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Copyright © 2007 Peter Händel. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

The human speech generates complex acoustic waves that
sometimes are aimed at a nearby listener, and sometimes
are aimed for being transmitted by technical systems such
as radio broadcasting, fixed or wireless telephony, or services
based on the Internet Protocol. A fundamental feature of dig-
ital transmission schemes is that the recorded speech samples
are coded (compressed) in order to loosen the bandwidth re-
quirement of the transmission channel. The compression, or
speech coding, is typically model-based and optimized for
compression of speech signals. Since the encoder is designed
for speech, it is not suitable for compression of other sources
such as environmental noise or music. Accordingly, reduc-
tion of noise from received noise-contaminated speech sam-
ples is a problem of great importance.

Digital noise reduction schemes are considered in several
cellular systems. Early work includes the scheme employing
a Kalman filter standardized for the pacific digital cellular
system [1]. In the enhanced variable rate codec (EVRC) for
CDMAmobile telephony systems, a frequency-domain noise
reduction system is included [2]. In these telephony applica-
tions, it is important that the algorithms produce enhanced
speech with marginal distortion.

Based on experimental studies and listener tests, several
research groups have independently reported improvement
in signal-to-noise ratio (SNR) of order 10 dB, without intro-
ducing audible artifacts and distortion. Yang reported 9 dB

SNR improvement for a frequency-domain noise reduction
algorithm [3], Gibson et al. reported figures near 7 dB [4],
while Sörqvist et al. reported a figure of 10 dB [5]. The latter
methods employ time-domain Kalman filters. One should
notice the different SNR measures and speech material used
in the cited works, and thus a direct comparison of SNR fig-
ures is not suitable.

Theoretical limits for speech enhancement were stud-
ied in [6], where it was shown that typical spectral subtrac-
tion methods are able to reduce the background noise by
10–20 dB during speech pauses. In [7], it was argued that
10 dB noise reduction can be achieved during speaker activ-
ity. Thus, the outcome of experimental studies (subjective lis-
tening tests) by independent research groups seems to be in
agreement with the results predicted by mathematical mod-
elling.

In this paper, we investigate predicted performance of
noise reduction algorithms in terms of spectral subtraction.
Spectral subtraction type of noise reduction can be found in
a variety of applications, such as military voice communica-
tions [8], restoration of musical recordings [9, 10], speech
recognition [11, 12], and mobile telephony [3, 5].

In this theoretical work, we will concentrate on the de-
sign of noise reduction algorithms for “high-quality” (HQ)
speech enhancement, defined by (i) a nondistorted speech
output, (ii) a sufficient reduction of the noise level, and (iii)
a residual noise without annoying artifacts. The basic spec-
tral subtractionmethods are known to violate (i) above when
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(ii) is fulfilled, or vice versa. In addition, in some cases (iii) is
more or less violated since the methods may introduce, so-
called, musical noise. The above drawbacks with the spectral
subtraction methods have been known and, in the literature,
several ad hoc modifications of the basic algorithms have ap-
peared. However, the fundamental question how to design
spectral subtraction methods that fulfill (i)–(iii) for general
scenarios has remained unanswered. The reason for this is,
of course, that the requirements (i)–(iii) are in conflict with
each other. The correct question to be answered is what re-
duction of the noise level we can expect without distortion
of the speech output and annoying artifacts in the residual
noise.

We stress that HQ design of speech enhancement algo-
rithms is not to be used in all applications mentioned above
where other subjective criteria such as “crisp-and-clear” are
favorable. HQ design has, for example, gained industrial im-
pact in mobile telephony, in applications such as telephony
in noisy acoustic cavities (car compartments, etc.).

The aim of this paper is to study speech enhancement by
spectral subtraction in a theoretical framework. Clearly, sim-
ple models and basic mathematics cannot fully describe the
complexity of the human hearing, and thus subjective listen-
ing tests are crucial for development of practical speech en-
hancement methods. Such development of practical speech
enhancement methods is beyond the scope of this paper.
Here, we concentrate on an understanding of the basic prin-
ciples of speech enhancement from a statistical signal pro-
cessing point of view.

Even though the objective criterion used in this paper
only partially correlates with subjective human criteria, we
will illustrate that the parameters (e.g., the subtraction fac-
tor) of the tuned methods coincide with the parameters val-
ues based on tuning by subjective tests.

2. NOISE REDUCTION BY LINEAR FILTERING

Consider the signalmodel

y(n) = x(n) + v(n), (1)

where y(n) denotes the observed discrete-time process, x(n)
models the speech, and v(n) the additive noise. The index n is
a running integer index, n = · · · ,−1, 0, 1, . . .. The stochas-
tic processes x(n) and v(n) are assumed wide-sense station-
ary, zeromean, and jointly uncorrelated. The autocorrelation
function rY (k) = E[y(n + k)y(n)] (where E[·] denotes sta-
tistical expectation) is then given by

rY (k) = rX(k) + rV (k), (2)

where rX(k) and rV (k) denote the autocorrelation functions
of x(n) and v(n), respectively, and k is an integer. The power
spectral densities follow by taking the (time discrete) Fourier
transform, that is,

RY (ν) = RX(ν) + RV (ν). (3)

In (3), ν denotes the normalized frequency, that is, ν = f / fs
with f being the absolute frequency in s−1 and fs being the

sampling frequency.When needed we will denote the discrete
Fourier transform by F [·], for example RX(ν) = F [rX(k)].

Now consider a linear time-invariant filter with fre-
quency function H(ν). Then, the filtered observation (say,
x̂(n)) obeys

x̂(n) = h(n)� y(n), (4)

where h(n) is the pulse response, or the inverse Fourier trans-
form ofH(ν), and� denotes the convolution sum. The wide-
sense stationary process x̂(n) models the enhanced speech
signal.

There are different approaches for designing the filter
H(ν) so that the filter output x̂(n) is a suitable estimate of
x(n). For the sake of completeness, two examples of speech
enhancement filter designs are outlined below.

2.1. Power subtraction

One attempt to design a filter is known as power subtraction
[8]. Consider the power spectral density RY (ν) for which an
estimate is easily obtained from recorded samples {y(n)}.
With knowledge about RV (ν), an estimate of RX(ν) (say
̂RX(ν)) is simply obtained by subtraction, that is, ̂RX(ν) =
̂RY (ν)− RV (ν), where ̂RY (ν) denotes the estimate formed by
{y(n)}. Notice that we have no information of the phase of
the signal when considering the power spectral density. How-
ever, as shown in [13] estimating the correct power spectral
density is more important than trying to estimate the undis-
torted phase spectrum. Now, the basic power subtraction is
given by the following.

(i) Collect the data samples {y(1) · · · y(N)} for a suit-
able value ofN and calculate the discrete Fourier trans-
form, that is, Y(ν) = |Y(ν)| · exp[ j∠Y(ν)].

(ii) Calculate an estimate ofN ·RY (ν) by |Y(ν)|2, and sub-
tract the (N times) power spectral density of the back-
ground noise from the obtained quantity. Denote the
result by |Z(ν)|2, that is, |Z(ν)|2 = |Y(ν)|2 −NRV (ν).

(iii) Now the Fourier transform of the enhanced speech
is obtained as ̂X(ν) = |Z(ν)| · exp[ j∠Y(ν)], that is,
the magnitude corresponding to the noise subtracted
spectral density and the original phase of the collected
samples. An inverse transformation back to the time
domain gives the final result.

The resulting filter is linear and can be described by a pulse
function h(n) or equivalently a frequency functionH(ν). Par-
ticulary, the frequency function H(ν) is zero phase or real-
valued and is given by

̂X(ν) = H(ν)Y(ν) =⇒ H(ν) =
∣

∣Z(ν)
∣

∣ · exp [ j∠Y(ν)
]

Y(ν)
.

(5)

Replacing estimated quantities with the true (but unknown)
counterparts, a straightforward calculation results in

H(ν) =
√

RY (ν)− RV (ν)
RY (ν)

=
√

1− RV (ν)
RY (ν)

. (6)



Peter Händel 3

Equation (6) yields the frequency function of power subtrac-
tion.

2.2. Wiener filter solution

An alternative, well-known, filter design methodology is de-
signing a filter H(ν) that minimizes the mean-square error
E[(x̂(n) − x(n))2], (cf. [14]). Different constraints on the
pulse response such as finite number of nonzero coefficients
(finite pulse response) or on causality are often used. Here,
however we consider the case without constraints. The well-
known solution is given by [14]:

H(ν) = RXY (ν)
RY (ν)

, (7)

where RXY (ν) denotes the cross-spectral density between the
observations y(n) and the source process x(n). The Wiener
filter is the optimal estimator (in mean-square error) for
Gaussian signals, and the optimal linear estimator in general.
Under the additive signal model (1) where x(n) and v(n) are
wide-sense stationary zero mean and jointly uncorrelated,
it follows that the cross-correlation E[X(n + k)y(n)] equals
the autocorrelation E[X(n + k)x(n)]. Accordingly RXY (ν) =
RX(ν). Inserting this latter finding into (7) yields

H(ν) = RX(ν)
RY (ν)

= 1− RV (ν)
RY (ν)

. (8)

One may note the structural similarity between (6) and (8).
The frequency function H(ν) depends on RY (ν) and

RV (ν), often as well as on user-chosen design variables. Typ-
ically, as illustrated by the two examples above, it is zero
phase. The frequency function, or suppression rule,H(ν) can
be derived from different error criteria, or it can be moti-
vated from perceptual considerations. Different suppression
rules are found in the literature on the topic, where power
subtraction and Wiener filtering are two exemplary choices.

In order to avoid notational complications, we concen-
trate on the power subtraction suppression rule (6) and vari-
ants thereof [15]. We stress, however, that the introduced
methodology for performance assessment of spectral sub-
traction speech enhancement algorithms can be applied to
any frequency function H(ν) of RV (ν) and RY (ν), including
generalized methods [16, 17].

3. SPEECH ENHANCEMENT IN PRACTICE

Speech as well as the background noise are nonstationary
processes, and in practice the digital signal processing is
based on sample frames of a fixed length N . Accordingly, we
consider the scenario in Figure 1 for the presented theoretical
analysis, where τ noise-only frames containingN samples are
followed by a frame including speech samples. It is further as-
sumed that an ideal voice activity detector (VAD) is available
in order to distinguish between the frames containing noisy
speech and frames containing background noise only. In par-
ticular, we consider the output from the spectral subtraction
method in frame � + 1.

τ frames with noise only

�th frame (� + 1)th frame

Output from VAD

Figure 1: Setup for performance analysis of power subtraction.
Each data frame is of length N , where N is assumed to (roughly)
coincide with the short-time stationarity of the speech. The back-
ground noise is assumed long-time stationary over τ + 1 frames. A
perfect voice activity detector (VAD) is assumed, where its output
speech presence probability (0% or 100%, resp.) is indicated in the
figure.

In general, RY (ν) and RV (ν) in the suppression ruleH(ν)
are unknown and have to be replaced by estimated quanti-
ties ̂RY (ν) and ̂RV (ν)� . Due to the short-time stationarity of
the speech, the estimate ̂RY (ν) has to be calculated from the
(� + 1)th frame of noisy observations only, while ̂RV (ν)� can
(and should) be averaged from several past frames.

The actual spectral subtraction can be performed as fol-
lows. The digital audio samples {y(n)} (for n = 1, . . . ,N)
in frame � + 1 are transformed to form {Y(ν)}. The frame
is filtered by multiplication in the frequency-domain, that is,
{ ̂H(ν)Y(ν)} (which is the actual spectral subtraction). The
suppression rule ̂H(ν) is formed, for example, according to
(6) with RY (ν) and RV (ν) there replaced by estimated quan-
tities, namely

̂H(ν) =
√

√

√

√1− δ(ν)
̂RV (ν)�

̂RY (ν)
. (9)

In (9), δ(ν) is introduced as a user-chosen weighting func-
tion. The effects of the choice of δ(ν) on the performance of
the filtered output will be studied in detail in the sequel. The
resulting frequency-domain signal is transformed back to the
time domain by an inverse transformation. The result is a
frame of samples in which the noise has been suppressed. By
definition, H(ν) belongs to the interval 0 ≤ H(ν) ≤ 1, which
does not necessarily hold true for (9). Historically, half-wave
or full-wave rectification is used before the square root is cal-
culated [8]. In other noise reduction systems, the suppression
rule (9) is combined with a limiter so that ̂H(ν) is ensured to
be strictly larger than zero. Often a lower threshold or noise
floor is used so that ̂H(ν) always is larger than some thresh-
old value. Such thresholding is known to reduce the so-called
musical noise [8]. A minimum value of 0.1 corresponds to a
noise floor of −20dB.

Note that y(n) = v(n) in (1) during speech pauses. Ac-
cordingly, an estimate of RV (ν) is calculated using a running
estimate, for example, using

̂RV (ν)� = ρ̂RV (ν)�−1 + (1− ρ)RV (ν). (10)

In (10), ̂RV (ν)� is the running averaged estimate of the spec-
tral density based on data up to and including frame number
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� and RV (ν) is the estimate based on the �th frame. The scalar
ρ is tuned based on the assumed stationarity of the back-
ground noise. An average over τ frames, that corresponds to
the long-time stationarity of the background noise, roughly
corresponds to ρ given by

ρ = 1− 2
τ
. (11)

A solid proof of (11) in a somewhat different context can be
found in [18].

With no prior assumptions on the spectral shape of the
background noise, a suitable N-frame estimate of the power
spectral density is given by

RV (ν) =
∣

∣V(ν)
∣

∣

2

N
, (12)

whereV(ν) = F [v(n)].WithF [·] being the discrete Fourier
transform, RV (ν) is the periodogram spectral estimator and
̂RV (ν)� is an exponential averaged periodogram. Both RV (ν)
and ̂RV (ν)� are leading to asymptotically unbiased estimates
of RV (ν), that is, (as N →∞) [19]

E
[

RV (ν)
] = RV (ν), E

[

̂RV (ν)�
] = RV (ν). (13)

The asymptotic error variance of RV (ν) is

Var
[

RV (ν)
] = R2

V (ν). (14)

The variance term in (14) describes the accuracy of the esti-
mate RV (ν). We introduce a (possibly frequency-dependent)
quality factor γ(ν), so that for a general asymptotically unbi-
ased spectral estimator ̂R(ν) of R(ν), we have

Var
[

̂R(ν)
] = γ(ν)R2(ν). (15)

That is, for RV (ν) in (12) we have γV (ν) = γV = 1. Accord-
ingly for ̂RV (ν)� taken as an average of RV (ν) over τ frames,
we obtain a reduced value proportional to 1/τ (cf. [20]).

4. POWER SPECTRAL DENSITY ERROR ANALYSIS

It is obvious that the stationarity assumptions imposed on
the speech as well as the background noise give rise to bounds
on how accurate the estimate of the speech is in comparison
with the clean speech. In this section, the analysis technique
for spectral subtraction methods earlier introduced by the
author in [7] is extended. It is based on first-order approxi-
mations of the power spectral density (PSD) estimates ̂RY (ν)
and ̂RV (ν)� , respectively, in combination with approximate
(zero-order approximations) expressions for the accuracy of
the introduced deviations. Explicitly, in the following an ex-
pression is derived for the frequency-domain error of the en-
hanced speech (the filtered output), due to the used suppres-
sion rule and due to the accuracy of the involved PSD esti-
mators.

We consider the PSD error [7]

˜RX(ν) = R
̂X(ν)− RX(ν), (16)

where R
̂X(ν) is the spectral density of the enhanced speech,

given by

R
̂X(ν) =

∣

∣
̂H(ν)

∣

∣

2
RY (ν) = ̂H(ν)2RY (ν). (17)

A similar frequency-domain error is used as an error crite-
rion in [16] when the parameters of a generalized spectral
subtraction method are derived. Note that ˜RX(ν) by con-
struction is an error term describing the difference in the
frequency-domain between the magnitude-squared filtered
noisy observation and the power spectral density of the clean
speech. Therefor, ˜RX(ν) can take both positive and negative
values and is not the power spectral density of any time-
domain signal. In (17), the suppression rule ̂H(ν) is not re-
stricted to power subtraction, but other choices can be ana-
lyzed as well. In particular, one can note that a comparison
between magnitude subtraction and power subtraction was
performed in [7].

In order to perform the analysis, we assume a small er-
ror so that ̂RY (ν) and ̂RV (ν)� used to form ̂H(ν) are close to
the underlying spectral densities. Technically, it is required
that consistent spectral estimators are employed and that the
frame length N is sufficiently large (N � 1). Introduce the
first-order deviations

̂RY (ν) = RY (ν) + ΔY (ν),

̂RV (ν) = RV (ν) + ΔV (ν),
(18)

where ΔY (ν) and ΔV (ν) are zero-mean stochastic variables
such that we have the quality factors

γY (ν) = E
[

Δ2
Y (ν)

]

R2
Y (ν)

� 1, γV (ν) = E
[

Δ2
V (ν)

]

R2
V (ν)

� 1,

(19)

for all ν. Variance reduction by introducing bias in the esti-
mates is commonly applied, but using asymptotically biased
estimators of the spectral density, a similar analysis holds true
replacing (18) with

̂RY (ν) = RY (ν) + ΔY (ν) + BY (ν),

̂RV (ν) = RV (ν) + ΔV (ν) + BV (ν),
(20)

where BY (ν) and BV (ν) are deterministic terms describing
the asymptotic bias in the employed estimators. Such anal-
ysis is straightforward to perform, but beyond the scope of
this paper. Small quality factors (19) are essential for the
analysis to hold true, although the forthcoming results in-
dicate a wider applicability of the theory. Large-quality fac-
tors may appear for (at a first glance) reasonable settings. For
example for a white Gaussian input, the background noise
periodogram (12) is known to be chi-square with two de-
grees of freedom with asymptotically E[Δ2

V (ν)] = R2
V (ν), and

thus γV (ν) = γV where γV = 1! In practice, exponential
smoothing of periodograms according to (10) is employed,
and thus the exponential averaged estimate of the power
spectral density approaches the Gaussian shape correspond-
ing to γV = 1/(τ−1) [20], where typical settings for τ is 50 or
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more with τ related to ρ according to (11). Accordingly, the
taken approach is easily justified for the background noise
spectral estimate. Due to the nonstationarity of speech, inter-
frame smoothing is not appropriate when estimating RY (ν).
Accordingly, in order to secure that γY � 1, intraframe ap-
proaches have to be employed, for example by model-based
approaches that will be studied in the sequel.

Further, the correlation time of the noise is assumed to
be short compared to the frame length N , meaning that
E[{̂RV (ν)�−RV (ν)}{̂RV (ν)k−RV (ν)}] ≈ 0 for k 	= �. This, in
turn, implies that ΔY (ν) and ΔV (ν) are approximately uncor-
related. This latter assumption on the background noise may
seem restrictive. If the noise is strongly correlated, we can, on
the other hand, assume that RV (ν) has a limited small num-
ber n (i.e., n � N) of (strong) peaks located at frequencies
ν1, . . . , νn. Then, E[{̂RV (ν)� − RV (ν)}{̂RV (ν)k − RV (ν)}] ≈ 0
for ν 	= ν j , for j = 1, . . . ,n, and for k 	= � and the analysis still
holds true for ν 	= ν j , j = 1, . . . ,n.

Starting with the basic suppression rule for power sub-
traction (6), the PSD error (16)-(17) for known spectral den-
sities makes some sense. That is, inserting (6) into (16)-(17)
gives

˜RX(ν) =
(

1− RV (ν)
RY (ν)

)

RY (ν)− RX(ν) = 0. (21)

Thus, if the spectral densities of the speech and noise are
perfectly known, power subtraction is optimal in the sense
of minimizing the squared PSD error. Perfectly known PSDs
are characterized by zero-valued quality factors. We empha-
size that if the PSD error is zero as in (21) does not mean
that the restoration is perfect. In order to measure the SNR
improvement (in dBs), we make use of

SNRImprovement = 10 log10 E
[

v(n)2
]

− 10 log10 E
[(

x̂(n)− x(n)
)2]

.
(22)

For example, if x(n) and v(n) are uncorrelated white noises
of equal power, the power subtraction rule results in x̂(n) =
y(n)/

√
2 which imply that SNRImprovement = 2.32dB, al-

though the PSD error is null.
In practice, neither RY (ν) nor RV (ν) is known, but are re-

placed by estimated quantities resulting in positive (nonzero)
quality factors. The deviations of the estimated spectral den-
sities from the underlying true ones are described by the
stochastic quantities ΔY (ν) and ΔV (ν) introduced in (18),
respectively. For performance optimization, a natural distor-
tion criterion is the averaged mean-squared PSD error

MSE =
∫ 1/2

−1/2
E
[

˜R2
X(ν)

]

dν, (23)

where the expectation is over the stochastic quantities ΔY (ν)
and ΔV (ν), respectively.

4.1. Analysis of power subtraction

With the above-mentioned tools for performance analysis,
the power subtraction suppression rule in (9) can be ana-
lyzed. In (9), δ(ν) is a possibly frequency-dependent user-
chosen design variable. In particular with a constant δ > 1,

the method is often referred to as power subtraction with
oversubtraction. This ad hoc modification significantly de-
creases the noise level and reduces the audible artifacts. In
addition, it significantly distorts the output speech, which
makes this modification (more or less) useless for high-
quality speech enhancement. This fact is easily seen from (9)
when δ� 1. Thus for moderate and low speech-to-noise ra-
tios (in the ν-domain), the expression under the root sign is
very often negative and the rectifying device will therefore set
it to zero (or any other predetermined small value), which
in turn implies that only frequency bands where the local
signal-to-noise ratio is high appear in the output. Due to the
nonlinear rectifying device, the present analysis technique is
not directly applicable in this case.

An interesting case is when δ(ν) < 1, which is seen from
the following heuristic discussion. As stated previously, when
RY (ν) and RV (ν) are exactly known, (9) with δ(ν) ≡ 1 is
optimal in the sense of minimizing the MSE (23). When no
(whatsoever) information about RY (ν) and RV (ν) can be ob-
served, on the other hand, the best we can do is to let the
filter output equals the noisy speech. This case corresponds
to the use of (9) with δ(ν) ≡ 0. Due to the above two ex-
tremes, one can expect that when estimates ̂RY (ν) and ̂RV (ν)
are used to form the suppression rule, the minimum MSE is
obtained for some (possibly frequency-dependent function)
δ(ν) in the interval 0 ≤ δ(ν) ≤ 1.

The PSD error for the case 0 ≤ δ(ν) ≤ 1 is given by

˜RX(ν) =
(

1− δ(ν)
̂RV (ν)
̂RY (ν)

)

RY (ν)− RX(ν). (24)

In the appendix, it is shown that (24) can be rewritten as

˜RX(ν) =
(

1− δ(ν)
)

RV (ν) + δ(ν)
(

RV (ν)
RY (ν)

ΔY (ν)− ΔV (ν)
)

.

(25)

Under the given assumptions, we have

E
[

˜R2
X(ν)

] = (1− δ(ν)
)2
R2
V (ν)

+ δ(ν)2
(

R2
V (ν)

R2
Y (ν)

E
[

Δ2
Y (ν)

]

+ E
[

Δ2
V (ν)

]

)

.
(26)

The quantity E[˜R2
X(ν)] is quadratic in δ(ν) and can be ana-

lytically minimized for all ν. Denoting the optimal function
by δ(ν), the result reads

δ(ν) = 1
1 + γY (ν) + γV (ν)

, (27)

where γY (ν) is the quality factor of the method used for es-
timating the instantaneous power spectral density in frame
�+1, and γV (ν) is the quality factor for ̂RV (ν)� . Since the qual-
ity factors are positive quantities, it follows that 0 ≤ δ(ν) ≤ 1.
Inserting (27) into (26) yields

E
[

˜R2
X(ν)

]

δ(ν)=δ(ν) = R2
V (ν)

γY (ν) + γV (ν)
1 + γY (ν) + γV (ν)

= R2
V (ν)

(

1− δ(ν)
)

.

(28)
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In order to influence the performance of power subtraction,
we have to decrease the quality factors γY (ν) and γV (ν) as
much as possible. It means that we have to select an appro-
priate estimator of the instantaneous spectral density in the
(� + 1)th frame, as well as an estimator for the long-time
stationary background noise. Further, we can influence the
performance by proper selection of the suppression rule, see
[16].

Using fast-Fourier-transform-(FFT-) based spectral esti-
mators, we have that γY = 1 (as earlier discussed, for the
analysis to hold true, the quality factors should be much
smaller than unity) and γV is proportional to 1/τ. Thus, for
τ � 1, the dominant term in γ = γY + γV is γY , and thus the
main error source is the single-frame spectral estimation of
the noisy speech.

We note that in this scenario, δ(ν) is (at least, approxi-
mately) independent of frequency, that is, δ(ν) = δ. We also
note that δ is smaller than unity, that is, for γY = 1 and
γV = 1/τ, then δ < 0.5 for all τ. The fact that δ � 1 in-
dicates that the statistical accuracy of the spectral estimators,
and in particular the statistical accuracy of ̂RY (ν), have a large
impact on the quality of the output enhanced speech. Here,
the MSE introduced in (23) reduces to

MSE |δ(ν)=δ = (1− δ)
∫ 1/2

−1/2
R2
V (ν)dν. (29)

The value of the quality factor γY (ν) may be decreased
by using averaging techniques, such as blocking data into
subframes and using an averaged periodogram. Such an ap-
proach is included in the IS-127 standard where 16 frequency
bands are used [2]. Another appealing approach is to reduce
γY (ν) by parametric modelling. This is the topic below.

5. PARAMETRICMODELLING FOR QUALITY
IMPROVEMENTS

The key observation in the above section was that the quality
factors have a major impact on the achievable level of noise
reduction. Another observation was that proper averaging of
the background noise spectral density estimate has high ac-
curacy, that is, a quality factor close to zero. Here, we con-
centrate on the weakest part of the chain, that is, the estimate
of the instantaneous spectral density at the most present data
frame.

A standard technique to model speech is to use autore-
gressive (AR) modelling, that is, x(n) in (1) can be accurately
described by an AR model of order p, that is,

x(n) = −a1x(n− 1)− · · · − apx(n− p) +w(n), (30)

where w(n) is white zero-mean noise with power σ2W . Typ-
ically, p is p ≈ 10. At a first glance, it may seem restrictive
to consider AR models only. However, the use of AR mod-
els for speech modelling is not only motivated by physical
modelling of the vocal tract, but more importantly by phys-
ical limitations from the noisy speech on the accuracy of the
estimated models.

With the AR structure (30) imposed on x(n), the spectral
density of the noisy observations is

RY (ν) = σ2W
∣

∣A
(

e j2πν
)∣

∣

2 + RV (ν), (31)

where A(e j2πν) = 1 + a1e jν + · · ·+ ape jνp. For the sake of the
discussion, RV (ν) may be described by a parametric ARMA
model

RV (ν) = σ2U
∣

∣B
(

e j2πν
)∣

∣

2

∣

∣C
(

e j2πν
)∣

∣

2 , (32)

where B(e j2πν) and C(e j2πν) are qth- and rth-order polyno-
mials, defined similarly to A(e j2πν). Then, the noisy observa-
tion y(n) has a spectral density given by

RY (ν) = σ2W
∣

∣C
(

e j2πν
)∣

∣

2
+ σ2U

∣

∣A
(

e j2πν
)

B
(

e j2πν
)∣

∣

2

∣

∣A
(

e j2πν
)

C
(

e j2πν
)∣

∣

2 .

(33)

Estimating the speech AR parameters in (30) is straight-
forward when no additional noise is present. However, es-
timating the parameters in (33) is a stand-alone research
problem, especially in the case above when RV (ν) is partially
known through ̂RV (ν)� . Here, a more pedestrian approach
is taken and a method based on the autocorrelation method
is sought. The motivation for this is fourfold, that is, (i) the
autocorrelation method is well-known. In particular, the es-
timated parameters are minimum-phase, ensuring the sta-
bility of the resulting filter, (ii) using the Levinson algorithm,
the method is easily implemented and has a low numerical
complexity, (iii) an optimal procedure includes a nonlinear
optimization, explicitly requiring some initialization proce-
dure. The autocorrelation method requires none, and (iv)
from a practical point of view, it is favorable if the same es-
timation procedure can be used for degraded speech and,
respectively, the clean speech when it is available. In other
words, the estimation method should be independent of the
actual scenario of operation.

It is well-known that the ARMA process in (33) can be
modelled by an infinite-order AR process. When a finite set
of data is available for parameter estimation, the infinite-
order AR model has to be truncated. Here the model used
is

y(n) = − f1y(n− 1)− · · · − fp y(n− p) + e(n), (34)

where e(n) is the residual noise, with power σ2E . An appro-
priate model order follows from the discussion below. The
approximate model (34) is close to the speech in noise pro-
cess if their spectral densities are approximately equal, that
is,

σ2W
∣

∣C
(

e j2πν
)∣

∣

2
+ σ2U

∣

∣A
(

e j2πν
)

B
(

e j2πν
)∣

∣

2

∣

∣A
(

e j2πν
)

C
(

e j2πν
)∣

∣

2 ≈ σ2E
∣

∣F
(

e j2πν
)∣

∣

2 .

(35)

Based on the physical modelling of the vocal tract, we have
p ≈ 10. From (35), it is also clear that p has to be (much)



Peter Händel 7
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Figure 2: MSE improvement as function of quality factor for opti-
mized power subtraction.

greater than the order of the denominator, that is, p� p + r
where p + r roughly equals twice the number of peaks in
RY (ν). On the other hand, modelling noisy narrowband pro-
cesses using ARmodelling requires p� N in order to ensure
reliable estimates of the spectral density and a rule of thumb
is given by p ≈ √N [21].

From the above discussion, we can expect that a paramet-
ric model approach based on AR modelling is fruitful when
N � 100. We can also conclude from (33) that the flatter
the noise spectra is, the smaller the values of N are allowed.
Even if p is not large enough, the parametric approach is ex-
pected to give reasonable results. A reason for this is that the
parametric approach produces smooth estimates of the spec-
tral densities, which reduce artifacts such as audible residual
noise. The quality of parametric spectral estimates based on
all-pole modelling is investigated below.

An attempt to analyze the quality of the parametric es-
timator in the above section is as follows. Decompose y(n)
into its spectral components by aid of a Fourier series ex-
pansion of x(n) and assume that the noise is spectrally flat.
Then, the asymptotic (both in the frame length and in the
model order) variance of ̂RY (ν) is given by the quality fac-
tor γY = 2p/N [22], an expression that also holds true for a
pure high-order AR process. With the given rule of thumb,
we have γY = 2/

√
N that should be compared with γY = 1

for the periodogram-based spectral estimator.

6. DISCUSSION

The improvement in MSE for the optimized power subtrac-
tion is given by

−10 log10(1− δ) = −10 log10
(

γ

1 + γ

)

, (36)

where γ is the total quality factor γ = γY + γV . In Figure 2,
the improvement in MSE is depicted as function of 1/γ.

Below, the outcome of the presented analysis is compared
with independent work presented in the literature. The per-
formance measure employed in the current work is not re-
lated in a simple way to well-known objective performance
measures used in this field, such as the segmental SNR, spec-
tral distortion, log-likelihood ratio. Accordingly, the below
comparison with the outcome of experimental studies is il-
lustrative rather than conclusive.

6.1. The SSmethod of [5]

In a mobile telephony hands-free environment, it is reason-
able to assume that the background noise is stationary for
about 0.5 second (at 8 kHz sampling rate and frame length
of N = 256) that gives τ = 15, and thus γV = 0.067. This is
the settings used in the SS (i.e., spectral subtraction) method
of [5]. Further, with an AR model of order p = √256 = 16,
we have γY = 0.062 resulting in an improvement in MSE
of 9.5dB. For a completely stationary background noise (i.e.,
τ →∞), the improvement is limited by 12dB.

6.2. Results from subjective listening tests [23]

In [23], an empirical quantity, the averaged spectral dis-
tortion improvement, was experimentally studied with re-
spect to a scalar subtraction factor for magnitude subtrac-
tion. Based on several experiments, Kushner et al. conclude
that the optimal subtraction factor preferably should be in
the interval that spans from 0.6 to 0.7 at a signal-to-noise
ratio of 15 dB. In [23], a three-second averaging at 10 kHz
sampling rate is reported,N = 512 samples and 50% overlap.
Accordingly, γY = 0.5 (50% frame overlap). The averaging is
over 58 frames (with overlap), so γV = 0.009. Inserting the
numerical values into (27) results in the subtraction factor
δ = 0.66. The outcome of the theoretical small error analysis
presented here is in good agreement with the outcome based
on subjective listening test in [23].

6.3. Relations to standard IS-127

A state-of-the-art noise suppressor is the one included in IS-
127, developed by Motorola [2]. In the TIA/EIA standard IS-
127 for the EVRC speech codec, N = 104 noisy speech sam-
ples are used (the transformation F [·] is performed by aid
of a 128-point FFT). Further, the suppression rule is calcu-
lated in 16 different bands, and the transformation back to
the time domain is performed with some overlap between
adjacent frames. A rough estimate of the quality factor γY is
as follows. The decomposition into subbands reduces γY by a
factor of 16, whereas the averaging between frames reduces it
further by a factor of 1.5 (an overlap-and-add with 48 sam-
ples is used), that is, γY = 0.04. This figure results in an MSE
improvement (36) up to 14 dB.

We cannot figure out a suitable value for γV from [2].
However, in [2] the noise floor is reported to be −13dB. As-
suming a smooth transition from frequency function to noise
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floor for power subtraction (6), the noise floor is given by

−20 log
√

1− δ = −13. (37)

Solving for γV (with γY = 0.04 and δ given by (27)) results
in γV = 0.013. Here, γY ≈ 3γV , which seems to be a reason-
able tradeoff between the short-time spectral estimation and
noise averaging.

6.4. Conclusions

In order to conclude, an analysis technique for spectral sub-
traction type of methods has been discussed. The power
spectral density error was introduced, and its mean square
error was optimized for power subtraction. We have com-
pared the theoretical findings with independent work and we
have noted an agreement between our predictions and the
reported work. For example, we may note the slightly dif-
ferent design strategies employed in [2, 5], where in former
work employed γY ≈ γV for maximal adaption for changes
in the noise characteristics, whereas the latter work employed
γY ≈ 3γV for increased noise suppression. In both cases,
intraframe averaging is used to ensure accurate short-time
spectral estimates.

APPENDIX

A. PROOF OF (25)

In order to prove (25), note that inserting (18) into (24) gives

˜RX(ν) =
(

1− δ(ν)
RV (ν) + ΔV (ν)
RY (ν) + ΔY (ν)

)

RY (ν)− RX(ν).

(A.1)

By using the Taylor series expansion (1 + x)−1 = 1− x + · · ·
and neglecting higher than first-order deviations, we have

(

RY (ν) + ΔY (ν)
)−1 = 1

RY (ν)

(

1− ΔY (ν)
RY (ν)

)

. (A.2)

Inserting (A.2) into (A.1) yields

˜RX(ν)=RY (ν)− δ(ν)
(

RV (ν)+ ΔV (ν)
)

(

1−ΔY (ν)
RY (ν)

)

− RX(ν)

= RV (ν)− δ(ν)
(

RV (ν) + ΔV (ν)
)

(

1− ΔY (ν)
RY (ν)

)

.

(A.3)

A rearrangement of terms and neglecting the second-order
term −δ(ν)ΔV (ν)ΔY (ν)/RY (ν) result in (25).
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[7] P. Händel, “Low-distortion spectral subtraction for speech en-
hancement,” in Proceedings of the 4th European Conference on
Speech Communication and Technology, vol. 2, pp. 1549–1552,
Madrid, Spain, September 1995.

[8] S. F. Boll, “Suppression of acoustic noise in speech using spec-
tral subtraction,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 27, no. 2, pp. 113–120, 1979.

[9] O. Cappe, “Elimination of the musical noise phenomenon
with the Ephraim and Malah noise suppressor,” IEEE Transac-
tions on Speech and Audio Processing, vol. 2, no. 2, pp. 345–349,
1994.

[10] O. Cappe and J. Laroche, “Evaluation of short-time spectral
attenuation techniques for the restoration of musical record-
ings,” IEEE Transactions on Speech and Audio Processing, vol. 3,
no. 1, pp. 84–93, 1995.

[11] J. H. L. Hansen and M. A. Clements, “Constrained iterative
speech enhancement with application to speech recognition,”
IEEE Transactions on Signal Processing, vol. 39, no. 4, pp. 795–
805, 1991.

[12] P. Lockwood, J. Boudy, and M. Blanchet, “Non-linear spec-
tral subtraction (NSS) and hidden Markov models for robust
speech recognition in car noise environments,” in Proceedings
of IEEE International Conference Acoustics, Speech, and Signal
Processing (ICASSP ’92), vol. I, pp. 265–268, San Francisco,
Calif, USA, March 1992.

[13] D. L. Wang and J. S. Lim, “The unimportance of phase in
speech enhancement,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 30, no. 4, pp. 679–681, 1982.

[14] N. Wiener, Extrapolation, Interpolation, and Smoothing of Sta-
tionary Time Series: With Engineering Applications, Principles
of Electrical Engineering Series, MIT Press, Cambridge, Mass,
USA, 1949.

[15] J. S. Lim and A. V. Oppenheim, “Enhancement and bandwidth
compression of noisy speech,” Proceedings of the IEEE, vol. 67,
no. 12, pp. 1586–1604, 1979.

[16] B. L. Sim, Y. C. Tong, J. S. Chang, and C. T. Tan, “A parametric
formulation of the generalized spectral subtraction method,”
IEEE Transactions on Speech and Audio Processing, vol. 6, no. 4,
pp. 328–336, 1998.

[17] P. Sovka, P. Pollak, and J. Kybic, “Extended spectral subtrac-
tion,” in Proceedings of the 5th European Conference on Speech
Communication and Technology, pp. 963–966, Trieste, Italy,
September 1995.



Peter Händel 9
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