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Estimating VDT Mental Fatigue Using Multichannel Linear
Descriptors and KPCA-HMM
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The impacts of prolonged visual display terminal (VDT) work on central nervous system and autonomic nervous system are
observed and analyzed based on electroencephalogram (EEG) and heart rate variability (HRV). Power spectral indices of HRV,
the P300 components based on visual oddball task, and multichannel linear descriptors of EEG are combined to estimate the
change of mental fatigue. The results show that long-term VDT work induces the mental fatigue. The power spectral of HRV, the
P300 components, and multichannel linear descriptors of EEG are correlated with mental fatigue level. The cognitive information
processing would come down after long-term VDT work. Moreover, the multichannel linear descriptors of EEG can effectively
reflect the changes of 6, «, and § waves and may be used as the indices of the mental fatigue level. The kernel principal component
analysis (KPCA) and hidden Markov model (HMM) are combined to differentiate two mental fatigue states. The investigation
suggests that the joint KPCA-HMM method can effectively reduce the dimensions of the feature vectors, accelerate the classification
speed, and improve the accuracy of mental fatigue to achieve the maximum 88%. Hence KPCA-HMM could be a promising model
for the estimation of mental fatigue.

Copyright © 2008 Chong Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

tive ability, mood, and anxiety levels [3—5]. A recent tendency

Mental fatigue is a common physiological phenomenon. Es-
pecially in highly demanding visual display terminal (VDT)
work,people may become fatigued and suffer some experi-
ence difficulties for maintaining task performance at an ad-
equate level [1]. In industry, many incidents and accidents
are related to VDT mental fatigue as the result of sustained
performance [2]. It is important to cope with mental fatigue
so that the workers do not harm their health. Therefore, the
management of fatigue is very important not only for en-
hancing productivity, but also for protecting occupational
health.

To date, many methods have been proposed to estimate
the mental fatigue. A large number of previous studies use
behavioural indices or subjective measures such as reac-
tion time, error ratio, or subjective scales. However, these
measures have some limitations, for instance, they cannot
provide moment-to-moment fluctuations of mental fatigue.
Moreover, the results may be affected by the subjects’ cogni-

in ergonomic research is to choose more objective measures
to assess the mental fatigue state. These approaches focus
on measuring physiological changes of people, such as the
electrooculogram (EOG), respiratory signals, heart beat rate,
skin electric potential, and particularly, electroencephalo-
graphic (EEG) activities as a means of detecting the men-
tal fatigue states. Some scholars reported that performing
monotonous tasks was related to the increase of the 0.1 Hz
component in the heart rate variability (HRV) [6, 7]. Al-
though numerous physiological indicators were available to
describe an individual’s mental fatigue state, the EEG sig-
nals might be the most promising, predictive, and reliable
one [8, 9]. The EEG was widely regarded as the physiological
“gold standard” for the assessment of mental fatigue. There
were several EEG studies related to mental fatigue in the past.
Some studies reported EEG spectral changes as alertness de-
clines. For example, the proportion of low-frequency EEG
waves, such as 0 and « rhythms, might increase while higher-
frequency waves, such as § rhythms might decrease [10-12].
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Other studies explored the links between fatigue and changes
in event-related potential (ERP) components. Mental fatigue
was found to produce a decrease in P300 amplitude while la-
tency increases [13—15].

However, mental fatigue is a complex phenomenon,
which is influenced by the environment, the state of health,
vitality, and the capability of recovery. Single physiologi-
cal parameter cannot evaluate mental fatigue well. It would
preferably need to consider more objective physiological
measures. Thus, several techniques need to be combined to
estimate the state of mental fatigue. Lorist et al. used ERP and
mood questionnaires to assess the effects of mental fatigue
[16]. Lal and Craig combined EEG activity, heart rate with
psychological measures such as anxiety, tension, and fatigue
levels to investigate the impacts of driving fatigue on subjects
[5]. These previous studies showed that the EEG, electrocar-
diogram (ECG) activity, and psychological factors were asso-
ciated with mental fatigue.

In this paper, the subjective self-reporting measures are
utilized to verify that long-term VDT work would induce
the mental fatigue to the subjects. Then neurophysiologi-
cal indicators such as the P300 amplitude and latency based
on visual oddball task and multichannel linear descriptors
in five frequency bands of EEG are further used to investi-
gate the effect of prolonged VDT work on central nervous
system, the power spectral parameters of HRV are applied
to explore the effect on autonomic nervous system. Finally,
kernel principal component analysis (KPCA) and hidden
Markov model (HMM) are combined to measure moment-
to-moment mental fatigue changes. Compared with previous
studies, the presented comprehensive methods would make
the mental fatigue estimation much reliable and accuratecy
since many psychological and physiological parameters are
considered.

2. MATERIALS AND METHODS
2.1. Subjects

Fifty male right-dominated graduate students, between 20
and 27 years old (M = 23.0 years, SD = 1.6), participated
in this study. Personal data (handedness, past medical his-
tory, medical family history, etc.) were acquired with a stan-
dardized interview before EEG recordings. All subjects were
in good health. None of them reported on any cardiovascu-
lar disease or neurological disorders in the past or had taken
any drugs known to affect the EEG. Subjects did not work
night shifts and had normal sleep time. All of them were ac-
customed to use the computer mouse and agreed to join the
study.

2.2. Experimentdesign

Participants were comfortably seated facing a CRT video
monitor at about 50 cm far. The illumination on the CRT
was about 300 Ix. The experimental tasks were three types of
simple VDT tasks. The first type of task was a vigilance task.
Three random numbers displayed at the same time on the

CRT screen and changed once every second randomly. The
subjects were asked to click the right mouse button promptly,
as three different odd numbers, such as 1, 7, 9, appeared.
Sixteen subjects participated in this experiment. The sec-
ond type of task was the addition and subtraction arithmetic
calculation of four one-digit numbers. They were displayed
on a computer monitor continuously until the subject re-
sponded. The participants solved the problems firstly, and
then decided whether the result was less than, equal to, or
greater than the target sum provided. Sixteen subjects partic-
ipated in this experiment. The third type of task was a simple
switch task. A white square, subdivided into four subsquares,
was displayed continuously at the screen center. Stimulus im-
ages were presented in turn, and the image was starting from
the upper left subsquare with clockwise fashion. The stimu-
lus images were numbered from zero to nine randomly. The
color of the stimulus images was red or blue randomly. Then
the subjects should pushed the left or right mouse button re-
lated to the image color, respectively, when the stimulus im-
age appeared in either of two upper subsquares, or related
to the odd or even number identity if the stimulus appeared
in either of two lower subsquares. Eighteen subjects partic-
ipated in this experiment. All subjects performed the VDT
task until either they quitted from exhaustion or two hours
elapsed. The response time and the number of error trials, if
any, were recorded.

Subjects were required to abstain from alcohol and
caffeine-containing substances 24 hours before the experi-
ment. Subjects were told the study was aimed at investigating
the neural correlates of cognitive control, they were unaware
the study was about mental fatigue. To avoid the influence
of circadian fluctuations on subjects, the experiments were
scheduled to be at the same time session. The experimental
session started about 8:00 and lasted for 3.5 to 4 hours. No
any clock and watch in the laboratory. They had no knowl-
edge about experimental duration.

Subjects were seated in a dimly lit, sound-attenuated,
electrically shielded room. Before starting the experiment,
the subjects completed a brief demographic questionnaire
(age, handedness, hours of sleep, etc.), and ensured that the
instructions were understood. First, the psychological self-
report measures of sleepiness and fatigue were conducted,
and the ERPs were measured. Subjective sleepiness was as-
sessed by means of the Stanford sleepiness scale and the
Karolinska sleepiness scale, and subjective fatigue was mea-
sured with the help of the Samn-Perelli checklist, Li’s sub-
jective fatigue scale and Borg’s CR-10 scale [7, 17-20]. Sub-
sequently, the subjects were required to simply relax and try
to think of nothing in particular, and recorded the EEG and
ECG in the eyes-closed resting state for five minutes before
starting the experimental session. They then performed the
VDT task either until two hours elapsed or until volitional
exhaustion occurred. Subjects were instructed to respond as
quickly as possible, maintaining a high level of accuracy. EEG
and ECG recordings were conducted immediately after the
completion of the VDT task. The same psychological rating
and ERPs measurement were also carried out at two epochs:
pretask, that was before task; posttask, that was immediately
after task.
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The ERP was recorded when the subject was doing the
visual oddball task. The red ball and green ball images were
used for the visual stimulations. The probabilities of ap-
pearance of green and red balls were 0.8 and 0.2, respec-
tively. The subject was ordered to respond to the rare stim-
uli with a response switch as fast as possible. The stim-
ulus interval was 1000 + 200 milliseconds. The 160 mil-
liseconds EEG data before stimulus onset and the 640 mil-
liseconds EEG data after stimulus onset were used for av-
eraging ERPs. And then the peak latency and the corre-
sponding amplitude for the P300 components could be well
obtained.

2.3. Data acquisition

EEGs were recorded by a Neuroscan 32 channel system
(Neuroscan, El Paso, Tex, USA) with international 10-20
lead systems. Fp2, Fpl, F4, F3, A2, Al, C4, C3, P4, P3,
Fz, Cz, and Pz leads were used with Ag/AgCl electrodes.
Recordings were referenced to linked-mastoids. Two addi-
tional bipolar pairs of electrodes were placed to record hori-
zontal and vertical EOG. ECG was measured with three dis-
posable electrodes. Two electrodes were attached on the left
and right sides of frontal lower ribs. The grounding elec-
trode was placed on the sternum. Skin impedance was below
5kQ on all electrodes. Physiological signals were filtered by
band pass filter with bandwidth from 0.01 to 100 Hz. The
signal was sampled at 500 Hz and digitized at 16 bits. Eye
movement contamination was removed by adaptive filtering
methods.

2.4. Power spectral of HRV

Power spectrum analysis of HRV is a sensitive and non-
invasive technique to quantify the autonomic control over
the cardiac cycle [21]. It usually uses high-frequency (HF:
0.15-0.40 Hz) power as an index of parasympathetic activity
and the low-frequency (LF: 0.04-0.15 Hz) power as an index
of sympathetic and parasympathetic activity [22]. Thus, The
LF/HF ratio is considered to mirror sympathovagal balance
or to reflect the sympathetic modulations [23, 24].

The detection of R waves is done by the wavelet trans-
form-based algorithm. Then 5-minute raw R-R interval se-
quence is interpolated at 1-second intervals by linear interpo-
lation. From the interpolated RR tachogram, the power spec-
trum of HRV is estimated from 256 R-R intervals of the heart
beat by using an autoregressive (AR) model (order 16). When
R-R spectrums are investigated, it is observed that a consid-
erable amount of energy is in the very low-frequency (VLF)
range (<0.03Hz). VLF oscillations are much less defined,
but suggest to be related with thermoregulation. Therefore,
to prevent these oscillations from masking other frequency
ranges (<0.03 Hz), they are filtered from the tachograms by
using wavelet filter before modeling.

For spectral analysis, the total power (TP: 0-0.4 Hz), LF
power, HF power, and LF/HF ratio are calculated. Spectrum
components are expressed both in absolute unit (AU, ms?)
and normalized unit (NU). The normalized value of equa-

tion of the LF power is represented as

LF power
TP power — VLF power

LF power (NU) = (1)

2.5. Feature extraction based on multichannel
linear descriptors

Wackermann proposed a X-®-Q system for describing the
comprehensive global brain macrostate [25]. Let us consider
N EEG samples in the observed time window at K elec-
trodes to construct the voltage vectors {u,...,uy}, where
each u; (i = 1,...,N) corresponds to the statevector repre-
senting the spatial distribution of EEG voltage over the scalp
at the ith sample. The data are assumed to have been already
centered to zero mean and transformed to the average refer-
ence [25, 26]. Then Q, @, and X can be calculated as follows
[26]:

1 2
m = xSl
1 <||Au; |
my = N;‘ AL;’ . where Au; = u; — uj_g,
(2)
DL
K b
_ 1 /m
21 mo'
The covariance matrix is constructed as:
C= iZu ul (3)
N< nrne

The eigenvalues A, - - - Ax of matrix C is calculated, then Q
complexity can be obtained:

log Q) = —>'Ailog A}, (4)

where ] is the normalized eigenvalue.

In the 2-0-Q system, K-dimensional voltage vectors
constructed from the simultaneous EEG measurements over
K electrodes with time varying are regarded as the trajec-
tories in the K-dimensional state space. By the three lin-
ear descriptors, the physical properties of the EEG trajectory
and then the brain macrostates are characterized. @ reflects
mean frequency of the corresponding field changes; (2 mea-
sures the spatial complexity of the brain region, which de-
composes the multichannel EEG data into spatial principal
components and then quantifies the degree of synchrony be-
tween the distributed EEG by the extension along the princi-
pal axes; larger value of Q) corresponds to the low synchrony;
% reflects the corresponding regional field power; ® charac-
terizes the speed of regional field changes of the contralat-
eral, ipsilateral, and mid-central regions, respectively. It can
be seen that by EEG over the K electrodes the three linear de-
scriptors describes the different brain macorstate features of
the interested brain regions.
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In this paper, after artifact detection and ocular correc-
tion, one-minute EEG data of each trial for each subject in
the session of pretask and posttask are selected to be ana-
lyzed. The first 10 seconds EEG data is chosen as basic data
segment and steps by one-second data. By shifting the data
segment step-by-step for whole trial, 5100 data segments are
obtained.

Wavelet packet analysis is performed to every EEG data
segment. Daubechies 10 is adopted as the mother wavelet.
After eight-octave wavelet packet decomposition, the EEG
components of the following five frequency bands are ob-
tained: total (0.5-30 Hz), delta (0.5-3.5Hz), 0 (4—7 Hz) o (8-
12 Hz), and f (13-30 Hz). Twelve electrode arrays formed by
eleven electrodes are used, that is, prefrontal electrode arrays
(Fpl-Fz, Fp2-Fz, and Fpl-Fz-Fp2), frontal electrode arrays
(F3-Fz, F4-Fz, and F3-Fz-F4), central electrode arrays (C3-
Cz, C4-Cz, and C3-Cz-C4) and parietal electrode arrays (P3-
Pz, P4-Pz, and P3-Pz-P4). Then Q, @, and X of all EEG data
segments are calculated for every electrode array in five fre-
quency bands, respectively, and multichannel linear descrip-
tor features of 180 dimensions for every EEG data segment
are obtained.

2.6. Reducing the dimensions of feature vectors in
feature spaces based on kernel PCA

Kernel PCA (KPCA) as a nonlinear feature extractor has been
proven powerful as a preprocessing step for classification al-
gorithms. It first maps the data into some feature space F
via a function y (usually nonlinear) and then performs linear
PCA (LPCA) on the mapped data. As the feature space F may
be very high dimensional, KPCA employs Mercer kernels in-
stead of carrying out the mapping y explicitly.

The feature vectors preprocessed by KPCA have lower
size, and can improve the generalization and speed of clas-
sification in the next step. The Gaussian function is selected
as the kernel function for KPCA algorithm.

2.6.1. KPCA with centered data in feature spaces

Consider a nonlinear mapping y : X — x, X € R® is the input
vector space and x € F is the vector feature space. Assume
the vector be centered as follows:

!
D> (%) =o. (5)
k=1
The covariance matrix E in the feature vector space F is
1
7 z (%K) y" (xk (6)

Like LPCA, one has to solve the eigenvalue for a KPCA prob-
lem in the feature vector space:

Av = Eo. (7)

The solution v lies in the span of y(X;),y(X2),..., (X)) and
(7) is equivalent to

My (%), v) = (y(%), Ev), (8)

and there exists coefficients {c;}, such that
I
v=">cy%). 9)
i=1

Define a I x I dot product matrix:

[K];; = K(%,%)) = (y(%),7(%)), (10)
where K (¥;,%;) is a kernel function satisfying Mercer’s con-
dition [27], that is, if and only if for any g(x) s.t. fg(x)zdx is
finite, then f I’Z'(ii, )N(j )g(%l)g(%])d%ld%J > 0.

Combining (7)—(10), we have the following formula:

Mc=Re, c=[a1 &2 - a]'. (11)

The solutions (A, c€) need to be normalized [28] by

Ax{ck, )y = 1. (12)

2.6.2. Kernel PCA with noncentered data in feature spaces

With mentioned above, the assumption that the mapped
data are centered in F space is necessary (see (13)). For any
y and any set of observations X;,X;, . . ., X, the vectors will be
centered as follows:

I
P(Xk) = y(%) %Z (13)

Similarly, we can get the formulas as follows:

Mc = K¢, (14)
K=K-1,K-K1+1K1, (15)

where 1;; = 1 and (IN),»j = 1/l for all i, j. Let X be a test vec-
tor, then g nonlinear principal components corresponding to
¢ when Ay = 1, = - - - = Ay can be obtained by

!
= >KE,X), k=12,...,4q (16)
i=1
In summary, the following steps are necessary to com-
pute KPCA [29]:

(i) for a set of s-dimensional training set {X;}, the kernel
matrices K and K defined by (10) and (15) are com-
puted, respectively;

(ii) solve the eigenvalue problem (14) and normalize ¢
such that (ck,c%) = 1/4;;

(iii) letA; > A, > - - - > Ay. For a test pattern X, g nonlin-
ear components in feature vector space are extracted
by (16). The dimensions of the test pattern X are re-
duced from s to g.

k

2.7. Classification using hidden Markov model (HMM)

The HMM can be seen as a finite automaton, containing s
discrete states, emitting a feature vector at every time point
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depending on the current state. Each feature vector is mod-
eled using m Gaussian mixtures per state. The transition
probabilities between states are described using a transition
matrix. During the training phase, the expectation maxi-
mization (EM) algorithm introduced by Dempster [30] is
used to estimate the transition matrix and the Gaussian mix-
tures. Based on randomly selected values for the transition
matrix and an initial estimation of the mixtures, the EM
algorithm is performed. The estimation formulas guaran-
tee a monotonic increase of the likelihood P(y/HMM) un-
til reaching a local or global maximum to end the training
phase.

The Gaussian mixtures are approximated based on a k-
means clustering of the feature vectors. The clustering is
performed using the Euclidean distance, which necessarily
needs feature vector components with a mean and vari-
ance within the same numerical range. The mean and vari-
ance of all feature vectors belonging to one cluster are then
used to model the Gaussian mixtures with a diagonal co-
variance matrix. This modeling is feasible just for the non-
correlated feature vector components. In order to meet both
requirements of normalized and not correlated data, the
whitening transformation is performed. The original data
V. = (v(1),v(2) - - -»(T)) of length T is transformed into
V = ®(1),%(2) - - - %(T)) using the following:

V = dAY?Y, (17)

where ® and A the eigenvector and eigenvector matrices, re-
spectively, of the covariance matrix of V.

Two HMM’s, one representing the norm state (HMMy)
and one representing the fatigue state (HMMp) are trained
by using the EEG data segments recorded during the corre-
sponding mental fatigue states. The parameters of the mod-
els are estimated by the given training data and are then
used to classify the same training data. Finally, HMMy
and HMMp are estimated by using the correct classified
trials. Classification of an unknown EEG data segment is
based on a selection of the maximum single best path prob-
ability P, (VIHMM) calculated via the Viterbi algorithm
[31]. Calculating P,(VIHMMy) and P,(V|HMMp) for all
EEG segments will result in a propagation of these prob-
abilities, which allows us to make classification sample by
sample.

Cross-validation is a commonly used standard test meth-
od to test the classification ability by using various combina-
tions of the testing and training data sets [32, 33]. A 5-fold
cross-validation test is applied, in which 50 subjects’ data are
divided into five groups. We randomly select 40 subjects’ data
as the train sample set, and 10 subjects’ data as testing sample
set. Each of the five cross-validation test groups, therefore,
has 1020 EEG data segments of ten subjects while their re-
spective training segment includes the remaining 4080 EEG
data segments of forty subjects’ data. To classify the test vec-
tors given by our 5-fold cross-validation scheme, the likeli-
hood of them to belong to each of two HMM’s is calculated.
The one having more likelihood is assigned to that mental
fatigue state.

Three measures, accuracy (Ac), specificity (Sp) and sensi-
tivity (Se) are used to assess the performance of five classifiers
(34]:

TP+ TN
A = 100%,
MY = TP Y FP+ TN + EN : &
TN
ificity = ————— %, 18
Specificity TN + FP x 100% (18)

e TP
senSlthltY = m x 100%,

where TP is the number of true positives, TN is the number
of true negatives, FP is false norm identifications, and FN is
false fatigue identification. The specificity is defined as the
ability of the classifier to correctly recognize a fatigue state.
The sensitivity indicates the classifier’s ability not to generate
a false detection (normal state). Figure 1 shows the schematic
diagram for KPCA-HMM.

3. RESULTS
3.1. Subjective evaluation of mental fatigue

The results of comparison of several subjective scores be-
tween two sessions are shown in Figure 2.

The self-report questionnaires reveals that subjects are
not fatigue and sleepy before task and moderately to ex-
tremely fatigue and sleepy after task. Compared with the pre-
task, the subjective scores increase significantly (P < .005)
after the completion of the task, which indicates that contin-
uous long-term VDT task leads to an increase in fatigue and
sleepiness.

3.2. Mental fatigue analysis based on
power spectral of HRV

Figure 3 presents the power spectral of HRV made on a par-
ticular subject in the sessions of pretask and posttask. It is
obvious that LF power increases after task.

Mean values of heart rate (HR), TP power, HF power
(AU and NU), LF power (AU and NU), and LF/HF ratio of
HRYV between the pretask and posttask periods are shown in
Table 1.

Compared with the pretask, mean HR and HF power
(NU) decrease (P < .005), while LF power (AU and NU),
LF/HF ratio and TP power increase (P < .005) after the task.
However, HF power (AU) does not change significantly.

3.3. ERP analysis based on visual oddball task

Figure 4 shows theexamples of P300 waveform at electrode
locations Fz, Cz, and Pz in the pretask and posttask.

The statistical analysis results of P300 amplitude and la-
tency at electrode locations Fz, Cz, and Pz are shown in
Figure 5.

Compared with the pretask, P300 amplitudes at electrode
locations Fz, Cz, and Pz all decrease (P < .005) after the
task, while P300 latencies at electrode locations Fz, Cz, and
Pz all increase (P < .005) significantly. Moreover, the mean
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(2) Feature
extraction based
on multichannel
linear descriptors

(3) Reducing the [—{ (4) HMMy
—>| dimensionality
using KPCA || (4) HMMFp

!

EEG | (1) Noise
removal

(5) Compare
|| likelihood

—> Decision

FIGURE 1: Schematic diagram for KPCA-HMM: (1) eye movement contamination is removed by adaptive filtering methods; (2) features of
180 dimensions are extracted using multichannel linear descriptors measure; (3) kernel PCA is used to reduce the dimensions of features;
(4) two HMM’s are trained, HMMy corresponds to the norm state, and HMMp corresponds to the fatigue state; and (5) the final mental
state is decided by the likelihood score of two HMM’s.

TasLE 1: Changes of the power spectral indices of HRV after task.

HR LE/HF LF (NU) LF (AU) HF (NU) HF (AU) TP
Pretask 73.66 = 1.38 1.57 = 0.21 54.14 = 2.46 0.18 = 0.03 45.86 + 2.46 0.16 = 0.02 0.37 = 0.05
Posttask ~ 69.20 + 1.40** 2.75 £ 0.36** 65.40 + 2.51** 0.34 = 0.07** 34.60 + 2.51** 0.17 = 0.03 0.56 = 0.10**

Data is presented as mean = SEM. HRV, heart rate variability; HR, heart rate; LF/HE, LF-HF ratio; LF (NU), low frequency in normalized units; LF (AU), low

frequency; HF (NU), high frequency in normalized units; HF (AU), high frequency; TP, total power. ** means P < .005 versus Pretask.

8
ok
6 4
o * %k
L
E 4
3
2
=]
w
2 4
0
SSS KSS SPC SES CR-10
Bl Pretask
[ Posttask

FiGcure 2: Comparison of several subjective scores on mental fatigue
between two sessions. Pretask (before task), posttask (immediately
after task). SSS, Stanford sleepiness scale; KSS, Karolinska sleepiness
scale; SFC, Samn-Perelli checklist; SFS, Li’s subjective fatigue scale;
CR-10, Borg’s CR-10 scale. **P < .005, statistical significance of
difference between two sessions.

response time for visual oddball task tends to be prolonged
at the posttask measurement, and reaches the significant level
(P < .05).The percentage of correctness does not change sig-
nificantly.

3.4. Multichannel linear descriptors of EEG

To eliminate the influences of parameter’s fluctuation, the
mean value within one minute is calculated to be statistically
analyzed. The results of comparison of multichannel linear
descriptors in total, 6, a, and 3 frequency bands between two
sessions are shown in Figure 6.

Compared with the pretask, mean value of @ in total and
a frequency band on prefrontal electrodes, central electrodes

x10%
4.5

4 -

35¢F

3 -

2.5 ¢

2 F

Power (ms?/Hz)

15+

1 -

0.5F

0
0 005 0.1

0.15 0.2
Frequency (Hz)

025 03 035 04 045 0.5

—— Pretask
—— Posttask

Figure 3: Example of power spectral of HRV in the pretask and
posttask.

and parietal electrodes, significantly decrease, mean value of
Qin f3 frequency band on central electrodes and parietal elec-
trodes significantly decrease, while mean value of ¥ in total,
B and 0 frequency bands on central electrodes and parietal
electrodes significantly increase after the completion of the
task. The results indicate that the multichannel linear de-
scriptor features of EEG are closely related with mental fa-
tigue.

3.5. The classification results by KPCA-HMM

The subjective measure, power spectrum analysis of HRV
and ERP show that the levels of both subjective sleepi-
ness and fatigue increase significantly after long-term VDT
task. The subjects are not fatigue and sleepy before task,
corresponds to a normal arousal state, and moderately to
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Amplitude (uV)

Amplitude (uV)
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FIGURE 4: Examples of P300 waveform at electrode locations Fz, Cz, and Pz in the pretask and posttask.
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()

(b)

F1GURE 5: Comparison of P300 amplitude and latency between two sessions. Pretask (before task), posttask (immediately after task). **P <

.005, statistical significance of difference between two sessions.

extremely fatigue and sleepy after task. In order to differen-
tiate the normal state from the fatigue state, KPCA-HMM
is applied. The classification accuracy is observed under the
condition of the various extraction features using KPCA and
LPCA, respectively. The average classification accuracies for
three different HMM’s are shown in Figure 7.

Figure 7 illustrates that the accuracy varies with the dif-
ferent number of the feature dimensions. When the dimen-
sionality is more than 15, KPCA-HMM shows a better per-
formance than that of HMM without using KPCA (origi-
nal HMM). The maximal classification accuracy (88%) is
reached while the number of feature dimensions equals to
29, whereas the classification accuracy of original HMM is
86%. The performance of KPCA-HMM is much better than
that of LPCA-HMM.

Table 2 shows the comparison of performances when the
different physiological parameters are used. The normality of
the P300 and HRV parameters and the equality of the corre-

sponding covariance matrices are investigated by using one-
sample Kolmogorov-Smirnov tests and Box’s M tests, respec-
tively, before linear-discriminant analysis. The results show
that all P300 and HRV parameters meet normality criteria
and model covariance matrices are equal.

According to the records, the P300 amplitude and latency
of ERP and power spectral of HRV cannot differentiate men-
tal fatigue. Their classification accuracies of mental fatigue
are below 65%. However, the performance of KPCA-HMM
based on multichannel linear descriptor parameters of EEG
is shown to classify mental fatigue effectively, which achieves
the maximum recognition accuracy of 88%. Moreover, we
observe that the Ac, Sp, and Se of KPCA-HMM are greatly
higher than that of the linear-discriminant analysis based on
Mahalanobis distance (MDBC) and other HMM methods.
This demonstrates KPCA-HMM based on multichannel lin-
ear descriptor parameters of EEG is a useful method for de-
tecting the mental fatigue.
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TaBLE 2: The comparison of the performances as different physiological parameters are used.

Physiological parameters Techniques (Ac, Sp, Se) n
HMM (0.86, 0.87, 0.84) —

Multichannel linear descriptor parameters of EEG KPCA-HMM (0.88,0.88, 0.88) 29
LPCA-HMM (0.58, 0.56, 0.59) 17

MDBC (0.67, 0.60, 0.74) —

P300 amplitude and latency of ERP HMM (0.64, 0.68, 0.60) —
MDBC (0.54,0.78, 0.30) —

Power spectral indices of HRV HMM (0.60,0.58, 0.62) o
MDBC (0.62, 0.70, 0.54) —

MDBC is the linear discriminant analysis based on Mahalanobis distance; # is the number of principle components; the kernel function of KPCA is RBF

function.
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FiGURE 7: The average classification accuracies.

4. DISCUSSIONS AND CONCLUSIONS

As already mentioned in the introduction, there is a strong
link betweenmental fatigue and the autonomic nervous ac-
tivity, performing monotonous tasks is related to the increase
of the LF component in HRV. LF power spectrum of the
HRV reflects both sympathetic and parasympathetic activi-
ties [7, 22]. In the present study, there is significant increase
in the LF power (AU and NU), LF/HF ratio, and TP power;
and a significant decrease in the HF power (NU) after the
task compared to that of the pretask period. This is con-
sistent with the analysis of theory and previous research in
drive fatigue [7]. Heart is controlled by both sympathetic
and parasympathetic activities. When subject is at ease, it is
modulated by sympathyovagal balance; on the contrary, the
sympathetic activity is predominant when subject is fatigued,
excited, and nervous. Therefore, the predominant activity of
autonomic nervous system of subjects turns to the sympa-
thetic activity from parasympathetic activity after the task.
However, heart rate shows the opposite course as is expected.
Continuously, tasking time does not lead heart rate to in-

crease. This is in line with the course of the LF component.
Lower heart rate causes more variations in heart rate and this
is reflected in an increase of the LF component.

The P300 components are useful to measure the abil-
ity of cognitive information processing [15, 35]. It has been
reported that the P300 amplitude reflects the depth or de-
gree of cognitively processing the stimulus. In other words,
it is strongly related to the level of attention. The P300 la-
tency is found to reflect the temporal aspect when cogni-
tively processing the stimulus. When a cognitive task is diffi-
cult to process, the P300 latency will be prolonged. The ex-
perimental results show that the P300 amplitudes decrease
significantly, while the P300 latencies increase significantly
after task, which indicate that the cognitive information
processing is slowdown and the cognitive activity will be
decreased.

Q) complexity measures the spatial complexity of brain
region and indicates the degree of synchronization between
functional processes spatially distributed over different brain
regions; ® reflects mean frequency of the corresponding field
changes; ¥ describes the field strength of brain region. More-
over, it has been recognized that 6 waves are associated with
a variety of psychological states including hypnagogic im-
agery, low levels of alertness during drowsiness and sleep
and as such have been associated with decreased informa-
tion processing [10], & waves occur during relaxed condi-
tions, at decreased attention levels and in a drowsy but wake-
ful state, and § waves are related to alertness level, and as
the activity of § band increases, performance of a vigilance
task also increases [11]. In our experiment, mean value of Q
in  frequency band on central electrodes and parietal elec-
trodes significantly decreases after task, which suggests the
synchronization of the central and parietal cortex increases.
Mean value of @ in total and & frequency band on prefrontal
electrodes, central electrodes and parietal electrodes signif-
icantly decreases after task, which reflects the decrease of
field changes in prefrontal, central, and parietal brain region.
Mean value of X in total, 3, and 6 frequency bands on central
electrodes and parietal electrodes significantly increases after
the completion of the task, which reflects the positive change
of energy of in total, 3, and 6 frequency bands on central and
parietal cortex. The results indicate that the multichannel lin-
ear descriptors of EEG can effectively reflect the changes of 6,
a, 3 waves, and the change of mental fatigue further.
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HMM shows better performance than that of traditional
linear discriminant analysis. The KPCA-HMM by using the
multichannel linear descriptor parameters of EEG shows bet-
ter performance than that by using other physiological pa-
rameters. The average recognition accuracy by KPCA-HMM
can reach to 88%. It is much better than that by using other
models for distinguishing the VDT mental fatigue. Hence
KPCA-HMM is a suitable promising method for the mental
fatigue estimation.

Long-term VDT task has significant effect on psychol-
ogy, behaviour and physiology of subjects, which induces
the changes of subjective sleepiness and mental fatigue, au-
tonomic nervous function, and central nervous system. In
this paper, we focus on the use of physiological methods to
measure mental fatigue. The indices based on central ner-
vous system (EEG) and those based on autonomic nervous
function such as HRV are combined to monitor the change of
mental fatigue. There is a close relationship between changes
in fatigue and the physiological parameters. These physiolog-
ical parameters may serve as indicators of the level of mental
fatigue. For mental fatigue classification, experimental study
suggests that the joint KPCA-HMM method might be a use-
ful tool in the estimation of mental fatigue, which can effec-
tively reduce the dimensions of the feature vectors, accelerate
the classification speed, and improve the accuracy of mental
fatigue.
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