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A new similarity measure, called SimilB, for time series analysis, based on the cross-ΨB-energy operator (2004), is introduced. ΨB

is a nonlinear measure which quantifies the interaction between two time series. Compared to Euclidean distance (ED) or the Pear-
son correlation coefficient (CC), SimilB includes the temporal information and relative changes of the time series using the first
and second derivatives of the time series. SimilB is well suited for both nonstationary and stationary time series and particularly
those presenting discontinuities. Some new properties of ΨB are presented. Particularly, we show that ΨB as similarity measure is
robust to both scale and time shift. SimilB is illustrated with synthetic time series and an artificial dataset and compared to the CC
and the ED measures.
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1. INTRODUCTION

A Time Series (TS) is a sequence of real numbers where each
one represents the value of an attribute of interest (stock or
commodity price, sale, exchange, weather data, biomedical
measurement, etc.). TS datasets are common in various fields
such as in medicine, finance, and multimedia. For example,
in gesture recognition and video sequence matching using
computer vision, several features are extracted from each im-
age continuously, which renders them TSs [2]. Typical appli-
cations on TSs deal with tasks like classification, clustering,
similarity search, prediction, and forecasting. These applica-
tions rely heavily on the ability to measure the similarity or
dissimilarity between TSs [3]. Defining the similarity of TSs
or objects is crucial in any data analysis and decision mak-
ing process. The simplest approach typically used to define a
similarity function is based on the Euclidean distance (ED)
or some extensions to support various transformations such
as scaling or shifting. The ED may fail to produce a correct
similarity measure between TSs because it cannot deal with
outliers and it is very sensitive to small distortions in the time
axis [4]. The Pearson correlation coefficient (CC) is a popu-
lar measure to compare TSs. Yet, the CC is not necessarily
coherent with the shape and it does not consider the order
of time points and uneven sampling intervals. Furthermore,

similarity measures using the ED or the CC do not include
temporal information and the relative changes of the TSs.
Thus, clustering algorithms based on these metrics, such as
k-means, fuzzy c-means, or hierarchical clustering, cannot
cluster TSs correctly [5]. In this paper, we introduce a new
similarity measure, noted SimilB, which includes the tempo-
ral information and relative change of the TS. SimilB is based
on the ΨB operator [1], a nonlinear similarity function which
measures the interaction between two time-signals including
their first and second derivatives [6]. Furthermore, the link
established between ΨB operator and the cross Wigner-Ville
distribution shows that ΨB and consequently SimilB are well
suited to study nonstationary signals [1].

2. THEΨB OPERATOR

To measure the interaction between two real time signals,
the cross Teager-Kaiser operator (CTKEO) has been defined
[7]. This operator has been extended to complex-valued sig-
nals noted ΨC, in [1]. The CTKEO, applied to signals x(t)
and y(t), is given by [x, ẏ] ≡ ẋy − xẏ, where [x, ẏ] is the
Lie bracket which measures the instantaneous differences in
the relative rate of change between x and ẏ. In the general
case, if x and y represent displacements in some generalized
motions, [x, ẏ] has dimensions of energy (per unit mass), it
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is viewed as a cross-energy between x and y [7]. Based on
ΨC function, a symmetric and positive function, called cross-
ΨB-energy operator, is defined [1]. We have shown that time-
delay estimation problem between two signals is an example
of interaction measure between these two signals by ΨB [6].
Let x and y be two complex signals, ΨB is defined as [1]

ΨB(x, y) = 1
2

[
ΨC(x, y) + ΨC(y, x)

]
, (1)

where ΨC(x, y) = (1/2)[ẋ∗ ẏ + ẋ ẏ∗]− (1/2)[xÿ∗ + x∗ ÿ]. The
ΨB(x, y) of complex signals x and y is equal to the sum of
ΨB(x, y) of their real and imaginary parts [1]:

ΨB(x, y) = ΨB
(
xr , yr

)
+ ΨB

(
xi, yi

)
, (2)

where x(t) = xr(t)+ jxi(t) and y(t) = yr(t)+ j yi(t) and j de-
notes the imaginary unit. Subscripts r and i indicate the real
and imaginary parts of the complex signal. According to (2),
the ΨB(x, y) is a real quantity, as expected for an energy oper-
ator. To compute the analytic signals x(t) or y(t), the Hilbert
transform is used. In the following we give the expression of
ΨB for analytic signals.

3. EXPRESSION OFΨB FOR ASSOCIATED
ANALYTIC SIGNALS

Complex signals are used in various areas of signal process-
ing. In the continuous time, they appear, for example, in the
description for narrow-band signals. Indeed, the appropriate
definition of instantaneous phase or amplitude of such sig-
nals requires the introduction of the analytic signal, which
is necessarily complex. Let x and y be two real signals, and
xA and yA, respectively, their corresponding analytic signals:
xA = x + jH(x) and yA = y + jH(y), where H(·) is the
Hilbert transform.1 By applying the relation

u̇v̇ − 1
2

(uv̈ + vü) = 2u̇v̇ − 1
2
d2uv

dt2
(3)

in (2), for (u, v) = (x, y) and (u, v) = (H(x),H(y)), respec-
tively, it comes that ΨB(xA, yA) is expressed directly in terms
of x, y, H(x) and H(y) as

ΨB
(
xA, yA

) = 2
[
ẋ ẏ + Ḣ(x)H(y)

]

− 1
2
d2

dt2

[
xy + H(x)H(y)

]
.

(4)

Equation (4) is used to calculate the interaction between con-
tinuous TSs.

4. DISCRETIZING THE CONTINUOUS-TIME
ΨB OPERATOR

Discretized derivatives are combined to obtain from the con-
tinuous version of ΨB an expression closely related to discrete

1 H(x) = h� x, where the frequency response of h is ĥ( f ) = − jsign( f ).
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Figure 1: Three sampled TSs with different shapes.

Table 1: SimilB, the ED, the CC between f2 and f1, and f2 and f3 in
Figure 1.

TSs ED CC SimilB
(
f2, f1

)
3.9955 0.0917 0.930

(
f2, f3

)
3.9955 0.0917 0.750

Table 2: Classification errors of clustering task using the SimilB, the
ED, and the CC for CBF.dat dataset.

SimilB ED CC

0.222 0.888 0.888

form of the operator noted ΨBd and operating on discrete-
time signals x(n) and y(n). Three sample differences are ex-
amined. For simplicity, we replace t by nTs (Ts is the sam-
pling period), x(t) with x(nTs) or simply x(n). Using the
same reasoning as in [8] we obtain the following relations.

(i) Two-sample backward difference:

ẋ(t) �−→
[
xk(n)− xk(n− 1)

]

Ts
,

ẍ(t) �−→
[
xk(n)− 2xk(n− 1) + xk(n− 2)

]

T2
s

,

ΨB(xk(t), yk(t)) �−→ xk(n− 1)yk(n− 1)
T2
s

− 0.5
[
xk(n)yk(n− 2) + yk(n)xk(n− 2)

]

T2
s

,

ΨB
(
xk(t), yk(t)

) �−→ ΨBd

(
xk(n− 1), yk(n− 1)

)

T2
s

, k ∈ {i, r}.
(5)
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Table 3: Estimated TB value versus SNR signals s1(t) and s2(t) using SimilB.

SimilB SNR = −6 dB SNR = −2 dB SNR = 1 dB SNR = 3 dB SNR = 5 dB SNR = 9 dB
(
s1(t), r1(t)

)
300± 1 300± 1 300 300 300 300

(
s2(t), r2(t)

)
300± 2 300± 1 300± 1 300± 1 300± 1 300

Finally, the discrete form of ΨB(x(t), y(t)) is given by

ΨB
(
x(t), y(t)

)

�−→
[
ΨBd

(
xr(n−1), yr(n−1)

)
+ ΨBd

(
xi(n−1), yi(n−1)

)]

T2
s

,

(6)

where �−→ denotes the mapping from continuous to discrete.
(ii) Two-sample forward difference:

ẋ(t) �−→
[
xk(n + 1)− xk(n)

]

Ts
,

ẍ(t) �−→
[
xk(n + 2)− 2xk(n + 1) + xk(n)

]

T2
s

,

ΨB
(
xk(t), yk(t)

) �−→ xk(n + 1)yk(n + 1)
T2
s

− 0.5
[
xk(n + 2)yk(n) + yk(n + 2)xk(n)

]

T2
s

,

ΨB
(
xk(t), yk(t)

) �−→ ΨBd

(
xk(n + 1), yk(n + 1)

)

T2
s

, k ∈ {i, r}.
(7)

Thus, from ΨB we obtain ΨBd shifted by one sample to
the right and scaled by T−2

s . Finally, the discrete form of
ΨB(x(t), y(t)) is given by

ΨB
(
x(t), y(t)

)

�−→
[
ΨBd

(
xr(n +1), yr(n +1)

)
+ ΨBd

(
xi(n +1), yi(n +1)

)]

T2
s

.

(8)

Note that for both asymmetric two-sample differences, ΨB

is shifted by one sample and scaled by T−2
s . If we ignore the

one-sample shift and the scaling parameter, one can trans-
form ΨB(x(t), y(t)) into ΨBd (x(n), y(n)) as follows:

ΨB
(
x(t), y(t)

) �−→ ΨBd

(
xr(n), yr(n)

)
+ ΨBd

(
xi(n), yi(n)

)
,
(9)

ΨBd

(
xk(n), yk(n)

)

= xk(n)yk(n)− 0.5
[
xk(n + 1)yk(n− 1)

+ yk(n + 1)xk(n− 1)
]
, k ∈ {i, r}.

(10)
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Figure 2: The Cylinder-Bell-Funnel dataset (CBF.dat) [10].

(iii) Three-sample symmetric difference:

ẋ(t) �−→
[
xk(n + 1)− xk(n− 1)

]

2Ts
,

ẍ(t) �−→
[
xk(n + 2)− 2xk(n) + xk(n− 2)

]

4T2
s

,

ΨB
(
xk(t), yk(t)

)

�−→ 2xk(n)yk(n)
4T2

s
−
[
xk(n+1)yk(n−1)+yk(n+1)xk(n−1)

]

4T2
s

,

xk(n−1)yk(n−1)
4T2

s
− 0.5

[
xk(n)yk(n−2) + yk(n)xk(n−2)

]

4T2
s

+
xk(n+1)yk(n+1)

4T2
s

− 0.5
[
xk(n+2)yk(n)+yk(n + 2)xk(n)

]

4T2
s

,

ΨB
(
xk(t), yk(t)

)

�−→ [
ΨBd

(
xk(n+1), yk(n+1)

)
+2ΨBd

(
xk(n), yk(n)

)

+ΨBd

(
xk(n− 1), yk(n− 1)

)]
/4T2

s , k ∈ {i, r}.
(11)
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Figure 3: Comparison of the SimilB, the ED, the CC on a clustering task. Labels (1,2,3), (4,5,6), and (7,8,9) correspond to Cylinder, Bell,
and Funnel classes, respectively.

Compared to asymmetric two-sample differences, the three-
sample symmetric difference leads to more complicated
expression. Expression (11) corresponds to three-sample
weighted moving average of ΨBd (xk(n), yk(n)). Note if x =
y, ΨBd is reduced to the Teager-Kaiser operator (TKO):
ΨBd (x(n), x(n)) = x2(n)− x(n+ 1)x(n− 1) (see [9]). Finally,
the asymmetric approximation is less complicated for imple-
mentation and is faster than the symmetric one.

5. PROPERTIES OFΨB

We provide here some new properties of ΨB [1]. We denote
ΨB of x(t) and y(t) by ΨB(x, y; t) and denote by “← ” the
affectation operation.

Similarity measure:

ΨB(x, y; t) = ΨB(y, x; t). (12)

This is a basic requirement for most of similarity or distance
measures.

Time shift:

x1(t) ←− x
(
t − t0

)
,

y1(t) ←− y
(
t − t0

)
.

(13)

It is trivial that ΨB is time-shift invariant, that is,
ΨB(x1, y1; t) = ΨB(x, y; t − t0). This property states that any
time translations in the signals, x(t) and y(t), should be
preserved in their measure of interaction, ΨB(x, y; t). Thus,
ΨB(x, y; t) is robust to time shifts.

Amplitude scale:

x1(t) ←− α·x(t),

y1(t) ←− β·y(t).
(14)

It is easy to verify that ΨB(x1, y1; t) = α·βΨB(x, y; t). Thus,
the time where ΨB peaks, corresponding to the maximum
of interaction between x(t) and y(t), is robust to amplitude
scale.

Time scale:

x1(t) ←− x(at),

y1(t) ←− y(at).
(15)

It is easy to verify that ΨB(x1, y1; t) = a2ΨB(x, y; t). This
property states that if the time of the two signals is com-
pressed by a scale a, then the energy of interaction is com-
pressed by a2.
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Figure 4: Linear chirp TSs (parabolic phase).

0 50 100 150 200

Times

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

A
m

pl
it

u
de

Ψ�(Y ,Y ) Ψ�(X ,X)

Ψ�(X ,Y )

Intersection frequency

Figure 5: Similarity measure using SimilB with a sliding window
analysis.

5.1. ΨB-based similaritymeasure

A similarity measure S(x(t), y(t)) is a function to compare
the TSs x(t) and y(t). Conventionally, this measure is a
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Figure 6: Similarity measure using CC with a sliding window anal-
ysis.

symmetric function whose value is large when x and y are
somehow similar. The proposed similarity measure based on
ΨB(x, y), between x(t) and y(t), uses their interaction. A
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Figure 7: Similarity measure using SimilB and CC of sinusoidal TSs.

larger value indicates more interaction in energy between
TSs. If the input variables (or samples) of the TS x(t) (or
y(t)) have large range, then this can overpower the other in-
put variables of y(t) (or x(t)). Therefore, the proposed sim-
ilarity measure, SimilB, is a normalized version of ΨB(x, y)
and is defined as follows:

SimilB(x, y) =
√

2
∫
TΨB(x, y)dt

∫
T

√
Ψ2

B(x, x) + Ψ2
B(y, y)dt

. (16)

T is the TS duration or the size of sliding window analysis.
The similarity is symmetric when comparing two TSs:

SimilB(x, y) = SimilB(y, x) ∀(x, y) ∈ C2. (17)

It is a basic requirement for most of similarity or distance
measures. Note that if x = y then SimilB(x, y) = 1.

6. RESULTS

SimilB (equation (17)) is combined with relations (10) and
(11), and relation (3) or (4) to process discrete (Figure 2) and
continuous (Figures 1, 4, 7, and 8) data, respectively. The ef-
fects of temporal information and the inclusion of the signal
derivatives are shown on nonstationary and stationary syn-
thetic TSs. Figure 1 shows three TSs with different shapes to
illustrate the limit of the ED and the CC. Since f1, f2, and f3
have different shapes, then an appropriate similarity measure

would show, for example, that the similarity values between
f1 and f2 and that between f3 and f2 are different. Results of
the SimilB, the ED, and the CC between f2 and f1 and that
between f2 and f3 are reported in Table 1. These results show
that SimilB is the unique measure which properly capture
the temporal information in the comparison of the shapes.
The most studied TS classification/clustering problem is the
Cylinder-Bell-Funnel dataset (noted CBF.dat) [10]. It is a 3-
class problem. Typical examples of each class are shown in
Figure 2. The classes are generated by the equations [10]

c(t) = (6 + η)·X[a,b](t) + ε(t) // Cylinder class,

b(t) = (6 + η)·X[a,b](t).
(t − a)
(b− a)

+ ε(t) // Bell class,

f (t) = (6 + η)·X[a,b](t).
(b− t)
(b− a)

+ ε(t) // Funnel class,

X[a,b] = 1 if a ≤ t ≤ b, elseX[a,b] = 0,
(18)

where η and ε(t) are drawn from a standard normal distribu-
tion N (0, 1), a is an integer drawn uniformly from the range
[16, 32], and (b − a) is an integer drawn uniformly from the
range [32, 96] (Figure 2). The task is to classify a TS as one
of the three classes, Cylinder, Bell, or Funnel. We have per-
formed an experiment classification on CBF.dat dataset con-
sisting of 3 TSs of each class. TSs are clustered using group-
average hierarchical clustering. The dendrograms are formed
with nearest neighbor linkage for three of each type of TSs
using SimilB measure, the ED, and the CC. We have averaged
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Figure 8: Similarity measure using SimilB of TSs of nonequal length.

the classification results over 45 runs. Figure 3 shows the re-
sult of these averaged runs where both the ED and the CC
fail to differentiate between the three classes. SimilB distin-
guishes the three original classes as shown in Figure 3. Clas-
sification errors reported in Table 2 show that SimilB is more
effective than the ED and the CC. These results are expected
since the ED and the CC are not able to include the tempo-
ral information while SimilB using derivatives of the TS cap-
tures this kind of information. Moreover, these results may
be due to the fact that ΨB is local operator [1, 6] while the
ED and the CC are global ones. Figure 4 shows an exam-
ple of nonstationary TSs (two linear FM signals), x(t) and
y(t). The instantaneous frequency (IF) of x(t) increases lin-
early with time while that of y(t) decreases with time. The
point where the IFs intercept (Figure 4), noted Q, is located
at t = 125. Figure 5 shows the energy of each TS and the en-
ergy of their interaction obtained with a sliding window anal-
ysis of T = 15. The point Q corresponds to the maximum
of similarity and also where the energy of x(t) (SimilB(x, x))
and that of y(t) (SimilB(y, y)) are equal. Away from Q, the
amplitude of interaction decreases because there is less sim-
ilarity between TSs (the TSs tend to be more and more dif-
ferent). As the IFs converge from the time origin to Q (the
TSs tend to be equal), the interaction intensity of the TSs in-
creases and the maximum of similarity is achieved at t = 125.

Figure 6 shows that the maximum of similarity given by CC
is located at t = 240. Thus, the CC fails to point out, as ex-
pected (Figure 4), the maximum of similarity at Q. The in-
teraction measure using SimilB and CC is performed using
a sliding window analysis of size T . Different T values rang-
ing from 3 to 91 have been tested. Globally, we found com-
parable results. The CC is calculated with the same sliding
window as for SimilB. Furthermore, as the IFs converge to Q
or diverge from Q, the CC function has, globally, the same
behavior and thus the similarity study of such TSs is diffi-
cult. This example shows that the SimilB is more effective
to study nonstationary TSs than the CC. This may be due
the fact that the ΨB is nonlinear operator while the CC is
linear one. Figure 7(a) shows an example of two sinusoidal
TSs, s1(t) and s2(t), of the same frequency and amplitude. TS
s2(t) presents a discontinuity located at t = 200. Both CC
and SimilB are calculated with T set to 17. CC measure fails
to detect the discontinuity and shows a maximum of interac-
tion at t = 262 (Figure 7(b)). The result of SimilB is expected
(Figure 7(c)). Indeed, excepted for data point at t = 200, s1(t)
and s2(t) are equal and ΨB behaves toward these two signals
as the TKO applied to s1(t) (s2(t)) and thus giving a constant
output (square of the amplitude times the frequency) [9].
This example shows the interest of SimilB to track disconti-
nuities (Figure 7(c)). Two synthetic signals, s1(t) and s2(t), of
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nonequal lengths with size window observation T of 65 and
81, respectively, are shown in Figures 8(a) and 8(d). These
two signals are time shifted by 300 samples and corrupted
by additive Gaussian noise. The obtained signals, r1(t) and
r2(t), are shown in Figures 8(b) and 8(e), respectively. The
attenuation coefficient is set to 0.7. For both signals r1(t) and
r2(t), a similarity measure would show, in theory, a maxi-
mum of interaction located at t = 300. No warping pro-
cess is used. We use the smallest TS length as a sliding win-
dow and calculate SimilB, inside this window, between two
TSs of the same length. Outputs of SimilB are shown in Fig-
ures 8(c) and 8(f) indicating a net maximum at t = TB.
As expected, both SimilB(s1(t), r1(t)) and SimilB(s2(t), r2(t))
peak to TB = 300. Table 3 lists the TB values calculated for
SimilB(s1(t), r1(t)) and SimilB(s2(t), r2(t)) for different SNRs
ranging from −6 dB to 9 dB. Each value of Table 3 corre-
sponds to the average of an ensemble of twenty five trials of
TB estimation. These results show that the performances of
SimilB are very close to that of the theory and also that SimilB
works correctly for moderately noisy TSs.

7. CONCLUSION

Relative change of amplitude and the corresponding tempo-
ral information are well suited to measure similarity between
TSs. In this paper, a new nonlinear similarity measure for TS
analysis, SimilB, which takes into account the temporal in-
formation is introduced. Using the first and second deriva-
tives of the TS, SimilB is able to capture temporal changes
and discontinuities of the TS. Some new properties of ΨB

are presented showing, particularly, that the interaction mea-
sure is robust both to time shift and amplitude scale. It is also
shown that if the time of the signals is scaled by a factor, the
corresponding interaction energy is proportional to that of
the original ones. Thus, the time corresponding to the max-
imum of interaction is unchanged by time scale. Note that
SimilB is not a unique measure of similarity based on ΨB op-
erator. Different similarity based on ΨB can be constructed.
To process continuous analytic TSs an expression of ΨB is
provided. The discrete version of ΨB, for its implementation,
is presented and three derivative approximations are exam-
ined. Only the asymmetric approximation which is less com-
plicated and less time consuming is implemented. Results of
different synthetic TSs (stationary and nonstationary) show
that SimilB performs better than the ED and the CC and
show the interest to take into account the relative changes
of the TSs. Compared to generative models (HMM, GMM,
. . . ) or distance kernel-based methods, SimilB is nonpara-
metric approach that does not require the specification of a
kernel or the selection of a probability distribution. Further-
more, SimilB is fast and easy to implement. SimilB may be
viewed as a data-driven approach because no a priori infor-
mation about the signals or parameters setting is required.
The processed TSs are either noiseless or moderately noisy.
For very noisy TSs, the robustness of SimilB must be studied.
In a future work, we plan to use smooth splines to give more
robustness to SimilB [11]. We also plan to include the Sim-
ilB measure in a clustering process or algorithm such as fuzzy
c-means or k-means for classification of TSs in different clus-

ters. To confirm the presented results, a large class of real TSs
datasets must be studied as well as the results compared to
other methods particularly those including the temporal in-
formation.

REFERENCES

[1] J.-C. Cexus and A.-O. Boudraa, “Link between cross-Wigner
distribution and cross-Teager energy operator,” Electronics Let-
ters, vol. 40, no. 12, pp. 778–780, 2004.

[2] J. Alon, S. Sclaroff, G. Kollios, and V. Pavlovic, “Discovering
clusters in motion time-series data,” in Proceedings of IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR ’03), vol. 1, pp. 375–381, Madison, Wis,
USA, June 2003.

[3] R. Agrawal, C. Faloutsos, and A. Swami, “Efficient similarity
search in sequence databases,” in Proceedings of the 4th Inter-
national Conference on Foundations of Data Organization and
Algorithms (FODO ’93), vol. 730 of Lecture Notes in Computer
Science, pp. 69–84, Chicago, Ill, USA, October 1993.

[4] S. Chu, E. Keogh, D. Hart, and M. Pezzani, “Iterative deepen-
ing dynamic time warping for time series,” in Proceedings of the
2nd SIAM International Conference onDataMining, Arlington,
Va, USA, April 2002.
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