
Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2007, Article ID 97845, 16 pages
doi:10.1155/2007/97845

Research Article
Lightweight Object Tracking in Compressed Video Streams
Demonstrated in Region-of-Interest Coding

Robbie De Sutter,1 Koen DeWolf,1 Sam Lerouge,2 and Rik Van deWalle1

1Multimedia Lab, Department of Electronics and Information Systems, Ghent University - IBBT,
Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium

2Regionale Media Maatschappij, Kwadestraat 151b, B-8800 Roeselare, Belgium

Received 25 January 2006; Revised 28 September 2006; Accepted 11 October 2006

Recommended by Dimitrios Tzovaras

Video scalability is a recent video coding technology that allows content providers to offer multiple quality versions from a single
encoded video file in order to target different kinds of end-user devices and networks. One form of scalability utilizes the region-
of-interest concept, that is, the possibility to mark objects or zones within the video as more important than the surrounding area.
The scalable video coder ensures that these regions-of-interest are received by an end-user device before the surrounding area and
preferably in higher quality. In this paper, novel algorithms are presented making it possible to automatically track the marked
objects in the regions of interest. Our methods detect the overall motion of a designated object by retrieving the motion vectors
calculated during the motion estimation step of the video encoder. Using this knowledge, the region-of-interest is translated, thus
following the objects within. Furthermore, the proposed algorithms allow adequate resizing of the region-of-interest. By using the
available information from the video encoder, object tracking can be done in the compressed domain and is suitable for real-time
and streaming applications. A time-complexity analysis is given for the algorithms proving the low complexity thereof and the
usability for real-time applications. The proposed object tracking methods are generic and can be applied to any codec that cal-
culates the motion vector field. In this paper, the algorithms are implemented within MPEG-4 fine-granularity scalability codec.
Different tests on different video sequences are performed to evaluate the accuracy of the methods. Our novel algorithms achieve
a precision up to 96.4%.

Copyright © 2007 Robbie De Sutter et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Video content providers want to target as many kinds of end-
user devices without the need to create a large simulstore of
multiple versions of the same video fragment. As a conse-
quence, recent video encoding techniques embed scalability
such that multiple versions of an encoded video can be de-
rived on the fly, that is, without the need for decoding and
reencoding the video. Within the Moving Picture Experts
Group (MPEG), the fine-granularity scalability (FGS) tech-
nology was developed to add scalability to the MPEG video
coding technologies. The FGS technology can be used to im-
plement the region-of-interest (ROI) concept. An ROI iden-
tifies area(s) within the video scene as more interesting or
important than the remaining area(s). Consider for example
a news broadcast: the newsreader is more important than the
surrounding news studio setting, thus the newsreader can be
identified as the ROI for this scene. If an end-user device is

not capable of receiving the full-quality video feed (due to,
e.g., restrictive bandwidth capacity), the streaming server or
the network can choose to send only the ROI in high quality
and the remaining areas in low quality. As such, less band-
width is required, however the most important regions (i.e.,
the ROI) can be viewed in high quality.

An issue that arises with this technique is the identifi-
cation of the important regions in the video scene and the
tracking of the object(s) in these important regions through-
out the video sequence. In this paper, we focus on the latter
issue. We present new methods that can be used to improve
the handling of regions of interest. A novel concept and novel
algorithms are introduced in order to track objects within
an ROI by reusing the motion vectors calculated during the
motion estimation step of the video encoder. Nevertheless,
the performance of our algorithms depends on the motion
estimation algorithms. Note that the methods we introduce
in this paper are not restricted to this particular use case,



2 EURASIP Journal on Advances in Signal Processing

they can also be applied in other scenarios if object track-
ing is needed. While other comparable object tracking algo-
rithms work in the uncompressed domain and have a very
high computational complexity, our algorithms work during
the actual encoding of the video in the compressed domain
and use the information directly available from the encoder
itself. This results in an object tracking scheme that is very
fast and that can be used for real-time and streaming appli-
cations.

The outline of the paper is as follows. First, we discuss
how our approach differs from existing techniques. Next, we
briefly explain the principles of MPEG-4 FGS encoding and
its possibilities to handle regions of interest. In Section 4, we
explain our algorithms to enable object tracking and to han-
dle object resizing by using the motion vector field. Next, a
test setup to evaluate the methods is outlined in Section 5.
Section 6 presents and discusses the results. Finally, conclu-
sions are drawn in Section 7.

2. RELATEDWORK

Many algorithms, systems, and techniques have been de-
scribed in the literature to identify and to track objects in
video streams. The identification of objects is usually called
object segmentation or object classification.

Most discussed techniques for object segmentation use
object models and ontologies [1], color information (e.g.,
flesh tone for human face recognition) [2, 3], semantic and
probabilistic decomposition of the video frames with learn-
ing capabilities [4, 5], temporal comparisons between con-
secutive images of a video stream [6], leveled watershed tech-
niques [7], or a combination of the previous techniques as in
[8, 9]. These techniques could be used by themselves to track
an object over the consecutive frames of a video stream, but
this implies a computational burden.

Object tracking is following a moving object over consec-
utive video frames. By itself, the object tracking techniques
can be subdivided into object tracking in the pixel domain
and object tracking in the compressed domain. The former
technique requires that the video stream be (partially) de-
coded before it can be processed. Working in the pixel do-
main allows to apply advanced techniques like stochastic al-
gorithms [10], but the necessary decoding step decelerates
the tracking process and makes it infeasible for real-time ap-
plications.

The techniques for object tracking in the compressed do-
main take advantage of the fact that the video encoders cal-
culate the motion vector field during the encoding process of
the sequence. A motion vector field is a mathematical rep-
resentation of the displacement of a group of pixels between
related (previous and successive) frames of a video stream. In
[11], trajectory estimation is made based on the motion vec-
tor field and partially decoded DCT coefficients. While this
technique promises to be “fast enough for real-time applica-
tions,” it assumes that there is “no camera motion.” A simi-
lar technique is discussed in [12], but fails when “the object
was small or the object was nonrigid or was changing a lot in
shape and size.” In [13], the camera motion is estimated by

using a Hough transform for the overall motion and a mean-
shift algorithm based on the motion vector field. The tech-
nique has good results for shorter sequences, unfortunately
the computations are rather complex and time-consuming,
making this technique difficult to implement for real-time
applications. Finally, we want to mention the work of Favalli
et al. [14]. In this work, how object tracking can be done is
described, solely by using the information of the motion vec-
tors and applying very simple calculations, hence adding “as
little additional processing as possible to the complexity of a
standard decoder.”

The work presented in this paper is different from all the
previously discussed techniques, and [14] in particular, as it
adds no complexity to the decoder, but only very little ad-
ditional computations with low time complexity to the en-
coder of the video stream. By doing so, the techniques in-
troduced in this paper can be used for real-time and stream-
ing applications in contrast to [13]. Also, our techniques al-
low the tracking of any kind of object of any arbitrary shape
and are capable of handling camera motion, object resizing,
and object deformation, addressing the main shortcomings
of [11, 12]. Furthermore, although the performance of our
algorithms depends on the motion estimation algorithms,
our techniques are independent of the video encoding spec-
ification itself; for demonstration and testing purpose, we
used the MPEG-4 FGS codec and exploited its ROI capabili-
ties to visualize the results of the object tracking algorithms.
Finally, the novel methods for object tracking in the com-
pressed domain introduced in this paper are detached from
the macroblocks by introducing two independent layers on
top of the macroblock grid. This enables the tracking of fine-
detailed objects.

Note that the techniques described in this paper do not
perform object segmentation nor object classification. It is
assumed that the object that has to be followed is determined
beforehand, either by manual selection (e.g., by a human op-
erator) or automatically by one of the available segmentation
techniques.

3. REGION-OF-INTEREST INMPEG-4 FGS

MPEG is offering scalability in several of its video compres-
sion standards, such as the FGS standard [15] and the scal-
able video coding (SVC) standard [16]. In this paper, we
use the FGS standard to demonstrate our algorithms, but
these could also be implemented in other (scalable) video
compression models such as SVC. Basically, FGS creates two
video layers: a base layer that contains a low-quality version
of the video that can be streamed and decoded under any cir-
cumstances by any FGS-compliant device, and an enhance-
ment layer that improves the quality of the base layer video.
The enhancement layer can be truncated at any bit location,
resulting in a loss of visual quality, but reducing the needed
bit rate.

The base layer is traditionally encoded with MPEG-4
visual simple profile [17, 18]. However, other encoding
schemes for the base layer are suggested in [19–22]. As
such, FGS can be seen as an enhancement scheme on top



Robbie De Sutter et al. 3

ME MC

+

IDCT

Q�1 �

SEA

Video
� DCT Q VLC Base

layer

Enhancement
layer

DCT
residue

Bit-plane
VLC

(a)

Base
layer

Enhancement
layer

Low-quality
video

High-quality
videoVLD

VLD

SEA�1 Q�1

Q�1

+ IDCT +

IDCT +

MC

MC

(b)

(I)DCT: (inverse) discrete cosine transformation

Q(�1): (inverse) quantization
MC: motion compensation
ME: motion estimation
VLC: variable-length coding
VLD: variable-length decoding
SEA(�1): (inverse) selective enhancement algorithms (bit-plane manipulations)

Figure 1: (a) MPEG-4 FGS encoder and (b) MPEG-4 FGS decoder with shifting logic.

of existing codecs delivering additional quality and enabling
various additional features.

When referring to FGS encoding, we actually refer to
the encoding of the enhancement layer. For the encoding of
the FGS enhancement layer, different techniques are possi-
ble. WithinMPEG, bit-plane DCT residue encoding [23] was
chosen.

The enhancement layer receives as input the DCT residue
values from the macroblock of a frame,1 that is, the values
obtained after subtracting the dequantized coded DCT coef-
ficients from the original DCT coefficients (Figure 1(a)). The
resulting residue matrix inherits all characteristics of a DCT
matrix. The difference with more traditional video encod-
ing schemes is a novel approach to encode the residual val-
ues. The FGS bit-plane DCT residue value encoding occurs
by zig-zag scanning the values and by placing them in their
binary form in a matrix (Figure 2). Note that the sign of a
value is stored separately, so only the absolute value is used

1 MPEG-4 traditionally uses the term video object plane (VOP) instead of
a frame. Because our algorithms are independent of the actual used video
encoding technology, we prefer to use the generic term “frame” through-
out this paper.

for the binary representation. A bit plane is one row in this
matrix, thus a sequence of 256 bits (in case of 16 � 16 mac-
roblocks as used in MPEG-4 visual simple profile). Finally,
the bit planes are translated to unique symbols encoded by a
variable-length coding (VLC) technique.

It is possible to (partially) drop bit planes, that is, not
completely encoding or transmitting the bit plane, and as
a result, using less bits for the enhancement layer. If one or
more bit planes are dropped, the reconstructed values at the
decoder side are less precise. These less accurate values can
still be used to rebuild the macroblocks of the frame, but
with a drop in visual quality. When dropping bit planes, large
residue values are more likely to have a more correct recon-
structed value than small residue values as the larger values
will have bits in the upper, nondiscarded, bit planes.

MPEG-4 FGS natively supports the selective improve-
ment of the visual quality within a frame, hence the ROI cod-
ing. This is realized by executing an additional operation on
the binary matrix representation before bit-plane dropping
and works on the complete DCT residue matrix of a mac-
roblock. A shift operation is performed on all matrix values,
that is, multiplying the matrix coefficient values with 2α (α is
the number of bit planes). Because the binary representation



4 EURASIP Journal on Advances in Signal Processing

10 0 3 0 1 0 0 � � �

7 0 �2 0 0 0 0

0 �2 0 0 0 0 0

0 2 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0
...

. . .

MSB 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 � � � 0 0

MSB-1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 � � � 0 0

MSB-2 1 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0 � � � 0 0

LSB 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 � � � 0 0

+
1
+
1
1 �

+

+
�

+

1

0

1

0
1

Bit-plane MSB

MSB-1

MSB-2

LSB

Figure 2: Bit-plane representation of a DCT residue matrix.

of these shifted values appears in higher bit planes, they are
placed more in front during encoding. This improves the
probability that they will be present in the received—and
probably truncated—enhancement layer. Hence, the proba-
bility increases for all values within this DCT matrix to be
reconstructed with a higher precision. As a result, this oper-
ation can be used to support ROI. Obviously, the adequate
information about the shifting is added to the resulting bit-
stream so the decoder can perform the inverse transforma-
tion. This is represented by the SEA�1 block in Figure 1(b).

The algorithms described in the next section are generi-
cally applicable and are not solely usable in MPEG-4 FGS, as
they can be implemented in other codecs. We have chosen to
use MPEG-4 FGS merely to clearly demonstrate and visual-
ize the results of the object tracking algorithm presented in
this paper.

4. OBJECT TRACKING

4.1. Introduction

One or more objects in a video scene can be identified man-
ually or automatically through object segmentation tech-
niques and the macroblocks can be placed into an ROI. Usu-
ally, these objects will move in successive frames. We want to
follow the movement of the objects so that we can automati-
cally relocate the ROI. This process is called object tracking.

During the encoding of the base layer with an MPEG-4
visual simple profile encoder, the motion vectors are calcu-
lated. This information is used to determine the motion of
the tracked object, represented by the object motion vector.
This is illustrated by the dashed arrow in Figure 1(a). The ob-
ject motion vector is used to move the ROI mask accordingly
and, as such, to follow themotion of the object. Furthermore,
as objects become larger or smaller, for example due to cam-
era zooming, the mask must grow or shrink simultaneously
with the object within.

In this section, new algorithms are introduced to enable
object tracking and object motion. It works on a frame per

frame basis; for each frame, the following steps are executed.

(i) First, the macroblocks that are part of the ROI are
identified as explained in Section 4.2.

(ii) Next in Section 4.3, themotion of the object within the
ROI is determined, using the motion estimation infor-
mation from the identified macroblocks. This results
in the translation of the ROI.

(iii) Then, the ROI is resized automatically for optimal ob-
ject fitting by using the motion estimation informa-
tion. This is explained in Section 4.4.

(iv) Finally, to demonstrate the algorithm inMPEG-4 FGS,
the relevant macroblocks of the updated ROI are
identified and these are shifted by the shift value α.
This is done by reusing the techniques explained in
Section 4.2.

To end this section, a cloaking technology is introduced in
Section 4.5 and the time complexity of the algorithms is
given in Section 4.6. Pseudocode listings as an illustration to
these algorithms are given in the appendix of this paper.

4.2. Selecting themacroblocks

The existing object tracking techniques in the compressed
domain as discussed in Section 2 work on complete mac-
roblocks. Also the default ROI functionality in MPEG-4 FGS
utilizes a mask that is aligned with the macroblock bound-
aries of a frame. This results in a direct mapping that deter-
mines whether the macroblock is inside or outside the ROI.
However, as macroblocks are, for example, 16 � 16 pixels,
these rather large blocks of pixels are not suitable for fine-
detailed object tracking.

We use a different and novel approach as we utilize an
enhanced ROI mask that works as a separate floating layer on
top of the frame and the macroblocks within. As a result, this
enhanced mask is no longer aligned with the boundaries of
the macroblocks. As such, our algorithms are independent of
the size of a macroblock which is determined by the video
encoding specification.



Robbie De Sutter et al. 5

(LX ,LY ) T(x, y)

TR

TC

Figure 3: A part of a frame where the card is selected as the ROI.
The ROI mask has dimensions TC �TR = 8� 10. An element of the
ROI mask is notated as T(x, y). The upper left corner of the ROI
mask has the coordinates (LX ,LY ). The ROI mask is a floating layer
on top of the frame and it is not aligned to the boundaries of the
macroblock (represented by the white grid).

The enhanced ROI mask is represented by the matrix T
with dimensions TC � TR; TC is the number of columns and
TR is the number of rows in the enhanced ROI mask. The
value of an element in matrix T—referred to as T(x, y)—
represents the shift value α that has to be applied to the corre-
spondingmacroblock(s). Note that if T(x, y) = 0, no shifting
will occur, allowing to create an arbitrary-shaped ROI hold-
ing arbitrary-shaped objects. Further, an element T(x, y) can
represent any block size; here we use 8 � 8 pixels as block
size which is a quarter of the default 16� 16 pixels block size
of macroblocks in MPEG-4 FGS. This creates a more fine-
grained ROI mask, allowing a more neatly fitting selection
of objects. The discussed algorithms can easily be modified
to cope with any other size. In the remainder of the paper,
we will assume 8 � 8 pixels as block size for the ROI mask
elements and frame macroblocks of 16� 16 pixels.

As the enhanced ROI mask floats on top of the frame,
its location is also required. This is specified in pixel coor-
dinates (denoted as LX and LY ) and locates the upper left
corner of the mask. Note that this location does not need to
be aligned to a macroblock boundary. A visual representa-
tion of the ROI mask as layer on top of the frame is shown in
Figure 3.

Because of the decoupling of the ROI mask from the
macroblocks, a mapping algorithm is required to determine
which macroblocks are overlapped by the ROI. Each element
T(x, y) in the enhanced ROI mask matrix T overlaps with at
least one macroblock, denoted asmi, j . The indices i and j are
calculated by the formulas

i =
⌊
LX + 8x

16

⌋
, j =

⌊
LY + 8y

16

⌋
, (1)

where i = 0, 1, . . . ,M�1 and j = 0, 1 . . . ,N �1 (M being the
number of macroblocks in a frame horizontally and N being
the number of macroblocks in a frame vertically).

The computed macroblock mi, j is tagged as part of the
ROI and receives the shift value T(x, y). As T(x, y) repre-
sents a block of 8�8 pixels, it is possible that T(x, y) overlaps
with other macroblocks, namely mi+1, j , mi, j+1, and mi+1, j+1

(Figure 4). In Figure 4(b), the 8 � 8 pixel block represented
by T(x, y) overlaps with macroblock mi, j and macroblock
mi+1, j . This can be mathematically expressed by the con-
ditions (LX + 8x) mod 16 > 8 and (LY + 8y) mod 16 � 8.
Other overlaps can be determined in a similar way. All mac-
roblocks that are overlapped receive the shift value T(x, y),
hence in case of Figure 4(b), the macroblocksmi, j and mi+1, j

are set to this shifting value. If a macroblock already received
a shifting value, then the highest shifting value is used. In
case of Figure 4(b), the macroblock mi, j receives the highest
shifting value from the ROI mask elements T(x � 2, y � 1),
T(x� 1, y � 1), T(x, y � 1), T(x� 2, y), T(x� 1, y), T(x, y),
T(x�2, y+1), T(x�1, y+1), and T(x, y+1) assuming that
x � 2 � 0, y � 1 � 0, and y + 1 < TC .

The time complexity of the described algorithm to deter-
mine which macroblocks are overlapped by one ROI mask
element T(x, y) is O(1): the calculation of i and j with
the given formulas and the determination of overlaps with
any neighboring macroblocks are done with a constant time
complexity. Note that all multiplication and division opera-
tions to select and to shift the macroblocks can be executed
by a (fast) binary bit-shift operation.

4.3. Objectmotion

Object tracking by using the motion vectors of the object
is only possible if the motion vector field is available. Tra-
ditional base layer encoders, like implementations of the
MPEG-4 visual simple profile specification, do not calculate
the motion vector field of intracoded frames. As our algo-
rithms need this vector field, this limitation of the encoder
implementation can be circumvented by different strategies.
For example, the encoder can be slightly modified, with
minor overhead, in such a way that motion estimation is
performed—hence the determination of the motion vector
field—even for intracoded frames. The motion estimation
can use the latest available frame as reference. As such, the
dashed arrow in Figure 1 always provides the object motion
vector field, also for intracoded frames. Note that the mo-
tion vector field for intracoded frames does not need to be
stored into the resulting bit stream, so this modification of
the encoder implementation does not affect the resulting en-
coded video bit stream. Because there is at least one solution
available, this and following sections assume that the motion
vector field for the current frame is available.

In order to determine the motion of the object, the object
motion vector (OMV) is calculated and is used to translate
the upper left corner of the ROI mask resulting in adjusting
the LX and LY values of the ROImask. TheOMV is calculated
using the steps explained in the following paragraphs.

For each T(x, y) element, four motion vectors are col-
lected from the motion estimation. Which motion vectors



6 EURASIP Journal on Advances in Signal Processing

mi, j

i i + 1

j

j + 1 mi, j+1 mi+1, j+1

mi+1, j

T(x, y)
Macroblock

(a)

mi, j

i i + 1

j

j + 1 mi, j+1 mi+1, j+1

mi+1, j

T(x, y)

(b)

mi, j

i i + 1

j

j + 1 mi, j+1 mi+1, j+1

mi+1, j

T(x, y)

(c)

mi, j

i i + 1

j

j + 1 mi, j+1 mi+1, j+1

mi+1, j

T(x, y)

(d)

Figure 4: Mapping of the ROI mask element T(x, y) onto the macroblockmi, j . (a) The ROI mask element fits completely in the macroblock
mi, j . (b), (c), and (d) the ROI mask element overlaps with neighboring macroblocks.

are chosen depends on the location of T(x, y) as shown in
Figure 5 (motion estimation is in 4MV modus2). As a result,
four subblocks are selected and the motion vectors thereof
are denoted as the vectorsMV 1

x,y to MV 4
x,y . The selection of

the motion vectors is independent of the accuracy of the mo-
tion vector; the implementation in MPEG-4 FGS uses half-
pixel-element (pel) precision as MPEG-4 visual simple pro-
file is used for the base layer.

Next, four overlapping percentages (P1 to P4) are calcu-
lated. They express the overlap of an element T(x, y) with
the four selected subblocks. In 4MVmode, first the horizon-
tally (dx) and vertically (dy) overlaps of T(x, y) with the first
subblock are determined. This is illustrated by Figure 6 and
is calculated using the formulas

dx = 8�
((
LX + 8x

)
mod 8

) = 8�
(
LX mod 8

)
,

dy = 8�
((
LY + 8y

)
mod 8

) = 8�
(
LY mod 8

)
.

(2)

2 The 4MV mode divides a macroblock in 4 8 � 8 blocks (subblocks). The
motion vectors of the four subblocks are calculated. For the macroblock
mi, j , these are notated as MV

γ
i, j , γ = 1, 2, 3, 4. 1MV mode—where only

one motion vector per macroblock is calculated—can also be used by the
algorithm.

The dx and dy values allow the calculation of the overlapping
percentages Pγ:

P1 = dxdy
64

,

P2 =
(
8� dx

)
dy

64
,

P3 = dx
(
8� dy

)
64

,

P4 =
(
8� dx

)(
8� dy

)
64

.

(3)

These percentages Pγ are identical for all elements of the
ROI mask T . This is because we work with a block size of
8� 8 pixels for the ROI mask elements.

Next, the object motion vector for the T(x, y) element
is determined (OMVx,y) as the weighted sum of the motion
vectorsMV

γ
x,y and the overlapping percentages Pγ by

OMVx,y =
∑4

γ=1
(
MV

γ
x,y
)
Pγ

∑4
γ=1 Pγ

. (4)



Robbie De Sutter et al. 7

i i + 1

j

j + 1

T(x, y)

Macroblock

MV1
i, j MV2

i, j MV1
i+1, j MV2

i+1, j

MV4
i, j MV3

i+1, j MV4
i+1, j

MV1
i, j+1 MV2

i, j+1 MV1
i+1, j+1 MV2

i+1, j+1

MV3
i, j+1 MV4

i, j+1 MV3
i+1, j+1 MV4

i+1, j+1

(a)

i i + 1

j

j + 1

T(x, y)

MV1
i, j MV2

i, j MV1
i+1, j MV2

i+1, j

MV3
i, j MV4

i, j MV3
i+1, j MV4

i+1, j

MV1
i, j+1 MV2

i, j+1 MV1
i+1, j+1 MV2

i+1, j+1

MV3
i, j+1 MV4

i, j+1 MV3
i+1, j+1 MV4

i+1, j+1

(b)

i i + 1

j

j + 1

T(x, y)

MV1
i, j MV2

i, j MV1
i+1, j MV2

i+1, j

MV3
i, j MV4

i, j MV3
i+1, j MV4

i+1, j

MV1
i, j+1 MV2

i, j+1 MV1
i+1, j+1 MV2

i+1, j+1

MV3
i, j+1 MV4

i, j+1 MV3
i+1, j+1 MV4

i+1, j+1

(c)

i i + 1

j

j + 1

T(x, y)

MV1
i, j MV2

i, j MV1
i+1, j MV2

i+1, j

MV3
i, j MV4

i, j MV3
i+1, j MV4

i+1, j

MV1
i, j+1 MV2

i, j+1 MV1
i+1, j+1 MV2

i+1, j+1

MV3
i, j+1 MV4

i, j+1 MV3
i+1, j+1 MV4

i+1, j+1

(d)

Figure 5: Selecting the four appropriate motion vectors for ROI mask element T(x, y), based on the overlap with the macroblocks.

Finally, the OMV is calculated as the average of all
OMVx,y vectors:

OMV =
∑TC�1

x=0
∑TR�1

y=0 OMVx,y

TCTR
. (5)

The resulting motion vector is the overall object motion
vector of the ROI mask. This vector is used to adjust the LX
and LY values.

Formula (4) has two additional constraints. These con-
straints were added after evaluating and testing the algo-
rithms and affect the overall results (see Section 6). The first
constraint removes the influence of motion vectors of too
small overlapping areas. If Pγ is smaller than a threshold λ,
the value of Pγ is substituted by zero. This explains the rea-
son of the divisor in (4).

The second constraint removes the influence of the mo-
tion vectors being part of the border of an ROI mask as these
could become less reliable after some iterations of the algo-
rithm. If T(x, y) is part of the border of the ROI mask, the
vector OMVx,y is set to the null vector. In this case, the divi-
sor in (5) is decreased with the number of ROImask elements
that fulfill with constraint (C.2).

These constraints can be expressed as follows:

(C.1) Pγ = 0 if Pγ < λ;
(C.2) OMVx,y = �0 if (x = 0 or x = TC � 1) and TC > 2;

OMVx,y = �0 if (y = 0 or y = TR � 1) and TR > 2.

With regard to the time complexity to compute the OMV
vector, the sums in formula (5) are decisive and result inO(n)
with n being the total number of elements of the ROI mask



8 EURASIP Journal on Advances in Signal Processing

matrix T , that is, the calculation is linear to the number of
ROI mask matrix elements. Indeed, an OMVx,y vector in for-
mula (4) is calculated in O(1) as all MV

γ
x,y and all Pγ (with

γ = 1, . . . , 4) are determined in O(1) for arbitrary T(x, y).
ForMV

γ
x,y , this is proven by the time-complexity analysis in

Section 4.2. The Pγ values are calculated by simple straight-
forward computations, henceO(1). In addition, these Pγ val-
ues are actually calculated only once as they are equal for all
elements of the ROI mask.

4.4. Object resizing

Object motion, as discussed in the previous subsection, cap-
tures the global motion of the object inside the ROI. During
this motion, it is also possible that the “size” of the object
changes, due to for example camera zooming or a change in
the relative distance of the object to the camera. As a result,
the ROI must also change in size, otherwise the ROI will be
too small or too large for the larger, respectively, smaller ob-
ject. We call this ROI resizing.

In total, there are six operations the size of an ROI can
undergo:

(1.a) reduction in width;
(1.b) stay equal in width;
(1.c) enlarge in width;

and

(2.a) reduction in height;
(2.b) stay equal in height;
(2.c) enlarge in height.

For every frame, one action is selected from (1.a), (1.b), and
(1.c) and one action is selected from (2.a), (2.b), and (2.c).
Both actions are executed as explained further in this section.

The first step to enable automatic resizing of the ROI is to
determine the two appropriate actions. To do so, the motion
of the boundaries of the ROI is calculated using the formulas

ML =
TR�1∑
y=0

OMV1
0,y

TR
,

MR =
TR�1∑
y=0

OMV1
TC�1,y

TR
,

MH = ML �MR,

MU =
TC�1∑
x=0

OMV2
x,0

TC
,

MD =
TC�1∑
x=0

OMV2
x,TR�1

TC
,

(6)

MV = MU �MD, (7)

OMV1
x,y represents the first vector component of the vector

OMVx,y ; OMV2
x,y is the second vector component of this vec-

tor.ML represents the horizontal motion of the left-hand side
ROI boundary, MR is the horizontal motion of the right-

dx

dy P1

P3

P2

P4

mi, j

Figure 6: A macroblock mi, j divided into four 8 � 8 subblocks is
overlapped by an T(x, y) element. The figure shows how to deter-
mine dx and dy and the overlapping percentages P1 to P4.

hand side ROI boundary, MU is the vertical motion of the
topmost boundary, and MD denotes the vertical motion of
the bottom boundary. MH is the overall horizontal motion
andMV is the overall vertical motion.

Next, the two ROI resize actions are determined by the
formulas

Action1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1.a) :MH < �δ,

(1.b) : �δ �MH � δ,

(1.c) :MH > δ,

Action2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(2.a) :MV < �δ,

(2.b) : �δ �MV � δ,

(2.c) :MV > δ,

(8)

δ is a threshold the motion of the ROI boundaries has to
reach before the reducing or enlarging of the ROI mask takes
place. A value of half the size of the block that a T(x, y) ele-
ment represents proves to be a good value (see Section 6).

Knowing the required actions, the resizing of the ROI can
take place. In case of action (1.a), the ROI matrix T is re-
placed by a new matrix T� with dimensions ((TC � 1)� TR).
The shifting values of the new matrix T� are a linear combi-
nation of the values of matrix T , expressed by the formula

T�(x, y) =
(
TC � x � 1

)
T(x, y) + (x + 1)T(x + 1, y)

TC
,

(9)

where

x = 0, 1, . . . ,TC � 2, y = 0, 1, . . . ,TR � 1. (10)

This formula reduces the ROI matrix T with one column,
however it is possible that this is insufficient. IfMH +δ < �δ,
we repeat the reduction formula (9). A similar procedure is
executed in case of action (2.a).

In case of operations (1.b) and (2.b), the ROI matrix T
remains invariant.



Robbie De Sutter et al. 9

Finally, in case of an enlarging size, the ROI matrix T is
replaced by a new matrix T� with dimensions ((TC +1)�TR)
in case of (1.c) and (TC�(TR+1)) in case of (2.c). The values
of new matrix T� are a linear combination of the values of
matrix T , analog to the formula (9). This enlarging must also
be repeated if necessary.

After applying the appropriate resizing actions, a surplus
between �δ and δ remains. This value is added to the results
of the calculation of (6) and (7) for the next frame, in other
words we cumulate the motion of the ROI boundaries over
multiple frames.

The time complexity of the algorithm to resize the ROI is
determined as follows. First, the algorithm calculates the hor-
izontal and vertical motions (i.e.,MH and MV ) according to
the formulas (6) and (7). These formulas aggregate over, re-
spectively, the number of rows and the number of columns of
the ROI mask. This results in a time complexity ofO(TR) for
formula (6) and O(TC) for formula (7). The outcome of the
formulas is used to determine the resizing action of the ROI
according to the formula (8). With regard to the time com-
plexity, this finding does not alter the time complexity. Next,
the actual resizing of the ROI matrix is performed, depen-
dent on the type of action determined in the previous step.
If no resizing occurs (actions (1.b) and (2.b)), no additional
steps must be performed. In case of a vertical reduction (ac-
tion (1.a)), the formula (9) must be executed. This formula
creates a newmatrix inO((TC�1)�TR) = O(TC�TR) = O(n),
that is, linear to the number of elements in de ROI matrix.
For all other actions ((1.c), (2.a), and (2.c)), the time com-
plexity can be deduced in a similar way, thus O(n) for each
action. When combining two resize actions or a resize action
that must be repeated several times, the overall time com-
plexity remains O(n).

Adding the time complexity O(TR) to calculate formula
(6) and the O(TC) to calculate formula (7) to the time com-
plexity for the resizing actions (O(n)), the time complex-
ity for the ROI resizing algorithm is O(n). In the optimal
case (if no resizing is done), the time complexity is Ω(m),
m = max(TC ,TR), thus linear to the maximum number of
rows or columns of the ROI mask matrix.

4.5. Cloaking

The algorithms discussed in this section enable the creation
of an ROI mask T , containing elements T(x, y) that repre-
sent blocks of 8 � 8 pixels. By setting a shift value to zero, it
is possible to create arbitrary-shaped ROI masks. However to
determine the object motion as described in Section 4.3, the
motion vectors for all T(x, y) elements are determined and
used in the overall object motion vector calculations. If the
object inside the ROI is not rectangular, the calculation of the
OMVuses all motion vectors within this ROI, even those that
are not associated with this object. This is not desirable as
these are associated with another object which might exhibit
another motion trajectory. In addition, sometimes it is desir-
able to differentiate between the area to improve the visual
quality and the object that is being tracked as the creation of
a region slightly larger than the object itself improves visual
perception.

Figure 7: A part of a frame of the video sequence “hall monitor.”
The black grid represents the cloaking layer which coincides with
the ROI mask matrix T . The hatched parts indicate the cloaking
matrix elements larger than zero. The motion vectors of the parts
that are not hatched will not be used to determine the overall object
motion OMV.

To solve these concerns, an additional cloaking layer is
used that allows full separation of the visually important re-
gion and the object that is being tracked.

The cloaking layer is represented by a new matrix C
which has identical dimensions as matrix T and consists of
binary values indicating if the OMVx,y vector must be taken
into account in the overall object motion vector calculations.
The determination of the values in the matrix C is done by a
manual selection, similar to the determination of the object
that must be followed, that is, the initial determination of
matrix T and the coordinates (Lx,Ly). This results in a third
constraint for formula (4):

(C.3) OMVx,y = �0 if C(x, y) = 0.

Similar as for constraint (C.2), the divisor in (5) is decreased
with the number of the matrix element that fulfills constraint
(C.3).

In Figure 7 a part of a frame is shown of the “hall mon-
itor” sequence (see Figure 8 for the complete frame). The
white grid represents the macroblocks, the black grid is the
enhanced ROI mask matrix T and the cloaking matrix C,
which coincide. The hatched parts indicate the cloaking ma-
trix elements larger than zero. Only the motion vectors of
the hatched parts will be used to determine the overall object
motion OMV.

For the macroblock selection and object tracking algo-
rithms, nothing changes when adding the cloaking matrix C,
except for the overall object motion formula which receives
the additional constraint (C.3). The ROI resizing algorithm



10 EURASIP Journal on Advances in Signal Processing

Figure 8: A picture from the “hall monitor” test sequence.

is extended in such a way that not only matrix T is adjusted
to the new size, but also cloakingmatrixC. This is done iden-
tical to the creation of matrix T� as discussed in the previous
section resulting in a new matrix C�.

The cost in terms of time complexity for adding an addi-
tional cloaking layer is relevant during the resize operation.
As the same resizing formulas are executed as for the ROI
mask matrix T , the time complexity is the same. Hence, the
time complexity of resizing the ROI matrix T and the cloak-
ing matrix C is O(2n) = O(n).

4.6. Time-complexity analysis

To conclude this section, an overall time-complexity analysis
of our algorithms is presented. Our algorithms enabling au-
tomatic object tracking in the compressed domain are based
on two principles: object motion as described in Section 4.3
and object resizing—resulting in ROI resizing—as described
in Section 4.4.

For every frame, both algorithms are executed. As
demonstrated in the previous sections, both have a (worst-
case) time complexity of O(n), meaning that the time com-
plexity is linear to the total number of elements n in the
ROI mask matrix. Because both algorithms are sequential,
the global time complexity for our algorithms is also O(n).

As such, using our lightweight object tracking algorithms
implies adding an additional time cost that is linear to the
size of the object we want to track. Note that the size of the
object is normally smaller than a complete frame. Further-
more, performance analysis of the MPEG-4 reference soft-
ware encoder and MPEG-4 FGS reference software encoder
in [24, 25] shows that the encoder needs tens of millions of
operations per second. As such, our lightweight algorithms
are only a very small fraction of the total required encoding
time. Hence, object tracking in the compressed domain by
using the presented algorithms is feasible, even for real-time
and streaming applications, on the condition that the object
is known through the matrices T and C, and the initial coor-
dinates Lx and Ly .

Finally, it must be noted that the object tracking algo-
rithms do not add any complexity to the video decoder. All

Figure 9: A picture from the “crew” test sequence.

algorithms, and associated time complexity, are part of the
video encoder.

5. MATERIALS ANDMETHODS

In the remainder of the paper, we evaluate the accuracy of
our lightweight object tracking algorithms. First, we created
a video of a playing card moving from right to left against
a nonuniform background, while the camera is zooming in.
The first frame shows the playing card at the right-hand side.
Throughout the frames, the card moves towards and outside
the left boundary of the frame, until only a small piece is vis-
ible in the last frame. Meanwhile, the card is more than dou-
bled in size due to the camera zooming operation. The video
has a resolution of 320�240 resulting in 20�15 macroblocks
and has a length of 501 frames. A picture from the video se-
quence is shown in Figure 3.

We also used two well-know test sequences, namely “hall
monitor” (consisting of 101 frames with a CIF resolution of
352 � 288) and “crew” (consisting of 50 frames with an HD
resolution of 1280�720). One can see a picture of the former
in Figure 8 and a picture of the latter in Figure 9. The first se-
quence was chosen because the object being tracked is scaled
down, the second sequence was chosen because of the larger
resolution and the many moving objects.

To test the algorithms, we need to validate them. We
asked four different persons who have no visual defects to
indicate for each frame the smallest possible rectangular re-
gion containing the object, that is, the card for the first test
sequence, the man on the left in “hall monitor” sequence
and the man on front right in the “crew” sequence. All mac-
roblocks that hold (a part of) this region are marked and
stored as the object indication for the given frame. The ob-
ject indication for the first frame was given as an input, the
remaining frames were tagged manually. From the four re-
sulting sets of object indications, we distilled one reference
set for each test sequence. In the next section, the construc-
tion of these sets are discussed.

The same video feed is used as input video sequence for
the object tracking algorithm. It receives a matrix T with
the initial location (LX ,LY ) so that the selection of mac-
roblocks as explained in Section 4.2 results in an object in-
dication identical to the object indication that was given



Robbie De Sutter et al. 11

for the first frame for the manual marking. In the first se-
quence, the playing card fits perfectly in the ROI mask, hence
the cloaking matrix C is completely filled with values larger
than 0. For the other two sequences, the cloaking matrix C
is used so that only the motion vectors of the human form
are taken into account. Figure 7 depicts the cloaking matrix
for the “hall monitor” sequence. All values of the matrix T
are α = 9. Next, different parameters were used to inves-
tigate their optimal settings and their influence on the re-
sults:

(i) (C.1): λ = 0.00, λ = 0.05, λ = 0.10, λ = 0.15, λ = 0.20,
λ = 0.25;

(ii) δ in formula (8): δ = 2, δ = 4, δ = 8, and δ = 16;
(iii) applying and not applying (C.2).

It is necessary that λ � 0.25 in constraint (C.1). If not and
the ROI mask is located in such a way that none of the over-
lapping percentages are larger than λ, then constraint (C.1)
is never met, and consequently OMV will be the null vec-
tor. As a result, the values LX and LY do not change, and the
ROI mask will not move. For all subsequent frames, the same
event will occur, keeping the ROI mask at the same location.

All different combinations are encoded with an I(P�)
GOP3 structure. During the encoding, for each frame the
macroblocks that are marked for selective enhancement by
the algorithms are logged.

6. RESULTS ANDDISCUSSION

6.1. Results

First, we elaborate on the results of the manual object indica-
tion for the given video, and this by comparing the different
indications given by the four persons. To create the reference
set for the first test sequence, 473 object indications can be
selected in a trivial manner as there is a majority in the four-
object-indication sets. In order to have for each of the 500
frames one-object indication, 27 object indications must be
added to the reference set. To do this, we determine the per-
son that contributed the most indications to the 473 object
indications and we select the remaining 27 object indications
from this person. This results in a reference set of 500 object
indications, for each frame one indication.

The test reference sets for the “crew” and “hall monitor”
sequences are determined in a similar way.

It can be observed that selecting the “correct” region is,
even for humans, a difficult task. Further investigation of the
results shows that most often, the four opinions only differ
in one row or one column of macroblocks.

Next, the logs that were created during the encoding of
the video are compared to the constructed reference set and
compared to the reference set accepting a minor dissimilar-
ity of one row or one column. The criterion for evaluation is
the percentage of identical object indications: the higher this

3 The GOP structure specifies the sequence of frame types. In this notation,
I(P�) means that the encoded video starts with an I-frame, followed by
only P-frames.

value is, the better the automatic algorithm performs. This
result in two measurements for each of the different test se-
quences:

(M.1) compare to the reference set;
(M.2) compare to the reference set and accept a dissimilarity

of one row or one column as correct.

The results for the three sequences can be found in
Table 1.

6.2. Discussion

The relationship of the results for (M.1) and (M.2) is as ex-
pected. Obviously, the results that accept a dissimilarity of
one row or one column as correct (M.2) are always better
than the cases were such dissimilarity is not accepted as cor-
rect (M.1).

We observe that the value of λ does not have a signif-
icant influence on the results. Because formula (4) weights
the value of the motion vector MV

γ
x,y with overlapping per-

centage Pγ, the influence of small overlapping areas is auto-
matically reduced.

We also observe that our algorithms are also insensitive to
sudden motion changes. Indeed, if the object stops, the cal-
culation of the object motion vector will result in a null vec-
tor as the motion vectors associated with the object will also
be the null vector. Hence, the ROImask will not be displaced.
If the object starts moving again, the motion vectors will re-
flect this motion and the object motion vector will reflect the
displacement of the object, regardless of the direction of this
last motion. In fact, the object that is being tracked in the
“hall monitor” sequence stops for a few frames and contin-
ues to move in another direction.

The table also shows the influence of parameter δ. The
parameter δ determines how soon the matrix T must be re-
sized. The necessity of this parameter is proven by the fact
that the results for δ = 4 are superior for all sequences.
Hence, this parameter is independent of the kind of resiz-
ing, namely an object enlarging in the “card” and “crew” se-
quences and an object reduction in the “hall monitor” se-
quence. The biggest difference is shown when (C.2) is en-
abled. For the “card” sequence, the improvement for using
δ = 4 instead of δ = 8 ranges from 56.6% to 61.8%. When
comparing δ = 4 to δ = 16, the difference is even more clear.
Setting the parameter δ = 8 or δ = 16 makes the resizing
algorithm too slow to react properly. In the case of the “card”
test video, this usually means that the matrix T is too small
as the algorithm does not counter the zoom-in operation im-
mediately. δ should be set to the optimal value of 4. In case
of the “crew” sequence, the enlarging of the traced object it-
self occurs more steadily and slowly, when compared to the
playing card of the first test sequence. Hence the need to re-
size in two consecutive frames is rare; the resizing is more
distributed over multiple frames. As such, if the algorithm
misses a resize for one frame, it can correct this in the next
frame. This explains the smaller influence of δ parameter.
Setting δ too small (e.g., δ = 2) results in an unsteady re-
sizing.



12 EURASIP Journal on Advances in Signal Processing

Table 1: Test results (%).

Card Hall monitor Crew

Parameters C.2 Not C.2 C.2 Not C.2 C.2 Not C.2

δ λ M.1 M.2 M.1 M.2 M.1 M.2 M.1 M.2 M.1 M.2 M.1 M.2

2

0.00 9 18 8 13 5 36 5 37 18 68 14 70

0.05 8 18 8 13 5 36 5 36 16 68 14 66

0.10 10 19 8 14 5 36 5 36 16 68 14 68

0.15 10 19 7 14 5 36 5 37 16 70 8 48

0.20 11 20 7 14 4 38 5 38 8 46 8 42

0.25 11 20 7 19 4 38 6 44 14 68 14 70

4

0.00 75 96 30 59 11 85 10 85 14 78 14 78

0.05 75 96 30 60 16 87 10 85 14 78 14 78

0.10 76 96 31 61 12 86 10 85 14 78 14 78

0.15 76 96 32 60 21 88 10 85 14 76 14 76

0.20 74 96 30 60 20 86 11 86 14 72 14 72

0.25 71 96 33 60 20 87 12 86 14 72 14 72

8

0.00 15 34 14 36 2 34 2 42 10 72 10 72

0.05 15 34 14 36 2 34 2 42 10 72 10 72

0.10 15 34 14 36 2 34 2 42 10 72 10 72

0.15 15 36 14 36 2 34 2 44 10 72 10 72

0.20 15 35 14 35 2 34 2 42 10 72 10 72

0.25 15 34 14 34 2 34 2 44 10 72 10 72

16

0.00 14 28 14 29 2 20 2 26 10 48 10 48

0.05 14 28 14 29 2 20 2 26 10 48 10 48

0.10 14 28 14 30 2 20 2 25 10 48 10 48

0.15 14 28 13 30 2 20 4 60 10 48 10 48

0.20 14 28 13 30 2 21 2 25 10 46 10 46

0.25 14 28 13 30 2 20 2 25 10 46 10 46

for each frame do
// Start procedure
// Initialization frame
Algorithm 2
OMV = calculate OMV using Algorithm 3

// Translated mask
LX = LX +OMV1

LY = LY +OMV2

// Perform resize actions
Algorithm 5
Algorithm 6

// Determine macroblock shifting
Values

Algorithm 7
end

Algorithm 1: Main algorithm.

The table also reveals the big impact of constraint (C.2)
for the “card” sequence, in particular when δ is set to 4. It
is clear from the test that the border of an ROI mask is less
reliable, especially after some iterations. To avoid the same

// Calculate dx, dy

dx = 8� (LX mod 8)
dy = 8� (LY mod 8)

// Calculate Pγ and
∑4

γ=1 P
γ

P1 = (dx � dy)/64
P2 = (dx � (8� dy))/64
P3 = ((8� dx)� dy)/64
P4 = ((8�dx)�(8�dy))/64
if P1 < λ then P1 = 0
if P2 < λ then P2 = 0
if P3 < λ then P3 = 0
if P4 < λ then P4 = 0
Psum = P1 + P2 + P3 + P4

Algorithm 2: Initialization for each frame.

event to occur when λ > 0.25 as explained in Section 5, the
constraint (C.2) is never applied if the ROI mask is too small
in size. This is realized by (C.2), its conditions TC > 2, and
TR > 2. Constraint (C.2) should always be enabled in combi-
nation with δ = 4 as this always generates better results.

However the latter depends on the content of the video
itself. As the test video has a growing object due to a camera



Robbie De Sutter et al. 13

// For all matrix elements T
for x = 0 to TC � 1 do

for y = 0 to TR � 1 do
// GetMV 1

x,y using Algorithm 4

// GetMV 2
x,y using Algorithm 4

// GetMV 3
x,y using Algorithm 4

// GetMV 4
x,y using Algorithm 4

// Calculate formula (4)
OMVx,y = (MV 1

x,y +MV 2
x,y +MV 3

x,y+

MV 4
x,y)/Psum

// Apply constraint (C.2)
if (((x = 0) or (x = TC � 1)) and
(TC > 2)) or (((y = 0) or
(y = TR � 1)) and (TR > 2)) then

OMVx,y = �0
C2Counter++

end
end

end

// Calculate overall object motion
result.

for x = 0 to TC � 1 do
for y = 0 to TR � 1 do

OMV+ = OMVx,y

end
end
OMV = OMV/((TC � TR)� C2Counter)

Algorithm 3: Calculate OMV.

zooming operation, setting δ larger than the optimal value
will result in a too small matrix T . Therefore, if the matrix
T is smaller than the genuine object, adding the motion vec-
tors of the elements on the edges of matrix T means incorpo-
rating the motion vectors of the actual object being tracked;
this is good. For video sequences where the matrix T is larger
than the actual object, not enabling constraint (C.2) gives a
worse result as the motion vectors outside the actual object
are taken into account.

The reason we do not observe this large influence for the
two other sequences is because of the usage of the cloaking
matrix C. Indeed, because the used cloaking matrix—such
as the one depicted in Figure 7—removes most macroblocks
that are part of the border, the enabling or disabling of con-
straint (C.2) hardly influences the results for these sequences.

To conclude, the most optimal settings for a video se-
quence are

(i) (C.1): λ � 0.25;
(ii) (C.2): enabled or use a cloaking matrix C;
(iii) δ: 4.

Our automatic algorithm reaches near perfection when
comparing to the reference set and allowing one row or col-

// DetermineMVx,y

if (LX + 8� dx) mod 16 � 8 and
(LY + 8� dy) mod 16 � 8 then

// Figure 5(a)
MV 1

x,y = MV 1
i, j

MV 2
x,y = MV 2

i, j

MV 3
x,y = MV 3

i, j

MV 4
x,y = MV 4

i, j

else if (LX + 8� dx) mod 16 > 8 and
(LY + 8� dy) mod 16 � 8 then

// Figure 5(b)
MV 1

x,y = MV 2
i, j

MV 2
x,y = MV 1

i+1, j

MV 3
x,y = MV 4

i, j

MV 4
x,y = MV 3

i+1, j

else if (LX + 8� dx) mod 16 � 8 and
(LY + 8� dy) mod 16 > 8 then

// Figure 5(c)
MV 1

x,y = MV 3
i, j

MV 2
x,y = MV 4

i, j

MV 3
x,y = MV 1

i, j+1

MV 4
x,y = MV 2

i, j+1

else if (LX + 8� dx) mod 16 > 8 and
(LY + 8� dy) mod 16 > 8 then

// Figure 5(d)
MV 1

x,y = MV 4
i, j

MV 2
x,y = MV 3

i+1, j

MV 3
x,y = MV 2

i, j+1

MV 4
x,y = MV 1

i+1, j+1

end

Algorithm 4: DetermineMVx,y .

umn mismatch (M.2) for the “card” sequence: 96.1% on av-
erage over the six possible values for λ. Comparing to the
reference set without allowing one row or column mismatch
(M.1) gives an average result of 74.5% for this first test se-
quence.

For the “hall monitor” sequence, using the optimal set-
tings, our algorithms achieve on average 86.5% when allow-
ing one row or column mismatch (M.2). However, if a mis-
match is not allowed (M.1), the results are much lower in
comparison to the first sequence. The good results for (M.2)
indicate thatmostly there is only one row or one columnmis-
match. Looking more into detail, we see that the automatic
algorithm marks the object too large, hence one column or
one row too much. While this restrains the percentages for
(M.1), the visual perception is not negatively influenced by
enhancing a little more than the object. Furthermore, the
mismatch does not propagate over successive frames, so the
algorithms are still useful.

Finally, the “crew” sequence achieves also a good result
when using the optimal settings: on average 75.7% when
allowing one row or column mismatch (M.2). While these



14 EURASIP Journal on Advances in Signal Processing

MH = calculate formula (6)

// Perform resize actions horizontal
ifMH < �δ then

// Action (1.a)
repeat

for x = 0 to TC � 2 do
for y = 0 to TR � 1 do

T �(x, y) =(
TC � x � 1

)
T(x, y) + (x + 1)T(x + 1, y)

TC

end
end
MH = MH + δ

untilMH > �δ

end
ifMH > δ then

// Action (1.c)
repeat

for x = 0 to TC do
for y = 0 to TR � 1 do

T �(x, y) =(
TC � x

)
T(x, y) + (x)T(x � 1, y)

TC

end
end
MH = MH � δ

untilMH � δ

end

Algorithm 5: Perform resize actions horizontal.

results are lower than the “card” sequence—particularly
when comparing to (M.1)—, it must be noted that this se-
quence is far more complex as it contains more (moving)
objects, a moving background with similar texture and col-
orization of the object that is being tracked, abrupt lumi-
nance changes due to flash photography, and so on.

Nevertheless, these results illustrate the usability of our
algorithms to enable a lightweight and real-time object track-
ing in the compressed domain.

7. CONCLUSIONS

In this paper, we have discussed novel algorithms allowing
a video encoder to automatically track an object. These al-
gorithms have a very low time complexity which is linear to
the size of the object, making them very useful for real-time
and streaming applications. We make use of the motion vec-
tor field calculated by the encoder’s motion estimation algo-
rithms to capture the overall motion of the tracked object.
We also introduced an algorithm that allows an encoder to
cope with the “enlargement” and “shrinking” of an object.
All our algorithms are capable of tracking any kind of ob-
jects in a video stream. Furthermore, our algorithms are not
bound to the (relatively large) size of a macroblock; we use

MV = calculate formula (7)

// Perform resize actions vertical
ifMV < �δ then

// Action (2.a)
repeat

for x = 0 to TC � 1 do
for y = 0 to TR � 2 do

T �(x, y) =(
TR � y � 1

)
T(x, y) + (y + 1)T(x, y + 1)

TR
end

end
MV = MV + δ

untilMV > �δ
end
ifMV > δ then

// Action (2.c)
repeat

for x = 0 to TC � 1 do
for y = 0 to TR do

T �(x, y) =(
TR � y

)
T(x, y) + (y)T(x, y � 1)

TR
end

end
MV = MV � δ

untilMV � δ
end

Algorithm 6: Perform resize actions vertical.

a fine grid on top of a frame so the algorithms can track any
object in a more detailed way.

All our novel methods presented in this paper are generic
and can be implemented in any codec that calculates the mo-
tion vector field. However, the results depend on the spe-
cific kind of the motion estimation algorithm of the video
encoder. For testing and evaluating purposes, we have im-
plemented the algorithms within the MPEG-4 FGS reference
software codec. We used the region-of-interest capabilities of
this codec to visualize the results of the algorithms. A second
layer was introduced enabling us to differentiate between the
ROI and the (possibly smaller) objects within. Three test se-
quences were used to evaluate the influence of various pa-
rameters. The results of our algorithms were compared to
manually constructed reference sets, so an optimal param-
eter set was determined.

From these results, we can conclude that these novel
lightweight algorithms are capable of tracking objects in
complex scenes, can handle scaled down or scaled up objects,
and are independent of the resolution of the video stream.

APPENDIX

PSEUDOCODE ALGORITHMS

The pseudocode listings in Algorithms 1, 2, 3, 4, 5, 6, and
7 are given as an illustration of the above mentioned algo-
rithms.



Robbie De Sutter et al. 15

// For all matrix elements T
for x = 0 to TC � 1 do

for y = 0 to TR � 1 do
// Determine i and j
i = trunc((LX + 8� x)/16)
j = trunc((LY + 8� y)/16)

// Set shifting values to
macroblocks

if (LX + 8� dx) mod 16 � 8 and
(LY + 8� dy) mod 16 � 8 then

// Figure 4(a)
mi, j = max(mi, j ,T(x, y))

else if (LX + 8� dx) mod 16 > 8 and
(LY + 8� dy) mod 16 � 8 then

// Figure 5(b)
mi, j = max(mi, j ,T(x, y))
mi+1, j = max(mi+1, j ,T(x, y))

else if (LX + 8� dx) mod 16 � 8 and
(LY + 8� dy) mod 16 > 8 then

// Figure 5(c)
mi, j = max(mi, j ,T(x, y))
mi, j+1 = max(mi, j+1,T(x, y))

else if (LX + 8� dx) mod 16 > 8 and
(LY + 8� dy) mod 16 > 8 then

// Figure 5(d)
mi, j = max(mi, j ,T(x, y))
mi+1, j = max(mi+1, j ,T(x, y))
mi, j+1 = max(mi, j+1,T(x, y))
mi+1, j+1 = max(mi+1, j+1,T(x, y))

end
end

end

Algorithm 7: Determine shifting values for all macroblocks.

ACKNOWLEDGMENTS

The authors would like to thank TomCaljon of the Vrije Uni-
versiteit Brussel, Department of Electronics and Informatics
for his valuable input and testing during the writing of this
paper. The research activities that have been described in this
paper were funded by Ghent University, the Interdisciplinary
Institute for Broadband Technology (IBBT), the Institute for
the Promotion of Innovation by Science and Technology in
Flanders (IWT), the Fund for Scientific Research-Flanders
(FWO-Flanders), the Belgian Federal Science Policy Office
(BFSPO), and the European Union.

REFERENCES

[1] A. J. Lipton, H. Fujiyoshi, and R. S. Patil, “Moving target clas-
sification and tracking from real-time video,” in Proceedings
of the 4th IEEE Workshop on Applications of Computer Vision
(WACV ’98), pp. 8–14, Princeton, NJ, USA, October 1998.

[2] M. van der Schaar and Y.-T. Lin, “Content-based selective en-
hancement for streaming video,” in Proceedings of IEEE Inter-
national Conference on Image Processing (ICIP ’01), vol. 2, pp.
977–980, Thessaloniki, Greece, October 2001.

[3] H. Wang and S.-F. Chang, “A highly efficient system for auto-
matic face region detection inMPEG video,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 7, no. 4, pp.
615–628, 1997.

[4] C. Bregler, “Learning and recognizing human dynamics in
video sequences,” in Proceedings of the IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition, pp.
568–574, San Juan, Puerto Rico, USA, June 1997.

[5] A. Cavallaro, O. Steiger, and T. Ebrahimi, “Semantic video
analysis for adaptive content delivery and automatic descrip-
tion,” IEEE Transactions on Circuits and Systems for Video Tech-
nology, vol. 15, no. 10, pp. 1200–1209, 2005.

[6] O. Sukmarg and K. R. Rao, “Fast object detection and seg-
mentation in MPEG compressed domain,” in Proceedings of
IEEE Region 10 Annual International Conference on TENCON
(TENCON ’00), vol. 3, pp. 364–368, Kuala Lumpur, Malaysia,
September 2000.

[7] S.-Y. Chien, Y.-W. Huang, and L.-G. Chen, “Predictive wa-
tershed: a fast watershed algorithm for video segmentation,”
IEEE Transactions on Circuits and Systems for Video Technol-
ogy, vol. 13, no. 5, pp. 453–461, 2003.

[8] S. Dasiopoulou, V. Mezaris, I. Kompatsiaris, V.-K. Papastathis,
and M. G. Strintzis, “Knowledge-assisted semantic video ob-
ject detection,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 15, no. 10, pp. 1210–1224, 2005.

[9] V. Mezaris, I. Kompatsiaris, N. V. Boulgouris, and M. G.
Strintzis, “Real-time compressed-domain spatiotemporal seg-
mentation and ontologies for video indexing and retrieval,”
IEEE Transactions on Circuits and Systems for Video Technol-
ogy, vol. 14, no. 5, pp. 606–621, 2004.

[10] M. Isard and A. Blake, “Contour tracking by stochastic prop-
agation of conditional density,” in Proceeding of 4th European
Conference on Computer Vision (ECCV ’96), vol. 1, pp. 343–
356, Cambridge, UK, April 1996.

[11] W.-N. Lie and R.-L. Chen, “Tracking moving objects in
MPEG-compressed videos,” in Proceedings of IEEE Interna-
tional Conference on Multimedia and Expo (ICME ’01), pp.
1172–1175, Tokyo, Japan, August 2001.

[12] R. Achanta, M. Kankanhalli, and P. Mulhem, “Compressed
domain object tracking for automatic indexing of objects in
MPEG home video,” in Proceedings of IEEE International Con-
ference on Multimedia and Expo (ICME ’02), vol. 2, pp. 61–64,
Lusanne, Switzerland, August 2002.

[13] S.-M. Park and J. Lee, “Object tracking in MPEG compressed
video using mean-shift algorithm,” in Proceedings of the Joint
Conference of the 4th International Conference on Information,
Communications and Signal Processing and the 4th Pacific-Rim
Conference on Multimedia (ICICS-PCM ’03), vol. 2, pp. 748–
752, Singapore, December 2003.

[14] L. Favalli, A. Mecocci, and F. Moschetti, “Object tracking for
retrieval applications in MPEG-2,” IEEE Transactions on Cir-
cuits and Systems for Video Technology, vol. 10, no. 3, pp. 427–
432, 2000.

[15] W. Li, “Overview of fine granularity scalability in MPEG-4
video standard,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 11, no. 3, pp. 301–317, 2001.

[16] J.-R. Ohm, “Advances in scalable video coding,” Proceedings of
the IEEE, vol. 93, no. 1, pp. 42–56, 2005.

[17] F. Pereira and T. Ebrahimi, Eds., The MPEG-4 Book, Prentice-
Hall, Englewood Cliffs, NJ, USA, 2002.

[18] A. Puri and T. Chen, Eds.,Multimedia Systems, Standards and
Networks, Marcel Dekker, New York, NY, USA, 2000.



16 EURASIP Journal on Advances in Signal Processing

[19] J. Ascenso and F. Pereira, “Drift reduction for a H.264/AVC
fine grain scalability with motion compensation architecture,”
in Proceedings of International Conference on Image Processing
(ICIP ’04), vol. 4, pp. 2259–2262, Singapore, October 2004.

[20] M. Domański, L. Blaszak, and S. Maćkowiak, “AVC video
coders with spatial and temporal scalability,” in Proceedings of
Picture Coding Symposium (PCS ’03), pp. 41–46, Saint Malo,
France, 2003.

[21] K. Ugur, G. Louizis, P. Nasiopoulos, and R. Ward, “Extremely
fast selective enhancement method for fine granular scalable
enabled H.264 video,” in Proceedings of IEEE Canadian Con-
ference on Electrical and Computer Engineering (CCECE ’03),
vol. 2, pp. 1103–1106, Montreal, Canada, May 2003.

[22] K. Ugur and P. Nasiopoulos, “Combining bitstream switching
and FGS for H.264 scalable video transmission over varying
bandwidth networks,” in IEEE Pacific Rim Conference on Com-
munications Computers and Signal Processing (PACRIM ’03),
vol. 2, pp. 972–975, Victoria, BC, Canada, August 2003.

[23] F. Ling, W. Li, and H. Sun, “Bitplane coding of DCT coeffi-
cients for image and video compression,” in Visual Communi-
cations and Image Processing, vol. 3653 of Proceedings of SPIE,
pp. 500–508, San Jose, Calif, USA, January 1999.

[24] F. Cavalli, R. Cucchiara, M. Piccardi, and A. Prati, “Per-
formance analysis of MPEG-4 decoder and encoder,” in
Proceedings of 4th EURASIP-IEEE International Symposium
on Video/Image Processing and Multimedia Communications
(VIPromCom ’02), pp. 227–231, Zadar, Croatia, June 2002.

[25] O. Lehtoranata and T. D. Hämäläinen, “Complexity analysis
of spatially scalable MPEG-4 encoder,” in IEEE International
Symposium on System-on-Chip, pp. 57–60, Tampere, Finland,
November 2003.

Robbie De Sutter received the M.S. degree
in computer science from Ghent Univer-
sity, Belgium, in 1999. He joined the Mul-
timedia Lab in 2001, where he obtained his
Ph.D. degree in 2006. His research interests
include video coding technologies, usage-
context modeling and negotiation, and con-
tent adaptation.

Koen De Wolf received the M.S. degree in
computer science from Ghent University,
Belgium, in 2003. In that year, he joined
the Multimedia Lab, where he is currently
working towards the Ph.D. degree. His re-
search interests include video coding tech-
nologies, more in particular scalable video
coding, interlayer prediction, and scalable
motion information.

Sam Lerouge received his M.S. degree in
computer science from Ghent University,
Belgium in 2001. Since then, he started
working towards the Ph.D. degree in the
Multimedia Lab, which he obtained in 2005.
His research focused on maximizing the vi-
sual quality in constrained environments.
Since 2006, he is working as a Project Man-
ager for the Regionale Media Maatschappij,
which supports two local television chan-
nels, where he is focusing on digital TV applications.

Rik Van de Walle received his M.S. and
Ph.D. degrees in engineering from Ghent
University, Belgium in 1994 and 1998, re-
spectively. After a visiting scholarship at the
University of Arizona (Tucson, USA), he re-
turned to Ghent University, where he be-
came Professor of multimedia systems and
applications, and Head of the Multimedia
Lab. His current research interests include
multimedia content delivery, presentation
and archiving, coding and description of multimedia data, content
adaptation, and interactive (mobile) multimedia applications.


	1. INTRODUCTION
	2. RELATED WORK
	3. REGION-OF-INTEREST IN MPEG-4 FGS
	4. OBJECT TRACKING
	4.1. Introduction
	4.2. Selecting the macroblocks
	4.3. Object motion
	4.4. Object resizing
	4.5. Cloaking
	4.6. Time-complexity analysis

	5. MATERIALS ANDMETHODS
	6. RESULTS AND DISCUSSION
	6.1. Results
	6.2. Discussion

	7. CONCLUSIONS
	APPENDIX
	PSEUDOCODE ALGORITHMS

	ACKNOWLEDGMENTS
	REFERENCES

