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1. INTRODUCTION

The field of brain-machine interfaces (BMIs) is devoted
to accomplishing the goal of one day restoring paralyzed
patients mobility by directly connecting their brain to a
machine. A majority of developments in this field have
centered around linear and nonlinear models that map
neural firing patterns of an animal to a robotic prosthetic
[1–3]. Usually, in this type of experiment, a primate or rat
engages in a movement task as neural data is recorded from
their cortex (as well as the kinematic information). Once a
prediction model has been trained with the trajectory/neural
data, only neural data is used to control a robotic arm in real-
time [2, 3].

As a result of the above-mentioned experiments, our
group established that when multiple feed-forward predic-
tion models map discrete portions of the neural data to
respective portions of the continuous trajectory, the overall
trajectory reconstruction is improved [4, 5]. The classifier
that is responsible for switching between these different feed-
forward models is the main focus of this paper (see Figure 1
for system overview).

The previous switching classifier was an ensemble
method that incorporated multiple independent experts.
These experts were single neural-channel HMM chains that

formed an independently coupled hidden Markov model
(IC-HMM) [5]. Since it is unlikely that the independence
assumption applies to all of the neurons, finding dependen-
cies between some of the neurons, could prove beneficial for
final kinematic reconstruction or other biologically-inspired
modeling. Additionally, one limitation of this algorithm is
that as more neurons are sampled from the brain (as is the
current trend for BMIs), the number of independent models
could grow to an unmanageable level [6]. Although the
ICHMM is still computationally more efficient than using
a model that has full dependencies, like the coupled hidden
Markov model (CHMM), it is still desirable that the input
dimensionality be reduced to avoid this pitfall.

In this paper, we first take multidimensional neural
input data and decompose the joint likelihood of observing
the neural input into marginal likelihoods using boosted
mixtures of hidden Markov chains (BMs-HMM). The algo-
rithm applies techniques from boosting to create hierarchical
dependencies between these marginal subspaces in an unsu-
pervised manner. Additionally, ideas from mixture of experts
(MOEs) are incorporated so that the local information is
weighted and integrated into an ensemble decision. Our
results show that this algorithm is very simple to train and
computationally efficient, while also providing the ability to
reduce the input dimensionality for BMIs.
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Figure 1: BMI overview.

We then move from this method, which only implicitly
exploits the dependencies between the neurons, to a more
formal graphical model structure which explicitly models
dependencies between neurons. We call this model linked
mixture of hidden Markov chains (LM-HMM). Borrowing
ideas from the BM-HMM, we show how this semisupervised
model explicitly exploits the dependencies between neurons
(if they exist).

The development and evaluation of the BM-HMM and
LM-HMM serve as the core of this paper and directs the
following organization. First, we discuss our motivation
and technique for the BM-HMM. Second, we develop the
theory for the LM-HMM and explain how it relates to the
BM-HMM. Third, we compare results of the new models
to our previous models, as well as present some possible
interpretation of the results. Finally, we suggest areas of
future work.

2. MODELING NEURAL DATA FOR
BRAIN-MACHINE INTERFACES

2.1. Experimental animal data

Neural action potentials from two different animal experi-
ments are used to train and test the models in this paper.
In the first experiment, neural data was recorded from an
owl monkey’s cortex as it performed a food reaching task.
Specifically, multiple implanted microwire arrays recorded
this data from 104 neural cells in the following cortical
areas: posterior parietal cortex (PP), left and right primary
motor cortex (M1), and dorsal premotor cortex (PMd).
Concurrently with the neural data recording, the 3D hand
position was recorded as the monkey made three repeated
movements: rest to food, food to mouth, and mouth to rest
[1, 5].

In the second experiment, a male Sprague-Dawley rat
performed a go, no-go lever pressing task as neural data
was recorded. This dataset contains 16 neural cells that were
collected with microwire arrays implanted in the forelimb
region of the left primary cortex (M1) [7]. Subsequently, the
data was spike-detected and spike-sorted using thresholds
and template matching [7]. The lever presses were recorded
simultaneously with the neural activity. The beginning of
each trial was signaled to the rat by an LED indicating when
to press the lever in order to receive a reward [7].

The data sets resulting from the above experiments were
segmented into movement and rest classes for modeling. For
the monkey data, all angular velocities greater than 4 mm/s
are labeled as part of the movement class. Included in this
movement class are the times when the monkey momentarily
holds its arm during a reach for food or its mouth [5, 8]. For
the rat experiments, since there is no information about the
rat moving around the cage (or grooming), only the lever
press is included as part of the movement class [7].

For both experiments, the neural data is binned into
100-millisecond counts, which is consistent with the neural
science community [8, 9]. Consequently, the movement data
is down-sampled to match the 10 Hz neural bin counts. The
time recording for the monkey experiment corresponds to a
dataset of 23000 × 104 time bins. For the rat experiment, the
dataset consists of 13000 × 16 time bins [1, 7].

2.2. Motivation

Neuroscientists often treat the multiple channels of neu-
ral data acquired from BMI experiments as multivariate
observations from a single process [10]. This perspective
requires fully coupled statistics across all of the channels
at all times irrespective of partial independence among the
multiple processes. Additionally, it has been established that
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neurons exhibit nonstationary behavior [11]. Our group’s
own work has shown that modeling this data as a single
multivariate process is not the most appropriate [4]. It is
also inappropriate to model all of the channels independently
since there is a possibility of dependencies between some of
the neurons.

From a machine learning perspective, modeling of the
observed and hidden neural information can be accom-
plished with observable and hidden random processes that
are interacting with each other in some unknown way. To
achieve this, we make the assumption that each neuron’s
output is an observable random process that is affected by
hidden information. Since the experiment does not pro-
vide detailed biological information about the interactions
between the sampled neurons, we use hidden variables to
model these hidden interactions [9, 12]. We further assume
that this compositional representation of the interacting
processes occurs through space and time (i.e., between
neurons at different times).

We also differ from other work in the BMI field by
not taking the traditional regression approach of mapping
the neural data directly to the patient hand kinematics
with a conventional linear/nonlinear model [10]. Since the
final BMI paradigm will not include desired kinematic
information from paraplegics, we use generative models to
explain the observable neural data. From these generative
models, we divide the input space into regions that we
call “motion primitives.” These structures have been loosely
touched upon in other work [13, 14]. The basic idea is that
kinematic information or neural data can be decomposed
into these “motion primitives” similar to phonemes in
speech processing. In speech processing, graphical models
(specifically HMMs) are the leading technology because they
are able to capture very well the piecewise nonstationarity
of speech [15, 16]. Since speech production is ultimately
a motor function, graphical models can potentially also be
useful for motor BMIs (also nonstationary) [11, 15]. By
using smaller simpler components, more complicated arm
kinematics can be constructed through the combination of
these simple structures.

The ultimate goal is to decipher these underlying struc-
tures so that the model may one day be decoupled from
the desired kinematics (for unsupervised modeling). It is
our current goal to determine these underlying structures
through a supervised mode in order to later exploit them in
an unsupervised mode.

3. BOOSTEDMIXTURES OF HMMCHAINS

3.1. Relatedwork

With IC-HMMs, each neural channel is modeled with a
hidden and observable random process (i.e., an HMM chain)
[5]. Each neural channel HMM in the IC-HMM is computed
independently. To calculate the log likelihood for the IC-
HMM (Figure 2) we use

log P(O | S,Θ) =
N∑
i=1

log P
(
Oi | Si,Θi

)
, (1)
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Figure 2: IC-HMM graphical model.

where Θi is the set of all the parameters for the model
of a particular neural channel (where i = 1, . . . ,N neural
channels). Given that, Oi = (Oi

1,Oi
2, . . . ,Oi

T) is a sequence
of discrete binned neural firings and Si = (Si1, Si2, . . . , SiT) rep-
resents the sequence of discrete hidden states or variables (of
length T), this joint probability can be further decomposed
into

log P(O | S,Θ) =
N∑
i=1

(
log P

(
Si1
)

+
T∑
t=1

log P
(
Oi

t | Sit,Θi
)

+
T∑
t=2

log P
(
Sit | Sit−1,Θi

))
.

(2)

From Figure 2 and (2), we see that the observable var-
iables are IID and the hidden state sequence is Markovian
(which is the classical HMM formulation). Essentially,
the IC-HMM decomposes the multivariate input into the
independent marginals so that only the likelihoods of the
individual neurons are needed for the final calculation [5].

In order to move beyond the IC-HMM and exploit the
complimentary information provided by the independent
HMM chains, we first look to boosting. Boosting is a
technique that creates different training distributions from
an initial input distribution so that a set of weak classifiers
is generated [17, 18]. The generated classifiers then form
an ensemble vote for the current data example. It has
been shown that these hierarchic combinations of classifiers
achieve lower error rates than the individual base classifiers
[17, 18].

Adaboost is the most widely used algorithm to evolve
from boosting methods [19]. This algorithm sequentially
generates weak classifiers based on weighted training exam-
ples. Essentially, the initial distribution of training examples
is resampled each round (based on the distribution of the
weights Wi) in order to train the next classifier up to R
rounds [19]. The training examples that fail to be classified
on a particular round receive an increased weighting so that
the subsequent classifiers are more likely to be trained on
these hard examples. With the initial values of the weights
being Wi = 1/n, for i = 1, . . . ,N samples, the update for
each weight is

Wi ←−
Wi exp

[
αr·1(y /= fr (x))

]
Zr

, (3)
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where αr are the external weights for each rth expert that
has been trained for the rth round which act very similar
to priors for the respective experts. Additionally, Zr is a
normalization factor in order to make the weights Wi a
distribution. Concurrent to the weights Wi for training
examples, each αr is updated so that it can be used in a
final ensemble vote (which is a linear combination of the αr
weights and the hypothesis of each expert):

αr = log
1− errr

errr
, (4)

where

errr =
N∑
i=1

Wi
[
yi /=h(xi)

]
(5)

and the final ensemble output becomes

H(x) = sign

[ R∑
r=1

αr fr(x)

]
. (6)

The success of boosting has been attributed to the
distribution of the “margins” of the training examples [17].
For further details on Adaboost or boosting with respect to
the margin and relationships to support vector machines, see
Schapier et al.

With respect to improving IC-HMM, Adaboost offers a
promising way to implicitly find dependencies among the
channels through the process of boosting classifiers during
training. In our case, Adaboost is applied differently to
the multidimensional neural data as explained in the next
section.

3.2. Modeling framework

BMI data imposes specific constraints that require mod-
ifications to the standard procedures. First, our data is
high dimensional (104 channels) and the importance of
each channel to the mapping can be very different and is
unknown. Second, the classes have markedly different prior
probabilities. Third, the computational practicality of using
thousands of experts to generate a decision is infeasible for
hundreds of neural channels. Our approach uses Adaboost
as a way to select multichannel experts that contribute the
most information in the training set. Although the algorithm
starts out with parallel training for the independent experts,
gradually a winning expert is chosen for each hierarchic level
to combine later into the ensemble. Since each level is formed
in an unsupervised way, this algorithm is a hybrid between
supervised and unsupervised learning, following a process
similar to the mixture of experts framework [20].

Our first major departure from Adaboost results from
how the ensemble is generated. Instead of forming one
expert at a time, the M independent HMM chains are
trained in parallel using the Baum-Welch formulation [21].
As explained, this splits the joint likelihood into marginals so
that independent processes are working in simpler subspaces
[5]. A ranking is then performed and a winner is chosen

based on the classification performance for the current
distribution of input examples. Specifically, the winner that
minimizes the error with respect to the distribution of
samples is chosen. To find the minimal error, we differ from
Adaboost and use an Euclidean distance for the classes to
avoid biasing class assignments (since classes may not have
equal priors) [5]. Next, the remaining experts are trained
within their respective subspace but relative to the errors
of the previous winner. Finally, the Wi are used to select
the next distribution of examples for the remaining experts.
Similar to Adaboost, the remaining experts are trained on the
hard examples from different subspaces. In turn, a hierarchic
structure is formed as the winning experts affect the training
on the local subspaces for the subsequent experts. During
this process, they are implicitly modeling the dependencies
among the channels.

As explained earlier, Adaboost uses αm’s as external
weights to the classifiers as opposed to the Wi’s which
weight the training examples. Our computation of the αm’s
is the second major departure from Adaboost since we use
a mixture of experts formulation for the external weights or
mixture coefficients. To find the mixture coefficients for the
local classifiers, we look to the boosted mixture of experts
(BME) [22]. With BME, improved performance is gained
through the use of a confidence measure for the individual
experts [22]. Although many different confidence measures
exist, the majority use a scalar function of the expert’s output
which is then used as a static gating function or mixture
coefficient [20, 22]. Our algorithm uses a simple measure for
each expert based on the L2-Norm of the class errors (instead
of the one outlined in (4)):

αm = 1−
√

err2
M + err2

R, (7)

where errM and errR are the respective errors of the
two classes in our problem, move and rest (which could
generalize to more classes). We use βm to substitute for the
normal Adaboost formulation of αm (4) to update the Wi’s
in (3).

Since there is a condition placed during the boosting
phase to discard experts with less than 50% classification,
negative alphas will not occur [19]. Notice that as the errors
between the two classes are smaller, the weights for the
experts become larger. We present the proposed Adaboost
training algorithm for BM-HMM (see Algorithm 1).

The criterion for stopping is based on two conditions.
The first stopping condition occurs, if the chosen experts are
performing less than 50% classification. The second stopping
condition occurs if the cross-validation set shows an increase
in error or a plateau in performance for a significant number
of rounds.

Since a single HMM chain is trained on a single neural
channel, the number of parameters is very small and can
support the amount of training data. The individual HMM
chains in the BM-HMM contain around 70 parameters for a
training set of 10000 examples as opposed to almost 18000
parameters necessary for a comparable CHMM (due to the
dependent states) [5].
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Given (x1, y1), . . . , (xn, yn), where xi ∈ X , yi ∈ Y = {−1, +1},
initialize Wi = 1/N , i = 1, . . . ,N samples.
For r = 1, . . . ,R rounds,
(i) train all of the HMMs using samples from distribution Wi (with replacement);
(ii) find the mth expert that minimizes the error with respect to the distribution Wi:

errm = EW

[
1(y /= fm(x))

]
;

(iii) choose αm = 1−
√

err2
M + err2

R :

βm = log
1− errm

errm
;

(iv) update

Wi ←−
Wi exp

[
βm·1(y /= fm(x))

]
Zr

;

(v) the ensemble output:

H(x) = sign

[ M∑
m=1

αm fm(x)

]
,

where Zr is a normalization factor so that Wi will be a distribution and
∑

iWi = 1.

Algorithm 1
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Figure 3: LM-HMM graphical model.

In the next section, we slightly increase the complexity of
the BM-HMM to explicitly model dependencies between the
neurons.

4. LINKEDMIXTURES OF HMMCHAINS

4.1. Modeling framework

Let Z represents the set of variables (both hidden and
observed) included in the probabilistic model. A graphical
model (or Bayesian network) representation can then be
used to provide insight into the probability distributions over
Z encoded in a graph structure [23]. With this type of repre-
sentation, edges of the graph represent direct dependencies
between variables. Conversely, and more importantly, the
absence of an edge allows the assumption of conditional
independence between variables. Ultimately, these condi-
tional independencies allow a more complicated multivariate
distribution to be decomposed (or factorized) into simple
and tractable distributions [23].

Since there is a variety of graphical model representations
that decomposes the joint probability of the hidden and
observed variables in Z, choosing the best approximation is
overwhelming. To move beyond the IC-HMM and implicit
dependencies in the BM-HMM, we establish another layer
of hidden or latent variables to link and express the spatial
dependencies between the lower level HMM structures
(Figure 3), thus creating a clique tree structure T (since
there are cycles), where hierarchic links exist between neural
channels.

The log likelihood of the dynamic neural firings from all
of the neurons for this structure (Figure 3) is

log P(O | S,M,Θ) = log P
(
M1) +

N∑
i=2

log P
(
Mi |Mi−1,Θ

)
+

N∑
i=1

( T∑
t=1

log P
(
Oi

t | Sit ,Θi
)

+
T∑
t=1

log P
(
Sit | Sit−1,Mi,Θi

))
,

(8)

where the dependency between the tree cliques are repre-
sented by a hidden variable M in the second layer:

P
(
Mi |Mi−1,Θi

)
(9)

and the hidden state sequence S also has a dependency on the
hidden variable M in the second layer:

P
(
Sit | Sit−1,Mi,Θi

)
. (10)

This hierarchic model allows us to model data across
multiple neural channels while also exploiting possible
dependencies. From Figure 3, we see that the lower observ-
able variables Oi are conditionally independent from the
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second layer hidden variable Mi as well as the subgraphs
of the other neural channels T j (where i /= j). The hidden
variable M in the second layer of (8) can be interpreted as
a mixture variable (when excluding the hierarchic links).

The LM-HMM implements a middle ground between
making an independence assumption and a full dependence
assumption. Since we are adding a layer of hidden variables,
we are incurring a computational cost. The next section will
show that we can make an approximation to ease compu-
tational costs but still bring in the richness of modeling the
interrelationships between neurons.

4.2. Trainingwith expectationmaximization (EM)

Although using EM with graphical models gives us insight
into probability distributions over our observed and hidden
variables, some probabilities of interest are intractable to
compute. Instead of using brute force methods to evaluate
such probabilities, conditional independencies represented
in the graphical model can be exploited. Often, approx-
imations like Gibbs sampling, variational methods, and
mean field approximations are applied in order to make the
problem tractable or computationally efficient [23, 24].

For our model, we use a mean field approximation to
allow interactions associated with tractable substructures to
be taken into account [24]. The basic idea is to associate
with the intractable distribution a simplified distribution
that retains certain terms of the original distribution while
neglecting others, replacing them with parameters ui that
we will refer to as “variational parameters.” Graphically, the
method can be viewed as deleting edges from the original
graph until a forest of tractable structures is obtained. Edges
that remain in the simplified graph correspond to terms that
are retained in the original distribution and edges that are
deleted correspond to variation parameters [24, 25].

We make approximations when finding the expectation
of (8). In particular, we will first approximate P(Sit | Sit−1,
Mi,Θi) by treating Mi as independent from S making condi-
tional probability equal to the familiar P(Sit | Sit−1,Θi). Two
important features can be seen in this type of approximation.
First, we have decoupled the simple lower-level HMM chains
from the higher-level Mi variables. Second, Mi can now be
regarded as a linked mixture variable for the HMM chains
since P(Mi |Mi−1,Θi) which we will address later [20].

Because the lower-level HMMs have been decoupled, we
are able to use the Baum-Welch formulation to compute
some of the calculations in the E-step, leaving estimation
of the variational parameter for later. As a result, we can
calculate the forward pass:

E step

αj(t) = P
(
O1 = o1, . . . ,Ot = ot , St = j | Θ). (11)

We can calculate this quantity recursively by setting

αj(1) = πjbj
(
o1
)
,

αk(t + 1) =
[ N∑

j=1

αj(t)ajk

]
bk(ot+1).

(12)

The well-known backward procedure is similar:

βj(t) = P
(
Ot+1 = ot+1, . . . ,OT = oT | St = j,Θ

)
, (13)

this computes the probability of the ending partial sequence
ot+1, . . . , oT given the start at state j at time t. Recursively, we
can define βj(t) as

βj(T) = 1,

βj(t) =
N∑
k=1

ajkbk
(
ot+1

)
βk(t + 1).

(14)

Additionally, the ajk and bj(ot) matrices are the transi-
tion and emission matrices defined for the model which are
updated in the M-step. Continuing in the E-step, we will
rearrange posteriors in terms of the forward and backward
variables. Let

γj(t) = P
(
St = j | O,Θ

)
(15)

which is the posterior distribution. We can rearrange the
equations to quantities so we have

P
(
St = j | O,Θ

)= P
(
O, St = j | Θ)
P(O | S,Θ)

= P
(
O, St = j | Θ)∑N

k=1P
(
O, St = k | Θ)

(16)

and now with the conditional independencies we can define
the posterior in terms of α’s and β’s:

γj(t) =
αj(t)βj(t)∑N
k=1αk(t)βk(t)

. (17)

We also define

ξjk(t) = P
(
St = j, St+1 = k | O,Θ

)
(18)

which can be expanded as

ξjk(t) = P
(
St = j, St+1 = k,O | Θ)

P(O | S,Θ)

= αj(t)ajkbk
(
ot+1

)
βk(t + 1)∑N

j=1

∑N
k=1αj(t)ajkbk

(
ot+1

)
βk(t + 1)

.

(19)

The M-step departs from the Baum-Welch formulation
and introduces the variational parameter [24]. Specifically,
the M-step involves the update of the parameters πj , ajk, bL
(we will save ui for later):

M step

π̂i
j =

∑I
i=1uiγ

i
1( j)∑I

i=1ui
,

âijk =
∑I

i=1ui
∑T−1

t=1 ξ
i
t( j, k)∑I

i=1ui
∑T−1

t=1 γ
i
t( j)

,

b̂ij(L) =
∑I

i=1ui
∑T

t=1δot ,vLγ
i
t( j)∑I

i=1ui
∑T

t=1γ
i
t( j)

.

(20)
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There are two issues left to resolve. First, how can the
variational parameter be estimated and maximized given
the dependencies. Second, if experimentally it is not known
which neurons are affecting other neurons (if at all), how can
the dependencies between neurons be defined in the model.

4.3. Updating variational parameter via
importance sampling

While still working within the EM framework, we treat the
variational parameters ui as mixture variables generated by
the ith HMM each having a prior probability of pi. We
want to estimate the set of parameters that maximize the
likelihood function [25–27]:

n∏
z=1

I∑
i=1

piP
(
Ozi | Si,Θi

)
. (21)

Given the set of sequences and current estimates of the
parameters, the E-step consists of computing the conditional
expectation of hidden variable M:

uzi=E
[
Mi |Mi−1,Ozi | Θi

]=Pr
[
Mi =1 |Mi−1 =1,Ozi,Θi

]
.

(22)

The problem with this conditional expectation is the
dependency on Mi−1. Since Mi−1 is independent from Oi and
Θi, we can decompose this into

uzi = E
[
Mi | Ozi,Θi

]
E
[
Mi |Mi−1]. (23)

The first term, a well-known expectation for mixture
of experts, is calculated by using Bayes rule and the priori
probability that M = 1:

E
[
Mi | Oi,Θi

] = Pr
[
Mi=1 | Oi,Θi

] = piP
(
Oi | Si,Θi

)∑I
i=1piP

(
Oi | Si,Θi

) .
(24)

Since the integration for the second term is much harder
to compute, we look to an integration approximation that
will maintain the dependencies. Importance sampling is
a well-known method that is capable of approximating
the integration with a lower variance than Monte-Carlo
integration [28]. We can approximate the integration with

E
[
Mi |Mi−1] = 1

n

n∑
z=1

P
(
Ozi | Si,Θi

)
P
(
Oz(i−1) | Si−1,Θi−1

) , (25)

where the n samples have been drawn from the proposal
distribution P(Ozi−1 | Si−1,Θ). For the estimation of ui, we
need to combine the two terms:

uzi =
piP
(
Ozi | Si,Θi

)∑I
i=1piP

(
Ozi | Si,Θi

) n∑
z=1

P
(
Ozi | Si,Θi

)
nP
(
Oz(i−1) | Si−1,Θi−1

) .
(26)

To compute the M-step,

p̂i =
∑n

z=1uzi∑I
i=1

∑n
z=1uzi

=
∑n

z=1uzi
n

. (27)

Table 1: Classification results (BM-HMM selected channels).

Model Channels no. % correct

With monkey data

IC-HMM 104 92.4%

IC-HMM 9 87.1%

BM-HMM 9 92.0%

Linear 104 88.3%

Linear 9 86.9%

With rat data

IC-HMM 16 62.5%

IC-HMM 6 58.3%

BM-HMM 6 64.0%

Linear 16 61.8%

Linear 6 56.9%

Table 2: Classification results (random LM-HMM selected chan-
nels).

Model Channels no. % correct

With monkey data

IC-HMM 104 92.4%

IC-HMM 9 89.5%

LM-HMM 9 92.1%

Linear 104 88.3%

Linear 9 87.8%

With rat data

IC-HMM 16 62.5%

IC-HMM 6 56.5%

LM-HMM 6 62.3%

Linear 16 61.8%

Linear 6 55.2%

Borrowing from the competitive nature of the BM-
HMM, we choose winners based on the same criterion of
minimizing the Euclidean distance for the classes for the LM-
HMM.

5. EXPERIMENTAL RESULTS

5.1. Quantitive results

In this section, we first show the results of our model on
the two animal experiments. Next, we illustrate the effects of
the algorithm by comparing the BM-HMM and LM-HMM
chains to the IC-HMM chains. The BM-HMM and LM-
HMM chains are ranked in order of the rounds, while the IC-
HMM chains are ranked from the best to worst in terms of
the individual chain’s ability to classify. We conclude with an
analysis of the methods by randomly selecting the chains for
the LM-HMM and BM-HMM to understand if dependencies
are being captured.

In Tables 1 and 2, we see a comparison of the results
from the BM-HMM and LM-HMM versus the full IC-HMM
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Table 3: Classification results (random BM-HMM selected chan-
nels).

Model channels no. % correct

With monkey data

IC-HMM 104 92.4%

IC-HMM 9 69.1%

BM-HMM 9 69.4%

Linear 104 88.3%

Linear 9 68.1%

With rat data

IC-HMM 16 62.5%

IC-HMM 6 56.5%

BM-HMM 6 56.9%

Linear 16 61.8%

Linear 6 55.1%

Table 4: Classification results (random LM-HMM selected chan-
nels).

Model channels no. % correct

With monkey data

IC-HMM 104 92.4%

IC-HMM 9 63.5%

LM-HMM 9 65.4%

Linear 104 88.3%

Linear 9 63.2%

With rat data

IC-HMM 16 62.5%

IC-HMM 6 55.4%

LM-HMM 6 54.3%

Linear 16 61.8%

Linear 6 54.8%

and a simple linear classifier created by a regression model
followed by a threshold [5]. For the HMMs, we use three
hidden states and an observation sequence length T = 10,
which corresponds to one second of data (given the 100-
millisecond bins). These choices were based on previous
efforts to optimize performance [4]. For the linear classifier,
a Wiener filter with a 10-tap delay (that corresponds to one
second of data) is used. These parameters and thresholds
were also chosen based on previous work [4, 13]. The
classification results are determined on each data point in the
training set. Cross-validation sets, Monte-Carlo runs, leave-
K-out methodologies are also employed to make sure that
our results are general.

As seen in Tables 1, 2, 3, and 4, the correct classification
percentage is much higher for the monkey data than the
rat data. This is explained primarily by the experimental
conditions. Since the rat experiment is not as controlled
as the monkey experiment, the rat dataset is much noisier.
In particular, as the rat moves around the cage there are
many training and testing samples labeled as nonmovement,
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Figure 4: Monkey expert adding experiment.

when the animal is actually moving (only lever presses
are counted as movement in this setup). This explains the
much lower performance on the rat data. Also, fewer neural
channels were collected from the rat than the monkey [1, 7].
Apart from this difference, the same trends are seen in both
datasets.

To give a fair comparison between the methods, the
same neural channels that were chosen by the BM-HMM
are used with the linear model and the IC-HMM. For the
LM-HMM, a different set of neurons (although some overlap
the BM-HMM) was selected based on the algorithm, but the
number of final channels were kept the same. As compared
in Tables 1 and 2, the BM-HMM and LM-HMM perform
on par with the IC-HMM, but with the added benefit of
dimensionality reduction. Effectively, the same performance
is obtained with a fraction of the number of neural channels.
For this experiment, the performance on the rat data is better
with the BM-HMM, and slightly worst with the LM-HMM.

In Tables 3 and 4, we wanted to see the effect of
randomly selecting the experts. Notice the results in these
tables are poor in comparison to Tables 1 and 2. In particular,
Tables 1 and 2 show a significant decrease in performance
modeling the monkey data. The performance reduction is
less pronounced for the data collected from the rat. We
believe this is due to the available number of channels that
we can randomly select. Since the monkey data is collected
from a greater number of channels, there is an increased
possibility of selecting a bad expert for both the BM-HMM
and LM-HMM. It is interesting that the αm for both models
on both datasets were approximating similar values (like
an averaging), almost as if the neurons randomly selected
are more independent than dependent. This is also evident
since the result of the IC-HMM using the same channels has
similar performance with respect to both models in Tables
3 and 4. Even Figure 8 points to the channels having zero
correlation amongst themselves, alluding to independency.

The results demonstrate three interesting points. First,
it is significant that on the monkey data, nine BM-HMM
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Figure 5: Correlation coefficients between channels (monkey moving).
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Figure 6: Correlation coefficients between channels (monkey at rest).

and LM-HMM chains outperform the linear classifier that
uses the full input space. Second, the subset of experts that
are chosen by the BM-HMM seems to perform well on the
linear model. This result is expected since the BM-HMM
chains select neural channels with important complimentary
information. Third, when comparing the BM-HMM and
LM-HMM to the Wiener filter and the IC-HMM using
the same subset of neural channels, the results show that
the hierarchic training of the BM-HMM and LM-HMM
provides a significant increase in performance. We believe
this is due to the dependencies that are being exploited
during each round of training, where the other models
simply try to uniformly combine all the neural information
into a single hypothesis. This is supported by Tables 3 and 4

since the LM-HMM and BM-HMM appears to default to an
independent approximation. Finally, other BMI researchers
apply sensitivity analysis to understand the importance of
a neural channel respective to the kinematics performed
by the subject. In contrast the BM-HMM and LM-HMM
channel selection is trying to improve classification results
by exploiting dependencies between channels as well as
kinematics. Interestingly, some of the channels selected in
both datasets do overlap some of the same neurons selected
during sensitivity analysis [3, 7].

Additionally, if we do an expert adding experiment in
which the best ranked experts are added one by one to the
ensemble vote, an interesting result emerges. In Figure 4,
as the BM-HMM chains are added, the error rate quickly
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Figure 8: Correlation coefficient between channels (randomly
selected for monkey).

decreases below the IC-HMM error when applied to the
monkey neural data. The LM-HMM has an even faster
drop in error but does not achieve the same result as the
BM-HMM. Figure 7 shows a similar result when applied
to the rat neural data. Overall, we find that the boosted
mixtures or linked mixtures are exploiting more useful and
complimentary information for the final ensemble than the
simple IC-HMM.

6. DISCUSSION AND FUTUREWORK

Based on the results, the BM-HMM performs better than the
LM-HMM due to the fact that the BM-HMM takes advan-
tage of using the errors in classification when determining
the α’s. In contrast, the LM-HMM only uses the likelihood
information for updating the priors and variational param-
eters in order to create explicit dependencies. Despite the

slightly lower performance of the LM-HMM, it is significant
that the model can still find and exploit neural channels
that are important for movement. Additionally, since the
likelihood is only required, perhaps the algorithm could be
improved by dynamically updating the prior and variational
parameters during the evaluation of the test set. This could
allow us to modify the temporal and spatial dynamics in an
online fashion.

To understand how the two methods differ in selecting
the channels, we plotted in Figures 5 and 6, the correlation
coefficients between the subset of channels chosen by the
BM-HMM and LM-HMM. Interestingly, we see that more
of the channels in the LM-HMM have a large positive and
large negative correlation (with respect to the move class).
In contrast, the BM-HMM has some positive correlation
amongst its subset, but few channels exhibit negative cor-
relation. Figure 8 shows the correlation coefficient between
the channels that were randomly selected. Notice how
the correlations between channels are near zero. These
results suggest that the LM-HMM prefers stronger correlated
channels (i.e., dependant) than the BM-HMM and much
stronger than randomly selecting channels (which seems to
exhibit more independence between channels).

With respect to other algorithms in the machine learning
community, there are a few ways to interpret the BM-
HMM. BM-HMMs can be thought of as a modification
to boosting or even a simpler version of the mixture of
trees algorithm, if the HMM chains are interpreted as
binary stumps [29]. Additionally, the temporal Markovian
dynamics coupled with the hierarchic structure and mixture
modeling can be thought of as a simple approximation to
tree structured HMMs [23]. Other work has focused on
solving this problem of boosting multiple parallel classifiers
[30]. Other authors have proposed boosting solutions that
reduce the dimensionality of the input data [30–32]. From
their perspective, the multidimensional inputs are treated
as simple features of a single random process [30]. We
differ from this perspective by assuming the input space is
composed of multiple random processes that are interacting
with each other in some unknown way. By decomposing
the input space into multiple random processes, the local
contributions of the individual processes are exploited rather
than using the global effect of a single process. This type
of algorithm also has components similar to the mixture of
experts (MOEs) algorithm.

Although some similarities exist between MOE and both
of our models, it is important to note that the MOE has the
advantages of localization and the use of a dynamic model
for combining the outputs from the experts [20, 22]. Others
have proposed a similar formulation of building boosted
hierarchic structures with the MOE algorithm, but these
efforts lack the Markovian dynamics that are inherent with
BM-HMMs [20, 22, 23, 33]. Our work also differs from
these formulations, since our “gating functions” are static
and behave like priors for the experts [5]. Because of the
static “gating functions,” it could even be closer aligned with
an ensemble method, but in future work we hope to exploit
a dynamic gating function similar to MOE, where temporal
dynamics changes the output of the switching classifier.
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Finally, for BMIs, the selection of only 9 neurons (for
the monkey data) from the large number of cortical neurons
must be interpreted in the proper context. Notice that we
are just selecting the neurons that are capable of allowing
recognition of movement or rest, which is a very simple task.
Our experience with cursor tracking tasks shows that a much
larger number of neurons is required, and since the data is
nonstationary, neurons are being multiplexed across time to
implement tasks. This implies that in principle, the larger
the number of neurons the better, provided that one has
sufficient data to train the models. Nonetheless, this HMM
methodology will be extremely useful for the design of BMIs,
especially if ways are found to discover the time varying
dependencies.
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