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1. INTRODUCTION

The detection and tracking of point targets is necessary in
many military applications. One particular use is in IRST
(infrared search and track) systems where the data from
the infrared spectra is used to detect targets which can be
moving at subpixel velocities and subtend areas less than
a pixel. Various researchers have developed track-before-
detect (TBD) methods based on the dynamic programming
algorithms (DPA) [1–5].

In the DPA approach, one continually incorporates new
data (consisting of new infrared images or frames) into
an estimate of where the targets may be. Each pixel is
considered a potential target; a score is assigned to how
target-like the pixel is. No attempt is made to continually
decide definitely where the target is; that decision is made
only when called upon or when the data ceases to flow. Hence
this methodology is called track-before-detect.

In this paper, we will examine the practical problems
involved in implementing a DPA on real data involving
clouds in the sky (as clutter) and jet airplanes (as targets). We
will note how practical examination of the data allows us to
determine what the ratio between the reliability given to the
new data compared to that associated with the accumulated
score should be. Results will be shown on real data.

2. POINT TARGET DETECTION AND
TRACKING IN AN IR SEQUENCE

2.1. General architecture

The system performs target detection and tracking in three
steps. The first step is whitening preprocess, which suppresses
the clutter and emphasizes the target [6]. In this paper,
we will assume that it is done by the simple antimedian
filter where we subtract from each pixel an estimate based
on the mean of the surrounding neighboring pixels. The
second step is target detection and tracking based on the TBD
approach and implemented using the DPA. The third step is
the decision of the target presence and position after the last
frame and retrieval of its trajectory. Currently, the pixel with
the highest accumulated score in the last processed frame is
selected as the target. Future research can involve the usage
of a CFAR (constant false alarm rate) algorithm using known
null hypothesis probabilities. The general system architecture
is given in Figure 1; we concentrate in this paper on the DPA
stage.

2.1.1. The target model

The long range detection to which IRST systems are dedi-
cated implies a point-like target shape. For this reason, the
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Figure 1: Tracking system architecture.

spatial target signature, as projected onto the sensors array
focal plane, is dominated by the optics point spread function
(PSF). Being dependent on the range to the target and the
aspects angle between the target and detector array, the target
PSF is not constant. Still, the sampled target signature is often
modeled as Gaussian:

S(x, y) = γ·e−1/2

((
x − x0

σx

)2

+
(
y − y0

σy

)2
)

, (1)

where x0 and y0 are the possibly fractional targets’ coordi-
nates (pixel coordinates of the signature in the focal plane),
γψ is the peak intensity at (x0,ψy0), and σ2

xψ and σ2
yψ

are the targets’ horizontal and vertical radiance variances,
respectively [7, 8]. Both the detected target radiation inten-
sity and its PSF depend on the wavelength to which the
detectors are sensitive, the target specifications, for example,
as hot body tracking or plume tracking and the atmospheric
transmission window (e.g., the 3–5 [μm] MWIR is often used
for image target tracking systems).

2.1.2. IR background scene and atmospheric effects

The background of interest is composed of skies, either clear
or cloudy. The sky primary source of radiation in the IR
band is of course the sun. The amount of sun radiation
that reaches the sensor array depends on the number of
atmospheric layers the radiation pass through and the angle
between the sun and the sensing system. For low sun angles
or many atmospheric layers, less radiation will be collected
by the sensors. Another major source of illumination is
the sky light, which is scattered sun radiation but has
different spectral distribution (i.e., its peak is in the visible
blue spectrum). Absorption is the most serious problem
faced by IR systems and it actually defines the wavelength
“window” at which IR systems work. Within these windows
the received radiation is affected by clouds and haze, fog
and atmospheric gases such as ozone and carbon dioxide
(although the later influence on the radiation within the
near atmosphere is minimal). It is scattered away from the
line of sight by aerosols suspended in the atmosphere and
temperature changes along the radiation path can cause
scintillation, which is a severe problem that IRST systems
have to deal with, this phenomena occurs mostly near sea
level. Fog and clouds are strong scatters and can be opaque to
distant IR targets radiation. The presence and characteristics
of fog, haze, and clouds depend on the geographic region,
as well as on the season and altitude; hence fog is more
probable in regions with high humidity, whereas dust can be
expected in dry areas. There exist several computer models
such as LOWTRAN (low spectral resolution) or MODTRAN

(moderate spectral resolution) that serve to model and
forecast atmospheric conditions.

Although there exists no unique model for the IR
sky background scene, many models assume a first-order
Markov process and describe elevation and azimuth corre-
lation to model cloud clutter analytically.

2.2. The DPA stage

An IR sequence containing background noise and clutter
Section 2.1.2, and a subpixel maneuveringtarget are the bases
of our data model (first-order hidden Markov model), where
the target track is the hidden sequence of events, and the IR
sequence frames are the observed data. Barniv [9, 10] has
suggested a method for using the DPA in target tracking,
which was further developed by Arnold [11], to allow
tracking where nonwhite Gaussian noise (WGN) is present.
The algorithm presented in this paper further develops the
ideas presented in [2–4].

The DPA aids in the tracking of a dim point target
maneuvering in a noisy background. The noise is assumed to
be temporally and spatially uncorrelated (after the whitening
stage); the target on the other hand moves in a smooth
manner with only gradual changes in direction and speed.
Deviations from either of these two assumptions will degrade
the eventual system performance.

The algorithm processes a batch of frames rather than
a single frame. In every frame, each pixel is given an
accumulated score composed of its score in the present
frame (after the whitening stage), and an accumulated score
of the previous frames. The score is calculated using an
accumulated score function (ASF) which will be introduced
in Section 2.2.1. These accumulated scores of the pixels
in the processed batch, as well as the calculated direction
Section 2.2.3 of the pixels are stored in the accumulated score
matrix (ASM) for every processed frame.

During the processing of the batch frames, a calculation
is made to find the origin of each pixel within the previous
frame thus forming a tracking matrix Section 2.2.4, and the
estimated direction of the target Section 2.2.3. At the last
processed batch frame, a pixel with the highest accumulated
score is assumed to be the target, and using the tracking
matrix, its trajectory is found by backward calculation
Section 2.2.4.

2.2.1. Accumulated scorematrix

As stated, the accumulated score matrix (ASM) holds
the accumulated score of each pixel calculated using the
accumulated score function (ASF), and the direction from
which the pixel has originated.
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The ASF is composed of three components: (1) pixel
score in the current whitened frame (WF), and (2) and
(3) are two different functions of the pixel’s accumulated
score up to the previous frame, weighted by a parameter g.
The two last components are both multiplied by a memory
coefficient b, determining the past information influence on
the ASF of the current frame. The two last components take a
valid search area, or matrix, from which the target may have
arrived from in the previous frame. The first method, called
the max method, or α(x, y), takes the maximum of the ASF
elements within the valid search area. The second method,
called sum method, or β(x, y), takes the summation of the
ASF elements within the valid search area.

For clear tracks, the maximum value (1st method,
maximum) will allow an accurate evaluation of the track;
when the target is very weak, tracking can be done through
the tacking of the overall cloud being produced (2nd method,
summation) rather than the maximum value from a single
target. By combining and weighting these two approaches,
coverage of all the possibilities might be achieved. This is
an extension to the classic DPA where the evolution of the
system is done using optimization alone, that is, always
choosing the maximum value. The ASF is calculated as
follows:

ASFn(x, y)=WFn(x, y)+b·[g·α(x, y)+(1− g)·β(x, y)
]
.
(2)

We will assume that the target velocity is within the range of
0–2 [ppf] (pixels per frame) and a possible jitter of 0.5 [ppf];
thus, the pixel can move up to 2.5 [ppf] in the horizontal and
vertical directions; hence a valid search area γ, from which a
pixel might originate from in the previous frame is a 7 × 7
matrix. Given the target model above, α(x, y) and β(x, y) are
defined as

α(x, y) ≡
3∑

i, j=−3
γ(x, y)i, j ,

β(x, y) ≡ max
{
γ(x, y)i, j

}
i, j=−3,...,3

,
(3)

where γ holds the valid search area elements ASF of the
previous frame:

γ(x, y)i, j = ASFn−1(i + x, j + y). (4)

2.2.2. The probability matrix W

In (4), γ(x, y)i, j the ASF values of the previous frame were
taken. Since the pixels in the valid search area have different
probabilities of being the target in the previous frame, the
ASF values of the previous frame can be multiplied by a
weighting matrix that will take into account unreasonable
changes in direction and velocity, and the sensor jitter. The
following paragraphs will elaborate on the matter.

Since the target radiation spreads over several adjacent
states (pixels), we are actually looking for the progress of
this group of pixels. As mentioned in Section 2.2.1, the
radiation spread is defined by the target’s signature that is
related to its shape and movement parameters as velocity

and trajectory, by the sensor parameters as its sensitivity and
integration time and by the platform jitter and movement.
Since we are looking for the progress of a group of pixels, it is
natural to combine their total energy into the score function,
thus tracking the pixel to which the total contribution
was maximal. Since not all of the contributing pixels have
the same probability to be the main source of energy
to the examined pixel, their position is assigned with a
weighted factor according to the velocity/jitter/sensor PSF
assumptions.

This point can be clarified by the following 1D example:
consider a subpixel size target that captures a quarter of
the pixel FOV moves horizontally at 0.25 pixels per frame
and is captured by a platform whose jitter distribution is
estimated to be horizontal with U [−1, +1] (uniform PDF
over the range of −1 to +1 pixels). Because of uncertainty
in the targets’ origin, it can be captured by either the same
pixel, with probability of 3/4; or by the next adjacent pixel,
with probability of 1/4. Because of the sensor jitter, each
pixel can capture either its former FOV or, at most, one
of its horizontally adjacent FOVs. Therefore, the origin of
the current target can be any one of four different pixels
in the former frame, each with a different probability. Now
consider a 1 by 3 Gaussian target. This adds to the number of
possible origins two more positions, one to each horizontal
side, resulting in total of 6 possible origins. An introduction
to the subpixel detection problem is presented in [12].

Since the probability of the jitter and the probability of
position due to velocity are independent, the overall position
probability is the product of these two probabilities. Marking
the position probability due to jitter (pj) of the pixel in the θ
location, and in the kth frame by pj(θk), and the position
probability due to target motion by pv(θk) the weight is
provided wv(θk) = pv(θk)·pj(θk). For the (k + 1)th frame,
the group of weights for former possible pixels from which a
pixel might have originated is denoted by {wv(θk)}, i ∈ Ω;
where Ω is the valid search area in the kth frame. Ω is a
moving window, and its size is determined by the maximum
allowed velocity plus the maximum shift due to the jitter. The
jitter is a remnant of the imperfectly registered raw data at the
input, which we assume to be given.

As mentioned in Section 1, the requirement to detect
distant targets moving at subpixel velocities rationalizes the
straight motion assumption. For 1D movement the set of
probabilities {wv, i, k} is a vector; the expansion to a 2D
motion is straightforward, either by using the notation
of Arnold and Barniv and dividing each observation into
numerous cells, each representing data of a particular axis;
or by computing a 2D set of probabilities {wv, i, k}; that is,
let {wv, i, k} be a matrix.

In our implementation, the valid search area will define
a probability matrix W which contains the probabilities
of pixels in the previous frames being the origin of the
pixel in the current frame. The probability matrix is a
superposition of two matrices—(1) a basic matrix Wbasic and
(2) a penalty matrix WPenalty. The superposition is weighted
by a parameter p.

Wbasic includes the effect of Gaussian target spread and
the sensor jitter. This matrix represents a target standing



4 EURASIP Journal on Advances in Signal Processing

9 8 7 6 5 4 3
10 9 7.5 6 4.5 3 2
11 10 9 6 3 1.5 1
12 12 12 12 0 0 0
11 10 9 6 3 1.5 1
10 9 7.5 6 4.5 3 2

9 8 7 6 5 4 3

Figure 2: 7 × 7 penalty matrix WPenalty(direction = 1) in the
estimated direction→(0◦).

in place; the second matrix WPenalty(direction) gives high
probability to pixels in an assumed direction from which a
target might have originated, and lower probabilities as the
pixels vary from the assumed direction of arrival. Estimation
of the movement in the current frame is discussed later in
direction calculation Section 2.2.3.

We will assume a sensor jitter of U [−0.5, +0.5] (uniform
PDF over the range of −0.5 to +0.5 pixels), and a Gaussian
target spread of 3 × 3. In our case Wbasic elements, wbasic,i, j ,
hold the probabilities pj(θk) discussed above.

Instead of using the suggested pj(θk) elements inWPenalty,
we use different implementations. WPenalty(direction) gives
small penalties for small turns and severely decrease the score
for sharp turns. Succary et al. [2] suggested using a penalty
parameter that increases as the turn angle increases. Using
that method, a turn of 45 degrees leads to penalty of –x, 90
degrees to −2x, and so on. The parameter value used was
found by empirical. The angles are symmetrical with respect
to the axis of assumed direction. Figure 2 shows the 7 × 7
penalty matrix WPenalty(→)(0◦). We have taken x = 3. The
estimated region of arrival gets the highest values, 12 in this
case. The values decrease until reaching the cells opposite
to the estimated direction. There is a tradeoff between the
need for penalty on change of direction and the need for
adaptation to maneuvering targets.

The element values of the 7×7WPenalty(direction) matrix
are normalized to probabilities using the denominator in (5).
The matrix is then multiplied by the Wframe matrix which
is used to adapt the penalty matrix to the assumed range of
velocities by zeroing out all penalty pixels not contained in
Ω (the valid search area in the kth frame) and keeping pixels
within Ω. Hence Wframe is 1 within Ω and 0 otherwise.

There are nine different probability matrices for each
of the possible assumed directions: 0◦–315◦ at steps of 45◦

(directions 1–8, resp.), and remaining in place (direction 9).
The probability matrix is given as

W(direction)

= p·Wbasic + (1− p)· WPenalty(direction)·Wframe∑
i, jwPenalty(direction)i, j·wframe;i, j

.

(5)

Figure 3 shows the basic probability matrix (direction 9), the
eight penaltymatrices for the different directions (direction
1–8), and the resulting nine probability matrices. The
basic probability matrix incorporates the allowed jitter and
represents a standing target. In Figure 3, the target is assumed

to be at a velocity range of 0-1 [ppf]; thus only a 5× 5 matrix
is needed (including the assumed jitter) and the border pixels
are zeroes accordingly using Wframe. The p parameter was set
to 0.5, giving equal weight to Wbasic and WPenalty(direction).
All matrices are normalized to values between 0-1.

Equation (4) can be rewritten to contain the probability
matrix:

γ(x, y)i, j ≡ w(direction)i, j·ASFn−1(i + x, j + y), (6)

where w(direction)i, j is the (i, j) element in the probability
matrix, W.

2.2.3. Direction calculation

To use W(direction), the direction from which a pixel
originated has to be found. We must now decide where it
is most likely that the target previously was when moving in
this particular direction. Estimation of the direction is based
on (1) ASF, (2) the basic probability matrix (Wbasic), and (3)
direction consistency.

The calculation of the direction starts by creating a
temporary 7 × 7 matrix (given our assumption of target
velocity and sensor jitter). The previous frame ASFs as well
as the directions of pixels in the area of 7 × 7 are retrieved
from the ASM. Each pixel is given a parameter Var that gets a
value according to the pixel’s direction in the previous frame
and its direction relative to the pixel under investigation
(central pixel, Figure 4 shows the division of the 7 × 7
matrix into the eight different directions, direction 1–8).
The parameter gives maximal value for identical directions
(direction consistency) and minimal value for opposite
directions (direction inconsistency). No direction difference
sets Var = 6, and every increase of 45 degrees difference
lowers the value of Var by 1 (down to a value of 2 for
180 degree difference). The final score of each pixel in the
temporary matrix is defined as

Source Pixel Score(x + i, y + j)

= ASFn−1(x + i, y + j)·wbasic;i, j·Var(i, j),
(7)

where ASFn−1(x + i, y + j) is the pixel’s accumulated score
from the previous frame, wbasic,i, j is the value of Wbasic at
the (i, j) coordinate, and Var(i, j) is the direction difference
parameter for the (i, j) coordinate.

The pixel with the highest score is chosen as the “source
pixel.” Since each group of pixels in the matrix belongs to a
specific direction, the direction in the current frame is now
known and is saved in the ASM. In conclusion, to calculate
the pixel’s direction:

(i) create a 7× 7 temporary matrix;
(ii) find the direction of the pixels in the previous frame;

(iii) calculate Var according to the direction consistency;
(iv) calculate the temporary matrix score, source pixel

score (x + i, y + j);
(v) find the pixel with the highest score, and deduce the

direction.

2.2.4. The trackingmatrix

During each frame a calculation is made to find the origin
of each pixel within the previous frame as described in the
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Figure 3: Probability matrices for the various directions. (a) The 7 × 7Wbasic matrix, (b) the eight 7 × 7 WPenalty matrices for the different
directions, after using Wframe, and (c) the nine W(direction) matrices for p set to 0.5, and velocity range [0-1] [ppf].

Direction 1-0 degrees Direction 3-90 degrees Direction 5-180 degrees Direction 7-270 degrees

Direction 2-45 degrees Direction 4-135 degrees Direction 6-225 degrees Direction 8-315 degrees

Figure 4: The pixel groups belonging to each of the possible eight directions. The arrow points to the central pixel of the 7× 7 matrix, and
shows the direction of the pixels from the previous frame to the current frame.

previous Sections 2.2.2, 2.2.3. The origin is calculated by
taking the element having the maximum value in (7):

(
î, ĵ
)
x,y = max

{
Source Pixel Score(x + i, y + j)

}
. (8)

The index of that pixel of origin is saved in the tracking
matrix, in the [index, frame] element, where index represents
the index of the pixel under investigation in the current
frame, and frame is the value of the current frame. Given an
image frame or a block the size of N columns and M rows,
index = (N − 1)·M + M.

In that way, the DPA builds the tracks which are most
probable of being the target’s track. At the last frame
processed, the pixel with the highest score is picked, and the
index of its pixel of origin from the previous frame is taken.
At the previous frame, the found index is used to retrieve
the origin of that index. That procedure is iterated down to
frame 2. Figure 5 shows a “target” found at index = 578 in

frame 15. Tracking it back leads to index = 470 in frame 14
and so on.

2.2.5. Parameter summary

In the previous sections, several parameters that control the
algorithm functionality were introduced. These parameters
are of high significance since they allow flexibility in the
algorithm to eventually track and detect targets in an optimal
fashion. A summary of the parameters is used in Table 2.

We will concentrate our paper on finding and evaluating
the influence of b, and g on the algorithm. We assume a
probability matrix weighting of p = 0.5 to allow for a certain
amount of target maneuvering.

Table 3 deals with the issue of the memory coefficient and
discusses the other two parameters b and g. The parameter
b will be assigned the name effective memory coefficient
(EMC) in Section 2.2.6.
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Figure 5: Example of a tracking matrix, and the “target” track.

Table 1: The various real IR sequences used for the testing.

IR sequence name IR sequence scene description Target(s) starting location [y, x] Target(s) velocity [ppf]

NPA Two targets in wispy clouds [49, 99], [160, 240] ≈0.2

NA23 Single fast target in bright clouds [136, 128] ≈0.3

Table 2: Summary of EMCs for which tracking occurred in the IR sequences.

IR sequence name

Relevant range of b’s
IR sequence name

Relevant range of s n
Maximal target peak
([13, page 74])

where tracking occurred where tracking occurred

max part
(g = 0)

sum part
(g = 1)

sum part
(g = 1)

max part
(g = 0)

sum part
(g = 1)

max part
(g = 0)

NPA ∼30 2–4.8 0–0.8 3 1 3–5 3–5

NA23 ∼60 4.4–4.6 0.2–0.8 3 1 1–5 1–5

Table 3

b — The memory persistence coefficient, determining the influence of the accumulated score.

p (and (1− p)) —
The Wbasic(WPenalty(direction)) coefficient determining the influence of the 7× 7Wbasic(WPenalty(direction)) matrix
on W(direction) probability matrix.

g(1− g) — The sum coefficient determining the amount of influence of the summation (maximum) on the accumulated score.

2.2.6. The effectivememory coefficient (EMC)

As can be seen from the (2), b determines the memory
persistency or the decaying influence of the scores from
the previously processed frames. To prevent the algorithm
from “exploding” (i.e., exponentially increasing rather than
decreasing), an effective memory coefficient (EMC) has to be
within the range of values 0-1. The EMC is introduced due
to the fact that b itself is not the memory coefficient, since
it is multiplied by g or (1 − g). The smaller b is, the less
effect the previous frames have on the current score and the

lower the overall score will be (assuming that the influence
is mainly on the target compared to the false alarms).
A high value of b will cause high-memory persistency and the
system might suffer from low-adapting capabilities, which is
important in cases of altering direction targets. The correct
value of EMC can make the detection process much more
effective by getting rid of old data, which is no longer needed
for the updated decision, thus providing faster detection
capabilities of well maneuvering targets. In previous research
[2], where low velocity targets of 0.1-0.2 [ppf] were tested in
both straight lines and in maneuvering, a preferred memory
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Figure 6: b versus g for the direction 1–8 (solid blue line) and
direction 9 (dashed line) the black circles represent the g = 0/1 cases
and the equivalent b values.

coefficient was obtained, b = 0.7; on the basis of more recent
research, we recommend b = 0.8. The formula used for the
accumulated score was

ASFn = WFn + b·max
{
w·ASFn−1

}
(9)

and the normalization,

b = 0.8
max{w} (10)

was used in order to limit b to 0 ≤ b ≤ 1, and to maximize it
for best performance.

The score formula in the current DPA version is

ASFn

=WFn+b·[g·sum
{
w·ASFn−1

}
+(1− g)·max

{
w·ASFn−1

}]
.

(11)

Similarly, the requirement here is

b = 0.8[
g·sum{w} + (1− g)·max{w}] . (12)

By the substitution of g = 0, g = 1 case into the requirement,
the following is obtained:

bg=0 = 0.8
max{w} , bg=1=

0.8
sum{w} . (13)

It should be noted that bg=0 and bg=1 are constant and direc-
tion dependent since they are derived from the probability
matrices mentioned in Section 2.2.2.

After rearrangement, the following formula for EMC is
derived:

b =
[
g·sum{w} + (1− g)·max{w}

0.8

]−1

= [g·b−1
g=1 + (1− g)·b−1

g=0

]−1
(14)

Using the probability matrices achieved empirically Section
2.2.2, an appropriate range for b can be found so that 0 ≤
EMC ≤ 1. Putting that into b leads to

b = [1.118·g + 0.131]−1 for direction 1 to 8,

b = [1.035·g + 0.214]−1 for direction 9.
(15)

The derived formula suggests the values of b that should be
used for a given value of g. Since 0 ≤ g ≤ 1, a graph of b
versus g can be plotted, as in Figure 6, and a valid range of
values for b can be found.

As can be seen from the graph, a valid range of values for
b is about 0 ≤ b ≤ 8 for g = 0 and 0 ≤ b ≤ 1 for g = 1. Since
bg=1 = 0.8 for all directions, memory values of around 0.8
should give the optimal performance for g = 1, regardless of
the scenery. Since the targets in the tested IR sequences move
at subpixel velocities, mainly 0.2-0.3 [ppf], most of the time
they are in direction 9 (standing in place); thus the algorithm
is expected to be most effective for bg=1 = 0.8 and bg=0 close to
4.65.

The graph above might also aid if a superposition of the
sum and the max parts of the ASF are needed. Adjusting
the superposition is done by simply assigning g a value and
deriving the appropriate value of b from the graph. Finding
the optimal bs (or range of bs) for the different scenes will
be done by optimizing an algorithm score, given by a metric
that will be defined in Section 2.3.

2.3. Performancemetric

In order to evaluate the algorithm, the metric below has
been defined. Each frame in the processed batch of frames
is divided into blocks of size M × N (30 × 30 were used for
slow targets, and 30×80 for fast targets). The algorithm is run
over nine blocks, that is, the target block and eight adjacent
blocks. The SNR of the target block (TB) and its eight
adjacent nontarget blocks (NTBs) are calculated. Afterwards,
an algorithm score is calculated based on the resulting SNRs
(signal to noise ratios).

The block SNR is given as

Block SNR(i, j) = E
[
vi, j ∈M

]− E
[
vi, j /∈M

]
σvi, j

, (16)

where vi, j is the set of pixels belonging to the (i, j) block, M is
a set containing the five pixels with the highest scores in that
block, and σ is the standard deviation of the block pixels.

The formula performs a subtraction between the expec-
tation value of the highest pixels (target) and the expectation
value of the rest of the pixels (background), divided by
the standard deviation of block pixels. Since the probability
matrices introduce influence of target pixels on adjacent
pixels, these influenced pixels might accumulate higher
values than unaffected pixels (background), and can be
regarded as target pixels. This might lower the expectation
value of the target; it will also lower the standard deviation of
the background, since these high pixels are higher than the
statistics of the background, to a more accurate one.
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The algorithm score (A S) is given as

A S

=
Block SNR(i, j){(i, j)}∈TB−E

[{
Block SNR(i, j)

}
{(i, j)}∈NTB

]
σ{Block SNR(i, j)}{(i, j)}∈NTB

.

(17)

The A S is calculated by subtracting between the TB’s SNR
and the expectation value of the SNR of the NTB’s, divided
by the standard deviation of the NTB’s SNR. The algorithm
always identifies a target in each given block. Since that is the
case, the false detection of targets should achieve less SNR in
these NTBs than the true detection in the TB, resulting in a
positive A S. It should be noted that the division to blocks is
only for the purpose of algorithm evaluation (A S), whereas
in real scenarios, the frames will not be divided. Also, only
nine blocks were used due to memory and time complexity.

In the tests performed, other numbers of highest pixels,
defined as Max Numbers, were taken to check the influence
of the number of high pixels regarded as “target pixel” on
the Block SNR. Using the metric above for the A S, the EMC
value for optimized algorithm work can be found, in both
cases of g = 0 (the max part) and g = 1 (the sum part) in the
accumulated score of (2).

3. RESULTS

The DPA algorithm has been applied to several IR sequences
containing different scenes and clutter degree. Each sequence
contains 95 to 100 frames, and the algorithm ran on a
batch of up to 25 frames. The results are shown for two IR
sequences: NA23A and NPA. A single frame from the IR
sequences showing the targets locations (in white rectangles)
is shown in Figure 7. The NA23A sequence has a single target
moving in clear sky from right to left at ν ≈ 0.3 [ppf]. The
NPA sequence has two targets moving at ν ≈ 0.2 [ppf]; the
left target is engulfed in clouds moving from bottom to top,
and the right target is moving in scarce clouds. The algorithm
will be applied on the surroundings of the left target, since it
is of more interest due to its more difficult condition. A target
range velocity of 0-1 [ppf] has been assumed; hence 5 × 5
probability matrices were used. Table 1 depicts the different
IR sequences tested, the target(s) location, and the target(s)
velocity.

The DPA was applied for two different cases: g = 0 (the
maximum part in the ASF) and g = 1 (the summation part
in the ASF) over a range of values of b to check the effect of
each part of the accumulated score formula on the algorithm
results. The introduced metric Section 2.3 was used to find
the optimal values of bs, for which tracking has occurred.

Afterwards, the effect of Max Numbers (the number
of pixels with the highest scores considered to be “targe”
in the Block SNR formula (16)) on the A S was checked.
This action is taken to assure that the metric gives a
reliable A S performance for the different EMCs (b), namely,
selecting target affected pixels only as “target” pixels. Another
aspect examined was the effect of the target velocity on the

(a)

(b)

Figure 7: A single frame from IR sequences. (a) NA23A and (b)
NPA sequence showing the target’s locations (white rectangles).

algorithm performance by sampling the given IR sequences
every s n frames, where s n is a value in the range of 1 to 5.

Section 3 is ordered as follows: (a) a preprocessing stage
example is given for the NA23A sequence, (b) the NA23A and
NPA sequence results are given, and (c) a brief summary of
findings.

3.1. The preprocessingwhitening stage

The algorithm starts by whitening the input IR sequence.
According to the introduced A S metric, the sequence is
divided into blocks. The TB and the eight surrounding NTBs
are then whitened to reduce the clutter and emphasize the
target, as can be seen in Figure 8 of the 1st frame of the
NA23A sequence.

The process shown in Figure 8 is repeated for the
required sequence frames before proceeding to the next stage
of the DPA. (The frames can also be processed individually
for a real-time implementation).

3.2. The DPA stage

The key advantage of the algorithm is the penalty matrices; it
gives an advantage to targets moving in a consistent manner
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Figure 8: Algorithm stages. (a) 1st frame of the original NA23A
sequence divided into blocks, (b) 1st frame of TB (target at center
of frame), and (c) 1st frame of TB after the preprocessing whitening
stage.

from pixel-to-pixel. If the target is moving at a subpixel
velocity, these matrices are not used often and the algorithm
will not perform at its peak. In order to find the velocity for
which the algorithm worked best, the algorithm has been run
over the sequence, in both cases of g, for s n from 1 to 5, for
example, given s n = 5, take only every 5th frame.
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Figure 9: NA23A sequence preliminary results; g = 0,
Max Numbers = 5. (a) A S for b = [0 · · · 8], and six last frames;
(b) the last six processed frames.

It should be noted that for the algorithm to accumulate
effectively, approximately 20 frames at minimum have to be
processed, thus limiting the amount of s n that can be used
depending on the number of available sequence frames.

To keep the target in the “target block,” a larger block size
of 30× 80 was used for fast targets instead of 30× 30.

3.2.1. NA23A sequence

(1) Preliminary results (s n = 1)

The results are first shown for the NA23A sequence, g = 0
case. Figure 9 shows the A S for the range of 0 ≤ b ≤ 8
at intervals of 0.2. The graph shows the A Ss for the last six
frames, 20–25 in this case, for two reasons: (1) some frames
might be noisier than the others; (2) we wish to show the
accumulated score effect.

The first cause will result in the target being dimmer
compared to the clutter; the target may even disappear. In
that case, the memory persistence and the accumulation
of the score from frame to frame help maintain the track.
The accumulated score helps overcome noisy frames, and
“accumulates” the SNR for the dim target. Looking at
the last frames helps us understand whether the effect
of accumulation is sufficient for the number of frames
processed, or whether more frames need to be processed.

In previous research [4, 6] the algorithm was run over 10
to 20 frames; 20 was found to be significantly better; hence 25
frames were taken in this case, to be confident that we have
given the algorithm a fair test.
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Figure 10: NA23A sequence preliminary results; g = 0, Max Numbers = 5. (a) Standard deviation of NTB’s SNR, (b) expectation value of
NTB’s SNR, (c) TB’s SNR, and (d) last-processed frame (25th) for various values of b.

The graph shows a peak at around b = 4.8 for all frames.
The rise at about b = 6 is irrelevant since the algorithm was
unable to track at EMC of about 6 or above. It can be seen
that above that EMC, all the frames A S converge, suggesting
that the EMC is too high and that the weight of the current
frame is insignificant compared to the accumulated score. It
seems that the relevant range for EMC can be narrowed to
0 ≤ b ≤ 6, for the b = 0 case, in the current IR sequence.

A rise A S is expected as the frames advance. It can be
seen in the graph in Figure 9(a), that the A S of the 20, 23
frames is lowest for b < 3.5. That is due to the fact that these
frames are noisy, as can be seen in Figure 9(b). Increasing the

EMC improves the A S of these frames, that is, more memory
persistence and less weight to current noisy frame. Since the
target moves at ν ≈ 0.3 [ppf] (stays in the same pixel most of
the time) the expected theoretical peak (EMC calculation in
Section 2.2.6) was at around b = 4.65 in agreement with the
results shown in Figure 9(a).

Figure 10 shows the graphs of the standard deviation
of the NTB, the expectation value of the NTB’s SNR, the
TB’s SNR (all versus b), and the last processed frame (25)
for various values of b. For b = 5.4, the last frame shows
high values for the trajectory of the target, meaning that the
EMC is very high and every pixel traversed by the target
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Figure 11: NA23A sequence preliminary results; g = 1, Max Numbers = 5. (a) A S, (b) standard deviation of NTB’s SNR, (c) expectation
value of NTB’s SNR, and (d) TB’s SNR.

retained its high value (Figure 10(d)). Thus values of EMC
higher than that will prevent the algorithm from tracking
the target, since the trail pixels and the pixel of origin will
gain a higher accumulated score, as will be seen later in
Section 3.2.1(3).

Results for the g = 1 case are shown in Figure 11. As can
be seen from the A S, the relevant range of b is 0 ≤ b ≤ 1,
after which A S’s of the various frames converge regardless of
the EMC. The TB’s SNR can be seen to fall at around b = 1.
The A S starts at its maximum (mean value) for no memory
and drops as the EMC rises, until b = 1. This suggests that

in this case and for this particular sequence, the algorithm is
not needed for the detection.

Figure 12 shows the influence of the EMC on the pixels
of the last frame. In the g = 1 case, if we raise the EMC to
too high a value (above b = 1), no trail appears as in the
g = 0, but a “snow bal” effect starts to build. The “snow ball”
grows until the target is engulfed in it, and no tracking is
possible. Due to the probability matrix and the summation,
pixels close to where the target passes increase in their value.
If the EMC is high, these adjacent pixels will also receive high
accumulated scores, and in the next frame, pixels adjacent to



12 EURASIP Journal on Advances in Signal Processing

b = 0 b = 0.2 b = 0.4 b = 0.6 b = 0.8 b = 1

b = 1.2 b = 1.4 b = 1.6 b = 1.8 b = 2 b = 2.2

30

20
10

10 20 30

30
20
10

10 20 30

30

20
10

10 20 30

30
20
10

10 20 30

30

20
10

10 20 30

30

20
10

10 20 30

30

20
10

10 20 30

30

20
10

10 20 30
30

20
10

10 20 30

30

20
10

10 20 30
30

20
10

10 20 30

30

20
10

10 20 30

Figure 12: Last processed frame (25th) for b = [0 · · · 1].

them will also increase in their value, causing the ball to grow
from frame to frame.

To conclude, a valid range of EMC, 0 ≤ b ≤ 8, has
been found in which the algorithm is able to track and detect
the target correctly; this concurs with the theoretical range.
Section 3.2.1(2) will deal with the issue of target velocity, and
will demonstrate that a preferred EMC exists, 0.6 ≤ b ≤ 0.8,
close to the theoretical value.

(2) The s n variable

As stated in the beginning of Section 3.2, since the main
advantage of the algorithm is the usage of the penalty
matrices, the target has to move at a velocity of at least
around 1 [ppf]. If the target in the sequence moves at lower
velocities, ν ≈ 0.3 [ppf] in our case, the penalty matrices
are used only every three frames roughly. Since that is the
case, sampling of the sequence has been suggested, so that
the target moves at higher speed. The first simulation was
done for s n = 4 (only every 4th frame was taken) giving the
target a velocity of ν ≈ 1.2 [ppf]. To keep the target in the
“target bloc,” a larger block size of 30×80 was used instead of
30× 30.

The A S and the last six frames are shown in Figure 13,
for the g = 0 case. The A S achieved is lower in this case
due to the noisy frames compared to the last six frames in
the s n = 1 case. It should be noted that by sampling the
sequence of the algorithm, different frames were processed
that differ in their noise degree. Nevertheless, the A S shows
the effect of accumulation as the frames progress the peak
is distinguishable (above frame 20), and is around b = 5.0
for the last three frames. An increase in the EMC is expected
since the target now moves faster. It seems that the algorithm
needs around 20 frames for the dim point target to accumu-
late enough SNR to be distinguishable from the clutter.

Figure 14 shows the graphs of the standard deviation of
the NTB, the expectation value of the NTB SNR, the TB’s
SNR (all versus b), and the target track found for s n = 4
(the pink portion of the track is the target track for s n = 1).

Comparing Figure 10 to Figure 14 shows that the TB and
NTB SNRs behave similarly for s n = 1 and for s n = 4; only
the TB SNR has a distinguishable peak. This shows that the
penalty matrices help distinguish between target and clutter,
and that the algorithm needs targets at around ν ≈ 1 [ppf]
to work effectively. In the case of g = 1, the A S is lower
compared to the one achieved for s n = 1, due to the noisy
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Figure 13: NA23A sequence, s n = 4. (a) The A S for g = 0,
Max Numbers = 5, b = [0 · · · 8], and the six last frames, (b)
images of the six last frames after the DPA algorithm.

last frames, as in the g = 0 case. Section 3.2.1(3) deals with
the issue of using values of the Max Numbers parameter that
will correctly take only target pixels as the highest pixels.

(3) FindingMax Numbers

As specified before, the parameter Max Numbers controls
the number of pixels considered as “target” pixels, and thus
affects the result of the SNR of the blocks and consequently
the A S. So far Max Numbers = 5 has been used. Instead
of using an arbitrary number of highest pixels, a value for
Max Numbers can be found via optimization of the A S, for
the two cases of g = 0 and g = 1. A value of b = 4.8
and s n = 4 was taken. The optimization was first run for
the g = 0 case. Figure 15 shows a peak of mean A S for
Max Numbers = 3 (there is a peak for all frames but the 19th
frame where there is not enough accumulation as discussed
before). A decrease in the TB’s SNR can also be seen from
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Figure 14: NA23A sequence, s n = 4. (a) Standard deviation of NTB’s SNR, (b) expectation value of NTB’s SNR, (c) TB’s SNR, and (d) the
target’s track (the pink track is the target track for s n = 1).

the figure for Max Numbers > 3. The result suggests that
Max Numbers = 3 is preferable for the g = 0 case.

Figure 16 shows the A S versus b of the NA23A sequence,
for s n = 4. The graph is separated to three sections
according to the resulting highest pixels in the last frame: (1)
target pixels, (2) trail and target pixels and pixel of origin, and
(3) pixel of origin and trail pixels. In the case of the 5 highest
pixels, the A S takes only the target pixels up to b = 5.6
(as can be seen in Figure 17(a)). Above that value the trail
pixels start to accumulate higher scores than the target pixels,
until the pixel of origin also accumulates a higher score (b =
6.0). In the case of 3 highest pixels, the score takes only the

target pixels up to b = 5.8 (as can be seen in Figure 17(b)).
Higher EMCs cause nontarget pixels to be higher than the
target pixels as before. In this case of g = 0 and s n = 4,
the algorithm was able to track and locate the target up to
b = 6.0. Using that and Figure 16 leads to the conclusion
that a good range of EMCs would be 4.4 ≤ b ≤ 6. This range
contains the theoretical EMC for nonmoving targets.

It should be noted that the resulting separation concurs
with the relevant range of 0 ≤ b ≤ 6 deduced from
the preliminary results. The graph in Figure 15 helps to
distinguish a good range in which the highest pixels taken
as “target pixels” indeed belong to the target.
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Figure 15: NA23A sequence, s n = 4. (a) A S versus Max Numbers, (b) TB SNR versus Max Numbers.
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Figure 16: NA23A sequence, s n = 4, Max Numbers = 3, A S
versus b, g = 0 case.

Figure 18 shows the detected target’s track. It can be
clearly seen that up to b = 5.6 the tracking is reliable. An
increase in the EMC causes inaccurate target tracking, where
further increase (b > 6) causes previously target traversed
pixels to achieve the highest accumulated score, and hence
no tracking occurs.

The discussion continues now to the g = 1 case. The last
frames of the algorithm versus b are shown in Figure 19. It
can be clearly seen that for 0 ≤ b ≤ 0.8 there is only one high
pixel belonging to the target (surrounded by white circle).
The algorithm tracks the target in the range of 0.2 ≤ b ≤ 0.8.
These results suggest that Max Numbers = 1 and 0.2 ≤ b ≤
0.8 should be used in the case of g = 1.

The A S using Max Numbers = 1 is shown in Figure 20.
A peak in the mean A S can be clearly seen for b = 0.6
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Figure 17: NA23A sequence, s n = 4, last processed frame. (a)
Highest 5 pixels emphasized and (b) highest 3 pixels emphasized.

and the best tracking is achieved for b = 0.8 (not shown)
in accordance with the theoretical value. The A S is higher
in this case than the g = 0 case for s n = 4 (s n number),
and higher than both cases for s n = 1. This result suggests
that the algorithm performs better for faster targets, given
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Figure 18: NA23A sequence, s n = 4, target’s track versus b.
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Figure 19: NA23A sequence, s n = 4, last processed frame, g =
1 case, highest 5 pixels emphasized (target pixel surrounded by a
white circle) versus b.

correct value of Max Numbers according to the case under
investigation.

(4) Summary

Results of the NA23A sequence have been shown, with an
emphasis on the effect of the Max Numbers and the s n
parameters. Preferable values for Max Numbers were found:
Max Numbers = 1 for the g = 0 case, and Max Numbers =
1 for g = 1 case. Relevant ranges of bs were also found for
each case: 4.4 ≤ b ≤ 6 for the g = 0 case 0.2 ≤ b ≤ 0.8
for the g = 1 case. The g = 1 case has performed better
for the faster target scenario (s n = 4). Once again, for
each s n rate, the highest A S in the relevant ranges of bs
was chosen. It should be noted that for the algorithm to
accumulate effectively, at least 20 frames have to be processed,
thus limiting the amount of sampling that can be done,
depending on the number of available sequence frames. Also,
different frames are processed for the different s ns, so a
comparison might not be precise. The results are shown in
Figure 21. The algorithm has a preferable target velocity at
around ν ≈ 0.6± 0.15 [ppf].

3.2.2. NPA Sequence

The sequence contains a target moving at ν ≈ 0.2 [ppf] in
the proximity of clouds. In this case, the cloud’s edges in the
target block pose a challenge since they behave like targets
and receive a high A S from the whitening preprocessing
stage (source for clutter leakage). In this sequence, tracking
and detection were achieved for s n ≥ 3. Hence detailed
results for lower s n values will be skipped and only detailed
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Figure 20: NA23A sequence, s n = 4 A S versus b, g = 1 case and
Max Numbers = 1.
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Figure 21: NA23A sequence, A S versus s n. (a) g = 0 case,
Max Numbers = 3 and (b) g = 1 case, Max Numbers = 1.
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Figure 22: NPA sequence, s n = 3. (a) A S, g = 0, Max Numbers = 3, (b) STD of NTB’s SNR, (c) expectation value of NTB’s SNR, and (d)
TB’s SNR.
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Figure 23: NPA sequence, s n = 3, g = 1 case. (a) The last frame of the algorithm, highest 5 pixels emphasized versus b (target pixel
surrounded by a white circle), (b) the target track versus b.

results for s n = 3 will be shown. Section 3.2.2(2) will show
A Ss for the various s ns.

(1) Results (s n = 3)

Figure 22 shows the following graphs for the g = 0 case: A S,
standard deviation of the NTB, expectation value of the NTB

SNR, the TB’s SNR (all versus b), and the last frame (25) for
various values of b.

The resulting A Ss are negative for all the bs in the range.
This is due to the cloud edges at the bottom of the target
block that get high accumulated scores (Figure 23(a)). This
causes the TB’s SNR to be low. Cloud edges in the NTB give
rise to their SNR, leading to a negative A S. Nevertheless,
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Figure 24: NPA sequence, s n = 3. (a) A S, g = 1, Max Numbers = 1, (b) standard deviation of NTB’s SNR, (c) expectation value of NTB’s
SNR, and (d) TB’s SNR.

the algorithm is able to track and detect the target for
2 ≤ b ≤ 4.8. Higher EMCs lead to cloud’s edge having
higher score than the target itself in the TB, and hence no
tracking.

The results for the g = 1 are shown in Figure 24.
The results have also been negative as the g = 0 case.
Nevertheless, the algorithm has been able to track and detect
the target for 0 ≤ b ≤ 0.8, as can be seen in Figure 25.

(2) Summary

Results of the NPA sequence have been shown. Preferable
values for Max Numbers were found: 3 for the g = 0 case,
and 1 for g = 1 case. Relevant ranges of bs were also found

for each case: 2 ≤ b ≤ 4.8 for the g = 0 case, 0 ≤ b ≤ 0.8 for
the g = 1 case. The algorithm performed best for s n = 4, as
shown in Figure 26, where the effective target velocity was at
around ν ≈ 0.8± 0.1 [ppf].

3.2.3. DPA results summary

Relevant ranges of bs for which the algorithm was able to
track and detect the target, and the optimal Max Numbers
values, are shown in Table 1 for the various IR sequences. The
table also indicates the range of s n in which the algorithm
was able to track and detect the target, hence describing
the range of target velocities where the algorithm proved
effective.
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Figure 25: NPA sequence, s n = 3, g = 1 case. (a) The last frame
of the algorithm, highest 5 pixels emphasized versus b (target pixel
surrounded by a white circle), (b) the target track versus b.
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Figure 26: NPA sequence, A S versus s n. (a) g = 0 case,
Max Numbers = 3, (b) g = 1 case, Max Numbers = 1.

Among the goals was finding optimal values of EMC
for the various scenes, and various speeds. A table can be
built from the data gathered from the results, so that a
future tracking system might adapt to the scenery. Evaluation
of the scenery might be done using the preprocessing

whitening stage which tries to approximate the statistics of
the background.

4. SUMMARY AND CONCLUSIONS

This paper has presented a system for the tracking of
a dim point target in an IR sequence using the DPA
approach. The developed DPA formulation and parameters
have been discussed and a metric was introduced as means
of optimizing the parameters for different scenes. The results
have shown that in hard conditions where clouds are sparse,
the cloud edges receive high scores by the preprocessing stage
causing false alarms at the DPA stage. In this case, it was
shown that the lower EMC range has to be used, so as to
“get rid” of this old information of cloud edges. This usage
of lower EMC will limit the lowest SNR of the target that
the algorithm can track. Generally, 20 frames or more were
preferable for the noticeable accumulation in the tracking
range of EMC.

In the case of IR sequences containing “fast targets,” the
algorithm has been able to track target which is at a velocity
of at least ν ≈ 0.3 [ppf] in low clutter scenes, and velocity
of at least ν ≈ 0.6 [ppf] in high clutter scenes. Since that is
the case, the penalty matrices-based DPA implemented here
has to be used with another prestage algorithm that acts as
a sampler, and outputs a faster target so that tracking of
subpixel velocity point targets is possible. Using the sampling
of the sequences, the algorithm was found to perform at its
peak for target velocity of 0.6 ≤ b ≤ 0.8.

Dynamic programming algorithms for track-before-
detect are neither easy nor automatic. A careful study of
the relevant parameters shows that the nature of the images,
including the target speed and the presence of clutter, affects
the optimal setting of the parameters. This paper attempts to
contribute to these analyses.
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