2νDmax is much smaller than
the available normalized channel bandwidth (see Figure 2):

νDmax  1
2
. (4)

Thus, the channel transfer function (1) is highly oversam-
pled.

Clarke’s model [17] is a special case of (2) and assumes
that the AoAs ψp of the impinging MPCs are distributed uni-
formly on the interval [−π,π) and that E{|ηp|2} = 1/P. The
normalized Doppler shift νp of the pth MPC is related to the
AoA ψp by νp = νDmax cos(ψp). Jakes’ model [8] and its vari-
ants [9–14] assume that the AoAs ψp are spaced equidistantly
with some (random) offset ϑ:

ψp = 2πp + ϑ

P
, p = 0, . . . ,P − 1. (5)

If P is a multiple of four, symmetries can be utilized and
only P/4 sinusoids have to be evaluated [8]. However, the
second-order statistics of such models do not match the ones
of Clarke’s original model [9].

In this paper, a truncated subspace representation is used
to reduce the complexity of the GCM (2). The subspace rep-
resentation does not require special assumptions on the AoAs
ψp. It is based on DPS sequences, which are introduced in the
following section.

2.2. DPS sequences

In this section, one-dimensional DPS sequences are re-
viewed. They were introduced in 1978 by Slepian [17]. Their
applications include spectrum estimation [18], approxima-
tion, and prediction of band-limited signals [15, 17] as well
as channel estimation in wireless communication systems
[6]. DPS sequences can be generalized to multiple dimen-
sions [19]. Multidimensional DPS sequences are reviewed in
Section 4.2, where they are used for wideband MIMO chan-
nel simulation.

Definition 1. The one-dimensional discrete prolate spheroid-

al (DPS) sequences v(d)m (W , I) with band-limitW=[−νDmax,
νDmax] and concentration region I = {M0, . . . ,M0 +M − 1}
are defined as the real solutions of

M0+M−1∑

n=M0

sin
(
2πνDmax(m− n)

)

π(n−m)
v(d)n (W , I)

= λd(W , I)v(d)m (W , I).

(6)

They are sorted such that their eigenvalues λd(W , I) are in
descending order:

λ0(W , I) > λ1(W , I) > · · · > λM−1(W , I). (7)

To ease notation, we drop the explicit dependence of

v(d)m (W , I) onW and I when it is clear from the context. Fur-
ther, we define the DPS vector v(d)(W , I) ∈ CM as the DPS
sequence v(d)m (W , I) index-limited to I .

The DPS vectors v(d)(W , I) are also eigenvectors of the
M×M matrix K with elements Km,n = sin(2πνDmax(m−n))/
π(n−m). The eigenvalues of this matrix decay exponentially
and thus render numerical calculation difficult. Fortunately,
there exists a tridiagonal matrix commuting with K, which
enables fast and numerically stable calculation of DPS se-
quences [17, 20]. Figures 3 and 4 illustrate one-dimensional
DPS sequences and their eigenvalues, respectively.

Some properties of DPS sequences are summarized in the
following theorem.

Theorem 1. (1) The sequences v(d)m (W , I) are band-limited to
W .

(2) The eigenvalue λd(W , I) of the DPS sequence

v(d)m (W , I) denotes the energy concentration of the sequence
within I :

λd(W , I) =
∑

m∈I
∣
∣v(d)m (W , I)

∣
∣2

∑
m∈Z

∣
∣v(d)m (W , I)

∣
∣2

. (8)

(3) The eigenvalues λd(W , I) satisfy 1 < λi(W , I) < 0.
They are clustered around 1 for d ≤ D′ − 1, and decay ex-
ponentially for d ≥ D′, where D′ = �|W||I|� + 1.

(4) The DPS sequences v(d)m (W , I) are orthogonal on the
index set I and on Z.

(5) Every band-limited sequence hm can be decomposed
uniquely as hm = h′m + gm, where h′m is a linear combination of

DPS sequences v(d)m (W , I) for some I and gm = 0 for allm ∈ I .
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Figure 3: The first three one-dimensional DPS sequences v(0)m , v(1)m ,
and v(2)m forM0 = 0,M = 256, andMνDmax = 2.
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Figure 4: The first ten eigenvalues λd , d = 0, . . . , 9, of the one-
dimensional DPS sequences forM0 = 0,M = 256, andMνDmax = 2.
The eigenvalues are clustered around 1 for d ≤ D′−1, and decay ex-
ponentially for d ≥ D′, where the essential dimension of the signal
subspace D′ = �2νDmaxM� + 1 = 5.

Proof. See Slepian [17].

2.3. DPS subspace representation

The time-variant fading process {hm} given by the model in
(2) is band-limited to the region W = [−νDmax, νDmax]. Let
I = {M0, . . . ,M0 +M − 1} denote a finite index set on which
we want to calculate hm. Due to property (5) of Theorem 1,
hm can be decomposed into hm = h′m+gm, where h′m is a linear

combination of the DPS sequences v(d)m (W , I) and hm = h′m
for allm ∈ I . Therefore, the vectors

h = [hM0 ,hM0+1, . . . ,hM0+M−1
]T ∈ CM (9)

obtained by index limiting hm to I can be represented as a
linear combination of the DPS vectors

v(d)(W , I)

=
[
v(d)M0

(W , I), v(d)M0+1(W , I), . . . , v(d)M0+M−1(W , I)
]T ∈ CM.

(10)

Properties (2) and (3) of Theorem 1 show that the first
D′ = �2νDmaxM� + 1 DPS sequences contain almost all of
their energy in the index-set I . Therefore, the vectors {h}
span a subspace with essential dimension [6]

D′ = ⌈2MνDmax
⌉
+ 1. (11)

Due to (4), the time-variant fading process is highly over-
sampled. Thus the maximum number of subspace dimen-
sions M is reduced by 2νDmax  1. In typical wireless com-
munication systems, the essential subspace dimension D′ is
in the order of two to five only. This fact is exploited in the
following definition.

Definition 2. Let h be a vector obtained by index limiting a
band-limited process with band-limit W to the index set I .
Further, collect the first D DPS vectors v(d)(W , I) in the ma-
trix

V = [v(0)(W , I), . . . , v(D−1)(W , I)
]
. (12)

The DPS subspace representation of h with dimension D is
defined as

ĥD = Vα, (13)

where α is the projection of the vector h onto the columns of
V:

α = VHh. (14)

For the purpose of channel simulation, it is possible to
useD > D′ DPS vectors in order to increase the numerical ac-
curacy of the subspace representation. The subspace dimen-
sion D has to be chosen such that the bias of the subspace
representation is small compared to the machine precision
of the underlying simulation hardware. This is illustrated in
Section 3.2 by numerical examples.

In terms of complexity, the problem of computing the
series (2) was reformulated into the problem of computing
the basis coefficients α of the subspace representation (13). If
they were computed directly using (14), the complexity of the
problem would not be reduced. In the following section, we
derive a novel low-complexity method to calculate the basis
coefficients α approximately.
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3. MAIN RESULT

3.1. Approximate calculation of the basis coefficients

In this section, an approximate method to calculate the basis
coefficients α in (13) with low complexity is presented. Until
now we have only considered the time domain of the channel
and assumed that the band limiting region W is symmetric
around the origin. To make the methods in this section also
applicable to the frequency domain and the spatial domains
(cf. Section 4), we make the more general assumption that

W = [W0 −Wmax,W0 +Wmax
]
. (15)

The projection of a single complex exponential vector
ep = [e2π jνpM0 , . . . , e2π jνp(M0+M−1)]T onto the basis functions
v(d)(W , I) can be written as a function of the Doppler shift
νp, the band-limit regionW , and the index set I ,

γd
(
νp;W , I

) =
M0+M−1∑

m=M0

v(d)m (W , I)e2π jmνp . (16)

Since h can be written as

h =
P−1∑

p=0
ηpep, (17)

the basis coefficients α (14) can be calculated by

α =
P−1∑

p=0
ηpVHep =

P−1∑

p=0
ηpγp, (18)

where γp = [γ0(νp;W , I), . . . , γD−1(νp;W , I)]T denote the
basis coefficients for a single MPC.

To calculate the basis coefficients γd(νp;W , I), we take
advantage of the DPS wave functions Ud( f ;W , I). For the
special case W0 = 0 and M0 = 0 the DPS wave functions
are defined in [17]. For the more general case, the DPS wave
functions are defined as the eigenfunctions of

∫

W

sin
(
Mπ(ν− ν′)

)

sin
(
π(ν− ν′)

) Ud(ν′;W , I)dν

= λd(W , I)Ud(ν;W , I), ν ∈W.

(19)

They are normalized such that

∫

W

∣
∣Ud(ν;W , I)

∣
∣2dν = 1,

Ud
(
W0;W , I

) ≥ 0,
dUd(ν;W , I)

df

∣
∣
∣
∣

ν=W0

≥ 0,

d = 0, . . . ,D − 1.

(20)

The DPS wave functions are closely related to the DPS
sequences. It can be shown that the amplitude spectrum of
a DPS sequence limited to m ∈ I is a scaled version of the

associated DPS wave function (cf. [17, equation (26)])

Ud(ν;W , I) = εd
M0+M−1∑

m=M0

v(d)m (W , I)e− jπ(2M0+M−1−2m)ν,

(21)
where εd = 1 if d is even, and εd = j if d is odd.

Comparing (16) with (21) shows that the basis coeffi-
cients can be calculated according to

γd
(
νp;W , I

) = 1
εd

e jπ(2M0+M−1)νpUd
(
νp;W , I

)
. (22)

The following definition and theorem show thatUd(νp;W , I)

can be approximately calculated from v(d)m (W , I) by a simple
scaling and shifting operation [21].

Definition 3. Let v(d)m (W , I) be the DPS sequences with band-
limit region W = [W0 −Wmax,W0 + Wmax] and index set
I = {M0, . . . ,M0 +M − 1}. Further denote by λd(W , I) the
corresponding eigenvalues. For νp ∈W define the index mp

by

mp =
⌊(

1 +
νp −W0

Wmax

)
M

2

⌋

. (23)

Approximate DPS wave functions are defined as

Ũd
(
νp;W , I

)
:= ±e2π j(M0+M−1+mp)W0

√
λdM

2Wmax
v(d)mp

(W , I),

(24)

where the sign is taken such that the following normalization
holds:

Ũd
(
W0;W , I

) ≥ 0,
dŨd

(
νp;W , I

)

dνp

∣
∣
∣
∣

νp=W0

≥ 0,

d = 0, . . . ,D − 1.

(25)

Theorem 2. Let ψd(c, f ) be the prolate spheroidal wave func-
tions [22]. Let c > 0 be given and set

M =
⌊

c

πWmax

⌋

. (26)

IfWmax → 0,
√
WmaxŨd

(
Wmaxνp;W , I

)
∼ ψd

(
c, νp

)
,

√
WmaxUd

(
Wmaxνp;W , I

)
∼ ψd

(
c, νp

)
.

(27)

In other words, both the approximate DPS wave functions as
well as the DPS wave functions themselves converge to the pro-
late spheroidal wave functions.

Proof. For W0 = 0 and M0 = 0, that is, W ′ = [−Wmax,
Wmax] and I′ = {0, . . . ,M − 1} the proof is given in [17, Sec-
tion 2.6]. The general case follows by using the two identities

v(d)m (W , I) = e2π j(m+M0)W0v(d)m+M0
(W ′, I′),

Ud(ν,W , I) = eπ j(2M0+M−1)(ν−W0)Ud
(
ν−W0;W ′, I′

)
.
(28)
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Theorem 2 suggests that the approximate DPS wave
functions can be used as an approximation to the DPS wave
functions. Therefore, the basis coefficients (22) can be calcu-
lated approximately by

γ̃d
(
νp;W , I

)
:= 1
εd

e jπ(2M0+M−1)νp Ũd
(
νp;W , I

)
. (29)

The theorem does not indicate the quality of the approx-
imation. It can only be deduced that the approximation im-
proves as the bandwidth Wmax decreases, while the number
of samples M = �c/πWmax� increases. This fact is exploited
in the following definition.

Definition 4. Let h be a vector obtained by index limiting a
band-limited process of the form (2) with band-limit W =
[W0 −Wmax,W0 +Wmax] to the index set I = {M0, . . . ,M0 +
M−1}. For a positive integer r—the resolution factor—define

Ir =
{
M0,M0 + 1, . . . ,M0 + rM − 1

}
,

Wr =
[

W0 − Wmax

r
,W0 +

Wmax

r

]

.
(30)

The approximate DPS subspace representation with dimen-
sion D and resolution factor r is given by

h̃D,r = Vα̃r (31)

whose approximate basis coefficients are

α̃rd =
P−1∑

p=0
ηpγ̃d

(
νp

r
,Wr , Ir

)

. (32)

Note that the DPS sequences are required in a higher res-
olution only for the calculation of the approximate basis co-

efficients. The resulting h̃D,r has the same sample rate for any
choice of r.

3.2. Bias of the subspace representation

In this subsection, the square bias of the subspace represen-
tation

bias2
ĥD
= E

{
1
M

∥
∥h− ĥD

∥
∥2
}

(33)

and the square bias of the approximate subspace representa-
tion

bias2
h̃D,r

= E
{
1
M

∥
∥h− h̃D,r

∥
∥2
}

(34)

are analyzed.
For ease of notation, we assume again thatW = [−νDmax,

νDmax], that is, we set W0 = 0 and Wmax = νDmax. However,
the results also hold for the general case (15). If the Doppler
shifts νp, p = 0, . . . ,P − 1, are distributed independently and

uniformly on W , the DPS subspace representation ĥ coin-
cides with the Karhunen-Loève transform of h [23] and it
can be shown that

bias2
ĥD
= 1

MνDmax

M−1∑

d=D
λd(W , I). (35)

Table 1: Simulation parameters for the numerical experiments in
the time domain. The carrier frequency and the sample rate resem-
ble those of a UMTS system [24]. The block length is chosen to be
as long as a UMTS frame.

Parameter Value

Carrier frequency fc 2GHz

Sample rate 1/TS 3.84MHz

Block lengthM 2560 samples

Mobile velocity vmax 100 km/h

Maximum norm. Doppler νDmax 4.82× 10−5

If the Doppler shifts νp, p = 0, . . . ,P − 1, are not distributed
uniformly, (35) can still be used as an approximation for the
square bias [21].

For the square bias of the approximate DPS subspace rep-
resentation h̃D,r , no analytical results are available. However,
for the minimum achievable square bias, we conjecture that

bias2min,r = min
D

bias2
h̃D,r

≈
(
2νDmax

r

)2
. (36)

This conjecture is substantiated by numerical Monte-
Carlo simulations using the parameters from Table 1. The
Doppler shifts νp, p = 0, . . . ,P − 1, are distributed inde-
pendently and uniformly onW . The results are illustrated in
Figure 5. It can be seen that the square bias of the subspace
representation bias2

ĥD
decays with the subspace dimension.

For D ≥ �2MνDmax� + 1 = 2 this decay is even exponen-
tial. These two properties can also be seen directly from (35)
and the exponential decay of the eigenvalues λd(W , I). The
square bias bias2

h̃D,r
of the approximate subspace representa-

tion is similar to bias2
ĥD

up to a certain subspace dimension.
Thereafter, the square bias of the approximate subspace rep-
resentation levels out at bias2min,r ≈ (2νDmax/r)2. Increasing
the resolution factor pushes the levels further down.

Let the maximal allowable square error of the simulation
be denoted by E2

max. Then, the approximate subspace repre-
sentation can be used without loss of accuracy if D and r are
chosen such that

bias2
h̃D,r

!≤ E2
max. (37)

Good approximations for D and r can be found by

D = argmin
D

bias2
ĥD
≤ E2

max, r = argmin
r

bias2min,r ≤ E2
max.

(38)

The first expression can be computed using (35). Using con-
jecture (36), the latter evaluates to

r =
⌊
2νDmax

Emax

⌋

. (39)

Using a 14-bit fixed-point processor, the maximum
achievable accuracy is E2

max = (2−13)2 ≈ 1.5 × 10−8. For
the example of Figure 5, where the maximum Doppler shift
νDmax = 4.82 × 10−5 and the number of samples M = 2560,
the choice D = 4 and r = 2 makes the simulation as accurate
as possible on this hardware. Depending on the application,
a lower accuracy might also be sufficient.
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Figure 5: bias2ĥD (denoted by “bias”), bias2h̃D,r (denoted by “bias

apx”), and bias2min,r (denoted by “bias apx min”) for νDmax = 4.82×
10−5 andM = 2560. The factor r denotes the resolution factor.

3.3. Complexity andmemory requirements

In this subsection, the computational complexity of the ap-
proximate subspace representation (31) is compared to the
SoCE algorithm (2). The complexity is expressed in num-
ber of complex multiplications (CM) and evaluations of the
complex exponential (CE). Additionally, we compare the
number of memory access (MA) operations, which gives a
better complexity comparison than the actual memory re-
quirements.

We assume that all complex numbers are represented us-
ing their real and imaginary part. A CM thus requires four
multiplication and two addition operations. As a reference
for a CE we use a table look-up implementation with lin-
ear interpolation for values between table elements [2]. This
implementation needs six addition, four multiplication, and
two memory access operations.

Let the number of operations that are needed to evaluate
h and h̃ be denoted by Ch and Ch̃, respectively. Using the
SoCE algorithm, for everym ∈ I = {M0, . . . ,M0+M−1} and
every p = 0, . . . ,P − 1, a CE and a CM have to be evaluated,
that is,

Ch =MP CE +MP CM. (40)

For the approximate DPS subspace representation with
dimension D, first the approximate basis coefficients α̃ have
to be evaluated, requiring

Cα̃ = DP(CE + 2 CM+ MA) +DP CM (41)
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Figure 6: Complexity in terms of number of arithmetic operations
(left abscissa) and memory access operations (right abscissa) versus
the number of MPCs P. We show results for the sum of complex
exponentials algorithm (denoted by “SoCE”) and the approximate
subspace representation (denoted by “DPSS”) using M = 2560,
νDmax = 4.82× 10−5, and D = 4.

operations where the first term accounts for (29) and the sec-
ond term for (32). In total, for the evaluation of the approxi-
mate subspace representation (31),

Ch̃ =MD(CM +MA) + Cα̃ (42)

operations are required. For large P, the approximate DPS
subspace representation reduces the number of arithmetic
operations compared to the SoCE algorithm by

Ch

Ch̃

−→ M(CE + CM)
D(CE + 3 CM)

. (43)

The memory requirements of the DPS subspace repre-
sentation are determined by the block length M, the sub-
space dimension D and the resolution factor r. If the DPS
sequences are stored with 16-bit precision,

Memh̃ = 2rMD byte (44)

are needed.
In Figure 6, Ch and Ch̃ are plotted over the number of

paths P for the parameters given in Table 1. Multiplications
and additions are counted as one operation. Memory access
operations are counted separately. The subspace dimension
is chosen to beD = 4 according to the observations of the last
subsection. The memory requirements for the DPS subspace
representation are Memh̃ = 80 kbyte.

It can be seen that the complexity of the approximate
DPS subspace representation in terms of number of arith-
metic operations as well as memory access operations in-
creases with slope D, while the complexity of the SoCE al-
gorithm increases with slope M. Since in the given example
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Figure 7: Multipath propagation model for a time-variant wide-
band MIMO radio channel. The signals sent from the transmitter,
moving at speed v, arrive at the receiver. Each path p has complex
weight ηp, time delay τp, Doppler shift ωp, angle of departure ϕp,
and angle of arrival ψp.

D  M, the approximate DPS subspace representation al-
ready enables a complexity reduction bymore than one order
of magnitude compared to the SoCE algorithm for P = 30
paths. Asymptotically, the number of arithmetic operations
can be reduced by a factor of Ch/Ch̃ → 465.

4. WIDEBANDMIMO CHANNEL SIMULATION

4.1. ThewidebandMIMOgeometry-based
channel model

The time-variant GCM described in Section 2.1 can be ex-
tended to describe time-variant wideband MIMO channels.
For simplicity we assume uniform linear arrays (ULA) with
omnidirectional antennas. Then the channel can be de-
scribed by the time-variant wideband MIMO channel trans-
fer function h(t, f , x, y), where t denotes time, f denotes fre-
quency, x the position of the transmit antenna on the ULA,
y the position of the receive antenna on the ULA [25].

The GCM assumes that h(t, f , x, y) can be written as a
superposition of P MPCs,

h(t, f , x, y) =
P−1∑

p=0
ηpe

2π jωpte−2π jτp f e2π j/λ sinϕpxe−2π j/λ sinψp y ,

(45)

where every MPC is characterized by its complex weight ηp,
its Doppler shift ωp, its delay τp, its angle of departure (AoD)
ϕp, and its AoA ψp (see Figure 7) and λ is the wavelength.
More sophisticatedmodels may also include parameters such
as elevation angle, antenna patterns, and polarization.

There exist many models for how to obtain the param-
eters of the MPCs. They can be categorized as determinis-
tic, geometry-based stochastic, and nongeometrical stochastic
models [26]. The number of MPCs required depends on the
scenario modeled, the system bandwidth, and the number of
antennas used. In this paper, we choose the number of MPCs
such that the channel is Rayleigh fading, except for the line-
of-sight component.

For narrowband frequency-flat systems, approximately
P0 = 40 MPCs are needed to achieve a Rayleigh fading statis-

tics [13]. If the channel bandwidth is increased, the number
of resolvable MPCs increases also. The ITU channel models
[27], which are used for bandwidths up to 5MHz in UMTS
systems, specify a power delay profile with up to six delay
bins. The I-METRA channel models for the IEEE 802.11n
wireless LAN standard [28] are valid for up to 40MHz and
specify a power delay profile with up to 18 delay bins. This
requires a total number of MPCs of up to P1 = 18P0 = 720.
Diffuse scattering can also be modeled using a GCM by in-
creasing the number of MPCs. In theory, diffuse scattering
results from the superposition of an infinite number ofMPCs
[29]. However, good approximations can be achieved by us-
ing a large but finite number of MPCs [30, 31]. In MIMO
channels, the number of MPCs multiplies by NTxNRx, since
every antenna sees every scatterer from a different AoA and
AoD, respectively. For a 4 × 4 system, the total number of
MPCs can thus reach up to P = 16P1 = 1.2× 104.

We now show that the sampled time-variant wideband
MIMO channel transfer function is band-limited in time,
frequency, and space. Let FS denote the width of a fre-
quency bin and DS the distance between antennas. The sam-
pled channel transfer function can be described as a four-
dimensional sequence hm,q,r,s = h(mTS, qFS, rDS, sDS), where
m denotes discrete time, q denotes discrete frequency, s de-
notes the index of the transmit antenna, and r denotes the
index of the receive antenna.1 Further, let νp = ωpTS denote
the normalized Doppler shift, θp = τpFS the normalized de-
lay, ζp = sin(ϕp)DS/λ and ξp = sin(ψp)DS/λ the normalized
angles of departure and arrival, respectively. If all these in-
dices are collected in the vectors

m = [m, q, s, r]T ,

fp =
[
νp,−θp, ζp,−ξp

]T
,

(46)

hm can be written as

hm =
P−1∑

p=0
ηpe

j2π〈fp ,m〉, (47)

that is, the multidimensional form of (2).
The band-limitation of hm in time, frequency, and space

is defined by the following physical parameters of the chan-
nel.

(1) The maximum normalized Doppler shift of the chan-
nel νDmax defines the band-limitation in the time do-
main. It is determined by the maximum speed of the
user vmax, the carrier frequency fC , the speed of light c,
and the sampling rate 1/TS, that is,

νDmax = vmax fC
c

TS. (48)

1 In the literature, the time-variant wideband MIMO channel is often rep-
resented by the matrix H(m, q), whose elements are related to the sam-
pled time-variant wideband MIMO channel transfer function hm,q,r,s by
Hr,s(m, q) = hm,q,r,s.
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(2) The maximum normalized delay of the scenario θmax

defines the band-limitation in the frequency domain.
It is determined by the maximum delay τmax and the
sample rate 1/FS in frequency

θmax = τmaxFS. (49)

(3) The minimum and maximum normalized AoA, ξmin

and ξmax define the band-limitation in the spatial do-
main at the receiver. They are given by the minimum
and maximum AoA, ψmin and ψmax, the spatial sam-
pling distance DS and the wavelength λ:

ξmin = sin
(
ψmin

)DS

λ
, ξmax = sin

(
ψmax

)DS

λ
. (50)

The band-limitation at the transmitter is given simi-
larly by the normalized minimum and maximum nor-
malized AoD, ζmin and ζmax.

In summary it can be seen that hm is band-limited to

W = [−νDmax, νDmax
]× [0, θmax

]

× [ζmin, ζmax
]× [ξmin, ξmax

]
.

(51)

Thus the discrete time Fourier transform (DTFT)

H(f) =
∑

m∈ZN

hme
−2π j〈f ,m〉, f ∈ CN , (52)

vanishes outside the regionW , that is,

H(f) = 0, f /∈W. (53)

4.2. Multidimensional DPS sequences

The fact that hm is band-limited allows one to extend the con-
cepts of the DPS subspace representation also to time-variant
widebandMIMO channels. Therefore, a generalization of the
one-dimensional DPS sequences to multiple dimensions is
required.

Definition 5. Let I ⊂ ZN be an N-dimensional finite index
set with L = |I| elements, and W ⊂ (−1/2, 1/2)N an N-
dimensional band-limiting region. Multidimensional discrete

prolate spheroidal (DPS) sequences v(d)m (W , I) are defined as
the solutions of the eigenvalue problem

∑

m′∈I
v(d)m′ (W , I)K (W)(m′ −m) = λd(W , I)v(d)m (W , I),

m ∈ ZN ,
(54)

where

K (W)(m′ −m) =
∫

W
e2π j〈f

′′,m′−m〉df ′′. (55)

They are sorted such that their eigenvalues λd(W , I) are in
descending order

λ0(W , I) > λ1(W , I) > · · · > λL−1(W , I). (56)

To ease notation, we drop the explicit dependence of

v(d)m (W , I) on W and I when it is clear from the con-
text. Further, we define the multidimensional DPS vector
v(d)(W , I) ∈ CL as the multidimensional DPS sequence

v(d)m (W , I) index-limited to I . In particular, if every element
m ∈ I is indexed lexicographically, such that I = {ml, l =
0, 1, . . . ,L− 1}, then

v(d)(W , I) = [v(d)m0
(W , I), . . . , v(d)mL−1 (W , I)

]T
. (57)

All the properties of Theorem 1 also apply to multidi-
mensional DPS sequences [19]. The only difference is that
m has to be replaced withm and Z with ZN .

Example 1. In the two-dimensional case N = 2 with band-
limiting regionW and index set I given by

W = [− νDmax, νDmax
]× [0, θmax

]
,

I = {0, . . . ,M − 1} ×
{

−
⌊
Q

2

⌋

, . . . ,
⌊
Q

2

⌋

− 1
}

.
(58)

Equation (54) reduces to

M−1∑

n=0

�Q/2�−1∑

p=−�Q/2�

sin
(
2πνDmax(m− n)

)

π(n−m)
e2πi(p−q)θmax − 1
2πi(p − q)

v(d)n,p

= λdv
(d)
m,q.

(59)

Note that due to the nonsymmetric band-limiting regionW ,
the solutions of (59) can take complex values. Examples of
two-dimensional DPS sequences and their eigenvalues are
given in Figures 8 and 9, respectively. They have been cal-
culated using the methods described in Appendix A.

4.3. Multidimensional DPS subspace representation

We assume that for hardware implementation, hm is calcu-
lated blockwise for M samples in time, Q bins in frequency,
NTx transmit antennas, and NRx receive antennas. Accord-
ingly, the index set is defined by

I = {0, . . . ,M − 1} ×
{

−
⌊
Q

2

⌋

, . . . ,
⌊
Q

2

⌋

− 1
}

× {0, . . . ,NTx − 1
}× {0, . . . ,NRx − 1

}
.

(60)

The DPS subspace representation can easily be extended
to multiple dimensions. Let h be the vector obtained by in-
dex limiting the sequence hm (47) to the index set I (60)
and sorting the elements lexicographically. In analogy to the
one-dimensional case, the subspace spanned by {h} is also
spanned by the multidimensional DPS vectors v(d)(W , I) de-
fined in Section 4.2. Due to the common notation of one-
and multidimensional sequences and vectors, the multidi-
mensional DPS subspace representation of h can be defined
similarly to Definition 2.
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Figure 8: The real part of the first four two-dimensional DPS se-
quences v(d)m,q, d = 0, . . . , 3 for M = Q = 25, MνDmax = 2, and
Qθmax = 5.
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Figure 9: First 100 eigenvalues λd , d = 0, . . . , 99, of two-
dimensional DPS sequences for M = Q = 25, MνDmax = 2, and
Qθmax = 5. The eigenvalues are clustered around 1 for d ≤ D′ − 1,
and decay exponentially for d ≥ D′, where the essential dimension
of the signal subspace D′ = �|W||I|� + 1 = 41.

Definition 6. Let h be a vector obtained by index limiting
a multidimensional band-limited process of the form (47)
with band-limit W to the index set I . Let v(d)(W , I) be
the multidimensional DPS vectors for the multidimensional
band-limit region W and the multidimensional index set I .
Further, collect the first D DPS vectors v(d)(W , I) in the ma-
trix

V = [v(0)(W , I), . . . , v(D−1)(W , I)
]
. (61)

The multidimensional DPS subspace representation of h with
subspace dimension D is defined as

ĥD = Vα, (62)

where α is the projection of the vector h onto the columns of
V:

α = VHh. (63)

The subspace dimension D has to be chosen such that
the bias of the subspace representation is small compared to
the machine precision of the underlying simulation hard-
ware. The following theorem shows how the multidimen-
sional projection (63) can be reduced to a series of one-
dimensional projections.

Theorem 3. Let ĥD be the N-dimensional DPS subspace rep-
resentation of h with subspace dimension D, band-limiting re-
gionW , and index set I . IfW and I can be written as Cartesian
products

W =W0 × · · · ×WN−1, (64)

I = I0 × · · · × IN−1, (65)
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where Wi = [W0,i − Wmax,i,W0,i + Wmax,i], and Ii =
{M0,i, . . . ,M0,i + Mi − 1}, then for every d = 0, . . . ,D − 1,
there exist d0, . . . ,dN−1 such that theN-dimensional DPS basis
vectors v(d)(W , I) can be written as

v(d)(W , I) = v(d0)
(
W0, I0

)⊗ · · · ⊗ v(dN−1)
(
WN−1, IN−1

)
.
(66)

Further, the basis coefficients of the approximate DPS subspace
representation

h̃D = Vα̃ (67)

are given by

α̃ =
P−1∑

p=0
ηp

(
γ̃
(0)
p ⊗ · · · ⊗ γ̃

(N−1)
p

)
, (68)

where γ̃(i)p,d = γ̃di( fp,i,Wi, Ii) are the one-dimensional approxi-
mate basis coefficients defined in (29). Additionally, resolution
factors ri can be used to improve the approximation.

Proof. See Appendix B

The band-limiting region W (51) and the index set I
(60) of the channel model (47) fulfill the prerequisites of
Theorem 3 with

W0,0 = 0, Wmax,0 = νDmax, M0,0 = 0, M0 =M,

W0,1 =Wmax,1 = θmax

2
, M0,1 = −

⌊
Q

2

⌋

, M1 = Q,

W0,2 = ζmax + ζmin

2
, Wmax,2 = ζmax − ζmin

2
,

M0,2 = 0, M2 = NTx,

W0,3 = ξmax + ξmin

2
, Wmax,3 = ξmax − ξmin

2
,

M0,3 = 0, M3 = NRx.
(69)

Thus, Theorem 3 allows us to use the methods of Section 3.1
to calculate the basis coefficients of the multidimensional
DPS subspace representation approximately with low com-
plexity. The resolution factors ri, i = 0, . . . ,N − 1, have
to be chosen such that the bias of the subspace representa-
tion is small compared to the machine precision Emax of the
underlying simulation hardware. A necessary but not suffi-
cient condition for this is to use the methods of Section 3.2
for each dimension independently, that is, to choose ri =
2Wmax,i/Emax. However, it has to be verified numerically that
the multidimensional DPS subspace representation achieves
the required numerical accuracy.

4.4. Complexity andmemory requirements

In this subsection, we evaluate the complexity and memory
requirements of the N-dimensional SoCE algorithm and the
N-dimensional approximate DPS subspace representation,

given by Theorem 3. These results are a generalization of the
results of Section 3.3. We assume that the one-dimensional
DPS sequences v(di)(Wi, Ii), i = 0, . . . ,N − 1, have been pre-
calculated. Further, we assume that D = D0 · · ·DN−1, where
Di = max di is the maximum number of one-dimensional
DPS vectors in dimension i needed to construct the N-
dimensional vectors v(d)(W , I), d = 0, . . . ,D − 1.

Let the number of operations that are needed to evaluate
h (47) and h̃D (67) be denoted by Ch and Ch̃D , respectively.
For the SoCE algorithm,

Ch = |I|P(CE + CM). (70)

For the approximate DPS subspace representation with
dimension D, firstly the N-dimensional DPS basis vectors
need to be calculated from the one-dimensional DPS vectors
(cf. (66)), requiring

CV = (N − 1)|I|D CM. (71)

Secondly, the approximate basis coefficients α̃ have to be
evaluated according to (68), requiring

Cα̃ =
( N−1∑

i=0

∣
∣Di

∣
∣(CE + CM+MA) +ND CM

)

P. (72)

In total, for the evaluation of the approximate subspace rep-
resentation (67),

Ch̃D = |I|D(CM +MA) + CV + Cα̃ (73)

operations are required.
Asymptotically for P → ∞, the N-dimensional DPS sub-

space representation reduces the number of arithmetic oper-
ations compared to the SoCE algorithm by the factor

Ch

Ch̃

−→ |I|(CE + CM)
∑N−1

i=0 Di(CE + CM) +ND CM
. (74)

The memory requirements of the DPS subspace repre-
sentation are determined by the size of the index set I , the
number of DPS vectors Di, and the resolution factors ri. If
the DPS sequences are stored with 16-bit precision,

Memh̃ =
N−1∑

i=0
2ri
∣
∣Ii
∣
∣Di byte (75)

are needed.

4.5. Numerical examples

Section 3 demonstrated that an application of the approx-
imate DPS subspace representation to the time-domain of
wireless channels may save more than an order of magnitude
in complexity. In this subsection, the multidimensional ap-
proximate DPS subspace representation is applied to an ex-
ample of a time-variant frequency-selective channel as well
as an example of a time-variant frequency-selective MIMO
channel. A comparison of the arithmetic complexity is given.
We assume a 14-bit fixed-point hardware architecture, that
is, a maximum allowable square error of E2

max = (2−13)2 ≈
1.5× 10−8.
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Table 2: Simulation parameters for the numerical experiments in
the frequency domain.

Parameter Value

Width of frequency bin FS 15 kHz

Number of frequency bins Q 256

Maximum delay τmax 3.7 μs

Maximum norm. delay θmax ≈ 1/18

4.5.1. Time and frequency domain

Table 2 contains the simulation parameters of the numerical
experiments in the frequency domain. The parameters in the
time domain are chosen according to Table 1. We assume a
typical urban environment with a maximum delay spread of
τmax = 3.7 milliseconds given by the ITU Pedestrian B chan-
nel model [27].

By omitting the spatial domains x and y in (47), we ob-
tain a time-variant frequency-selective GCM

hm′ =
P−1∑

p=0
ηpe

j2π〈f′p ,m′〉, (76)

where m′ = [m, q]T and f ′p = [νp, θp]T . Since (76) is band-
limited to

W ′ = [−νDmax, νDmax
]× [0, θmax

]
(77)

and we wish to calculate (76) in the index set

I′ = {0, . . . ,M − 1} ×
{

−
⌊
Q

2

⌋

, . . . ,
⌊
Q

2

⌋

− 1
}

, (78)

we can apply a two-dimensional DPS subspace representa-
tion (Definition 6) to (76). Further, we can use Theorem 3 to
calculate the basis coefficients α of the subspace representa-
tion.

For a given maximum allowable square bias E2
max =

(2−13)2, the estimated values of the resolution factors in the
time and frequency domain are r0 = 2νDmax/Emax ≈ 2 and
r1 = θmax/Emax ≈ 512 (rounded to the next power of two).
The square bias

bias2
h̃D
= E

{
1

MQ

∥
∥h̃D − hD

∥
∥2
}

(79)

of the two-dimensional exact and the approximate DPS sub-
space representation is plotted in Figure 10 against the sub-
space dimension D. It can be seen that bias2

h̃D
≈ E2

max at a
subspace dimension of approximately D = 80. The maxi-
mum number of one-dimensional DPS vectors isD0 = 4 and
D1 = 23.

4.5.2. Time, frequency, and spatial domain

Table 3 contains the simulation parameters of the numerical
experiments in the spatial domain. The remaining parame-
ters are chosen according to Tables 1 and 2. We assume uni-
form linear arrays at the transmitter and the receiver with
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Figure 10: bias2h̃D for the subspace representation in the time and
frequency domain with νDmax = 4.82 × 10−5, M = 2560, θmax =
0.056, and Q = 256. The resolution factors are fixed to r0 = 2 and
r1 = 512. The thin horizontal line denotes the numerical accuracy
of a fixed-point 14-bit processor.

Table 3: Simulation parameters for the numerical experiments in
the spatial domains.

Parameter Value

Spacing between antennas DS λ/2m

Number of Tx antennas NTx 8

Number of Rx antennas NRx 8

AoD interval [ϕmin,ϕmax] [−5◦, 5◦]
AoA interval [ψmin,ψmax] [−5◦, 5◦]
Normalized AoD bandwidth ζmax − ζmin 0.087

Normalized AoA bandwidth ξmax − ξmin 0.087

spacing DS = λ/2 and NTx = NRx = 8 antennas each. Fur-
ther we assume that there is only one cluster of scatterers in
the scenario which is not in the vicinity of the transmitter
or receiver (see Figure 11) and we assume no line-of-sight
component. The AoD and AoA are assumed to be limited by
[ϕmin,ϕmax] = [ψmin,ψmax] = [−5◦, 5◦], which has been ob-
served in measurements [32].

A four-dimensional DPS subspace representation is ap-
plied to the channel transfer function (47) withW and I de-
fined in (51) and (60). Following the same procedure as in
the previous subsection, for a numerical accuracy of 14 bits
the estimated values of the resolution factors and the num-
ber of one-dimensional DPS vectors in the spatial domains
are r2 = (ζmax − ζmin)/Emax ≈ 512, r3 = (ξmax − ξmin)/Emax ≈
512 (rounded to the next power of 2), and D2 = D3 = 5.

4.5.3. Hybrid DPS subspace representation

Last but not least, we propose a hybrid DPS subspace repre-
sentation that applies a DPS subspace representation in time
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Φ
Ψ

Figure 11: Scenario of a mobile radio channel with one cluster of
scatterers. The AoD and the AoA are limited within the intervals
Φ = [ϕmin,ϕmax] and Ψ = [ψmin,ψmax], respectively.

and frequency domains, and computes the complex expo-
nentials in the spatial domain directly. Therefore, the four-
dimensional channel transfer function hm (47) is split into
NTxNRx two-dimensional transfer functions hs,rm′ describing
the transfer function between transmit antenna s and receiver
antenna r;

hs,rm′ := hm′,s,r =
P−1∑

p=0
ηpe

− j2πζpse j2πξpr
︸ ︷︷ ︸

ηk,lp

e j2π〈f
′
p ,m

′〉

form′ ∈ I′, f ′p ∈W ′,

(80)

where the band-limit region W ′ and the index set I′ are
the same as in the two-dimensional case (cf. (77) and (78)).
Then, the two-dimensional DPS subspace representation can
be applied to each hs,rm′ , s = 0, . . . ,NTx − 1, r = 0, . . . ,NRx − 1,
independently.

4.5.4. Results and discussion

A complexity comparison of the SoCE algorithm and the ap-
proximate DPS subspace representation for one, two, and
four dimensions is given in Figure 12. It was evaluated us-
ing (70) and (73). Also shown is the complexity of the
four-dimensional hybrid DPS subspace representation. It can
be seen that for time-variant frequency-flat SISO channels,
the one-dimensional DPS subspace representation requires
fewer arithmetic operations for P > 2 MPCs. The more
MPCs are used in the GCM, the more complexity is saved.
Asymptotically, the number of arithmetic operations is re-
duced by Ch/Ch̃ → 465.

For time-variant frequency-selective SISO channels,
the two-dimensional DPS subspace representation requires
fewer arithmetic operations for P > 30 MPCs. However, as
noted in Section 4.1, channel models for systems with the
given parameters require P = 400 paths or more. For such
a scenario, the DPS subspace representation saves two orders
of magnitude in complexity. Asymptotically, the number of
arithmetic operations is reduced by a factor of Ch/Ch̃ →
6.8× 103 (cf. (74)). The memory requirements are Memh̃ =
5.83Mbyte (cf. (75)).

For time-variant frequency-selective MIMO channels,
the four-dimensional DPS subspace representation requires
fewer arithmetic operations for P > 2 × 103 MPCs. Since
MIMO channels require the simulation of up to 104 MPCs
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DPSS time
SoCE time
DPSS time + freq.
SoCE time + freq.

DPSS time + freq. + space
SoCE time + freq. + space
Hybrid

Figure 12: Complexity in terms of number of arithmetic opera-
tions versus the number of MPCs P. We show results for the SoCE
algorithm (denoted by “SoCE”) and the approximate DPS subspace
representation (denoted by “DPSS”) for one, two, and four dimen-
sions. Also shown is the complexity of the four-dimensional hybrid
DPS subspace representation (denoted by “Hybrid”).

(cf. Section 4.1), complexity savings are still possible. The
asymptotic complexity savings are Ch/Ch̃ → 1.9× 104. How-
ever, in the region P < 2 × 103 MPCs, the four-dimensional
DPS subspace representation requires more complex oper-
ations than the corresponding SoCE algorithm. Thus, even
though we choose a “best case” scenario with only one clus-
ter, a small angular spread and a low numerical accuracy,
there is hardly any additional complexity reduction if the
DPS subspace representation is applied in the spatial domain.

The hybrid DPS subspace representation on the other
hand exploits the savings of the DPS subspace representa-
tion in the time and frequency domain only. From Figure 12
it can be seen that it has fewer arithmetic operations than the
four-dimensional DPS subspace representation and the four-
dimensional SoCE algorithm for 60 < P < 2 × 103 MPCs.
Thus the hybridmethod is preferable for channel simulations
in this region. Further, this method also allows for an efficient
parallelization on hardware channel simulators [33].

5. CONCLUSIONS

We have presented a low-complexity algorithm for the com-
puter simulation of geometry-based MIMO channel mod-
els. The algorithm exploits the low-dimensional subspace
spanned by multidimensional DPS sequences. By adjusting
the dimension of the subspace, it is possible to trade compu-
tational complexity for accuracy. Thus the algorithm is ide-
ally suited for fixed-point hardware architectures with lim-
ited precision.
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We demonstrated that the complexity reduction depends
mainly on the normalized bandwidth of the underlying fad-
ing process in time, frequency, and space. If the bandwidth
is very small compared to the sampling rate, the essential
subspace dimension of the process is small and the com-
plexity can be reduced substantially. In the time domain, the
maximum Doppler bandwidth of the fading process is much
smaller than the system sampling rate. Compared with the
SoCE algorithm, our new algorithm reduces the complexity
by more than one order of magnitude on 14-bit hardware.

The bandwidth of a frequency-selective fading process
is given by the maximum delay in the channel, which is a
factor of five to ten smaller than the sampling rate in fre-
quency. Therefore, the DPS subspace representation also re-
duces the computational complexity when applied in the fre-
quency domain. To achieve a satisfactory numerical accuracy,
the resolution factor in the approximation of the basis coef-
ficients needs to be large, resulting in high memory require-
ments. On the other hand, it was shown that the number of
memory access operations is small. Since this figure has more
influence on the run-time of the algorithm, the approximate
DPS subspace representation is preferable over the SoCE al-
gorithm for a frequency-selective fading-process.

The bandwidth of the fading process in the spatial do-
main is determined by the angular spread of the channel,
which is almost as large as the spatial sampling rate for most
scenarios in wireless communications. Therefore, applying
the DPS subspace representation in the spatial domain does
not achieve any additional complexity reduction for the sce-
narios of interest. As a consequence, for the purpose of wide-
band MIMO channel simulation, we propose to use a hybrid
method which computes the complex exponentials in the
spatial domain directly and applies the subspace represen-
tation to the time and frequency domain only. This method
also allows for an efficient parallelization on hardware chan-
nel simulators.

APPENDICES

A. CALCULATIONOFMULTIDIMENSIONAL
DPS SEQUENCES

In the one-dimensional case (N = 1), where W = [W0 −
Wmax,W0 +Wmax] and I = {M0, . . . ,M0 +M − 1}, the DPS
sequences can be calculated efficiently [17, 20]. The efficient
and numerically stable calculation of multidimensional DPS
sequences with arbitrary W and I is not trivial and has not
been treated satisfactorily in the literature. In this section a
new way of calculating multidimensional DPS sequences is
derived if their passband region can be written as a Cartesian
product of one-dimensional intervals.

Indexing every element m ∈ I lexicographically, such
that I = {ml, l = 0, 1, . . . ,L − 1}, we define the matrix K(W)

by

K (W)
k,l = K (W)(mk −ml

)
, k, l = 0, . . . ,L− 1, (A.1)

where the kernel K (W) is given by (55). Let v(d)(W , I) and
λd(W , I), d = 0, . . . ,L−1, denote the eigenvectors and eigen-
values of K(W):

K(W)v(d)(W , I) = λd(W , I)v(d)(W , I), (A.2)

where

λ0(W , I) ≥ λ1(W , I) ≥ · · · ≥ λL−1(W , I). (A.3)

It can be shown that the eigenvectors v(d)(W , I) and the
eigenvalues λd(W , I) are exactly the multidimensional DPS
vectors defined in (57) and their corresponding eigenvalues.
If the DPS sequences are required for m /∈ I , they can be
extended using (54).

The multidimensional DPS vectors can theoretically be
calculated for an arbitrary passband region W directly from
the eigenproblem (A.2). However, since the matrix K(W)

has an exponentially decaying eigenvalue distribution, this
method is numerically unstable.

If W can be written as a Cartesian product of one-
dimensional intervals (i.e.,W is a hyper-cube),

W =W0 × · · · ×WN−1, (A.4)

whereWi = [W0,i −Wmax,i,W0,i +Wmax,i], and the index-set
I is written as

I = I0 × · · · × IN−1, (A.5)

where Ii = {M0,i, . . . ,M0,i+Mi−1}, the defining kernel K (W)

for the multidimensional DPS vectors evaluates to

K (W)(u) =
∫W0,i+Wmax,i

W0,i−Wmax,i

· · ·
∫W0,N−1+Wmax,N−1

W0,N−1−Wmax,N−1
e2π j f

′′
0 u0

· · · e2π j f ′′N−1uN−1df ′′0 · · ·df ′′N−1

=
N−1∏

i=0
K (Wi)

(
ui
)
,

(A.6)

where u = [u0, . . . ,uN−1]T ∈ I . This means that the kernel
K (W) is separable and thus the matrix K(W) can be written as
a Kronecker product

K(W) = K(W0) ⊗ · · · ⊗K(WN−1), (A.7)

where K(Wi), i = 0, . . . ,N − 1, are the kernel matrices cor-
responding to the one-dimensional DPS vectors. Now let
λdi(Wi, Ii) and v(di)(Wi, Ii), di = 0, . . . ,Mi − 1, denote the
eigenvalues and the eigenvectors of K(Wi), i = 0, . . . ,N − 1,
respectively. Then the eigenvalues of K(W) are given by [34,
Chapter 9]

λd(W , I) = λd0
(
W0, I0

) · · · λdN−1
(
WN−1, IN−1

)
,

di = 0, . . . ,Mi − 1, i = 0, . . . ,N − 1
(A.8)
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and the corresponding eigenvectors are given by

v(d)(W , I) = v(d0)
(
W0, I0

)⊗ · · · ⊗ v(dN−1)
(
WN−1, IN−1

)
,

di = 0, . . . ,Mi − 1, i = 0, . . . ,N − 1.
(A.9)

The eigenvalues λd(W , I) and the eigenvectors v(d)(W , I)
are index by d = [d0, . . . ,dN−1]T ∈ I . The multidimen-
sional DPS vectors v(d)(W , I) are obtained by reordering the
eigenvectors v(d)(W , I) and eigenvalues λd(W , I) according
to (A.3). Therefore, we define the mapping d = σ(d), such
that λd(W , I) = λσ(d)(W , I) is the dth largest eigenvalue. Fur-
ther define the inverse mapping d = δ(d) = σ−1(d), such
that for a given order d of the multidimensional DPS vec-
tor v(d)(W , I), the corresponding one-dimensional DPS vec-
tors can be found. When a certain multidimensional DPS
sequence of a given order d is needed, the eigenvalues λd,
d = 0, . . . ,L − 1, have to be calculated and sorted first.
Then the one-dimensional DPS sequences corresponding to
d = δ(d) can be selected.

B. PROOF OF THEOREM 3

For I given by (65), h can be written as

h =
P−1∑

p=0
ηp

(
e(0)p ⊗ · · · ⊗ e(N−1)p

)
, (B.1)

where e(i)p = [e2π j fp,iM0,i , . . . , e2π j fp,i(M0,i+Mi−1)]T . Further, since
W is given by (64), the results of Appendix A can be used and
V can be written as

V = V0 � · · · �VN−1, (B.2)

where everyMi×Di matrix Vi contains the one-dimensional
DPS vectors vd(Wi, Ii) in its columns.

Using the identity

(
A0 � · · · � AN−1

)(
b0 ⊗ · · · ⊗ bN−1

)

= A0b0 ⊗ · · · ⊗ AN−1bN−1,
(B.3)

the basis coefficients α can be calculated by

α = VHh =
P−1∑

p=0
ηp

(
VH
0 � · · · �VH

N−1
)(

e(0)p ⊗ · · · ⊗ e(N−1)p

)

=
P−1∑

p=0
ηp

(
VH
0 e

(0)
p

︸ ︷︷ ︸

=:γ(0)p

⊗· · · ⊗VH
N−1e

(N−1)
p

︸ ︷︷ ︸

=:γ(N−1)p

)
.

(B.4)

C. LIST OF SYMBOLS

t, f , x, y: Time, frequency, antenna location
at transmitter, and antenna location
at receiver

h(t, f , x, y): Channel transfer function
TS, FS, DS: Duration of a sample, width of a

frequency bin, and spacing
between antennas

m, q, s, r: Discrete time index, frequency index,
antenna index at transmitter, antenna
index at receiver

hm,q,r,s: Sampled channel transfer function
M, Q: Number of samples in

time and frequency
NTx, NRx: Number of transmit antennas,

number of receive antennas
h: Vector of index-limited

transfer function
P: Number of MPCs
ηp: Complex path weight

ωp, νp: Doppler shift and normalized Doppler
shift of the pth MPC

ωDmax, νDmax: Maximum Doppler shift, maximum
normalized Doppler shift

τp, θp: Delay and normalized delay
of the pth MPC

τmax, θmax: Maximum delay, maximum
normalized delay

ϕp, ζp: AoD and normalized AoD of
the pth MPC

ϕmax, ϕmin: Maximum and minimum AoD
ζmax, ζmin: Maximum and minimum

normalized AoD

ψp, ξp: AoA and normalized AoA of
the pth MPC

ψmax, ψmin: Maximum and minimum AoD
ξmax, ξmin: Maximum and minimum

normalized AoD
fC , c: Carrier frequency, speed of light
vmax: Maximum velocity of user
W : Band-limiting region
I : Index set
v(d)m (W , I): dth one-dimensional DPS sequence
v(d)m (W , I): dth multidimensional DPS sequence
v(d)(W , I): One-dimensional or

multidimensional DPS vector

λd(W , I): Eigenvalue of dth DPS sequence
D, D′: Subspace dimension and essential

subspace dimension
Ud(ν), Ũd(ν): DPS wave function and approximate

DPS wave function
αd, α̃d: dth basis coefficient and

approximate basis coefficient of DPS
subspace representation of h
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γp,d, γ̃p,d: dth basis coefficient and approximate
basis coefficient of DPS subspace
representation of the pth MPC

ri, Di: Resolution factor and maximum
number of one-dimensional DPS
vectors in time (i = 0), frequency
(i = 1), space at the transmitter
(i = 2), and space at the receiver
(i = 3)

E2
max: Maximum squared

accuracy of hardware
bias2

ĥD
: Squared bias of theD-dimensional

subspace representation of h
CĥD : Computational complexity of

the D-dimensional subspace
representation of h
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