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Indexing deals with the automatic extraction of information with the objective of automatically describing and organizing the
content. Thinking of a video stream, different types of information can be considered semantically important. Since we can assume
that the most relevant one is linked to the presence of moving foreground objects, their number, their shape, and their appearance
can constitute a good mean for content description. For this reason, we propose to combine both motion information and region-
based color segmentation to extract moving objects from an MPEG2 compressed video stream starting only considering low-
resolution data. This approach, which we refer to as “rough indexing,” consists in processing P-frame motion information first,
and then in performing I-frame color segmentation. Next, since many details can be lost due to the low-resolution data, to improve
the object detection results, a novel spatiotemporal filtering has been developed which is constituted by a quadric surface modeling
the object trace along time. This method enables to effectively correct possible former detection errors without heavily increasing
the computational effort.
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1. INTRODUCTION

The creation of large databases of audiovisual content in pro-
fessional world and the extensively increasing use of con-
sumer devices able to store hundreds of hours of multi-
media content strongly require the development of auto-
matic methods for processing and indexing multimedia doc-
uments.

One of the key components consists in extracting mean-
ingful information allowing to organize the multimedia con-
tent for easy manipulation and/or retrieval tasks. A variety of
methods [1] have recently been developed to fulfill this ob-
jective, mainly using global features of the multimedia con-
tent such as the dominant color in still images or video key-
frames. For the same purpose, the MPEG4 [2], MPEG7 [3],
or MPEG21 [4] family of standards does not concentrate
only on efficient compression methods but it also aims at
providing better ways to represent, integrate, and exchange
visual information. MPEG4, for example, as the predecessor
MPEG1,2, is a coding standard, but in some of its profiles, a

new content-based visual data concept is adopted: a scene is
viewed as a composition of video objects (VO), with intrin-
sic spatial attributes (shape and texture) and motion behav-
ior (trajectory), which are coded separately. This information
can then be used in a retrieval system as in [5] where ob-
ject information coded in the MPEG4 stream, such as shape,
is used to build an efficient retrieval system. On the other
hand, MPEG7 does not deal with coding but it is a content
description standard; and MPEG21 deals with metadata ex-
change and adaptation. They supply metadata on video con-
tent for instance, where object description may play an im-
portant role for subsequent content interpretation. However,
in both cases, object-based coding or description, the cre-
ation of such object-based information for indexing multi-
media content is out of the scope of the standard and is left to
the content provider. In [5] as well, the authors suppose that
the objects have been already encoded and they do not ad-
dress the problem of their extraction from raw-compressed
frames, which supposes the segmentation of the video. So,
because of the difficulties to develop automatic reliable video
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object extraction tools, object-based MPEG4 has not really
become a reality and MPEG4 simple profile remains thus the
most frequently used frame coding. Moreover, it is clear that
the precision requirements and complexity constraints of ob-
ject extraction methods are strongly application-dependent,
so an effective object extraction from raw or compressed
video still remains an open challenge.

Several approaches have been proposed in the past, and
most of them can be roughly classified either as intraframe
segmentation-based methods or as motion segmentation-
based methods. In the former approach, each frame of the
video sequence is independently segmented into regions of
homogeneous intensity or texture, using traditional image
segmentation techniques [6], while in the latter approach, a
dense motion field is used for segmentation; and pixels with
homogeneous motion field are grouped together [7]. Since
both approaches have their own drawbacks, most object ex-
traction tools combine spatial and temporal segmentation
techniques [8, 9].

Most of these joint approaches concentrate on segmenta-
tion in the pixel domain, requiring high-computational com-
plexity; moreover video sequences are usually archived and
distributed in a compressed form, so video sequences have
to be fully decoded before processing. To circumvent these
drawbacks of pixel-domain approaches, a few compressed-
domain methods have been attempted for spatiotemporal
segmentation.

In [10], a region merging algorithm based on spatiotem-
poral similarities is used to extract the blocks of segmented
objects in compressed domain; such blocks are then decom-
pressed in the pixel domain to better detect object details and
edges. In this last work, the use of motion information ap-
pears inefficient. In [11, 12] instead, to enhance motion in-
formation, motion vectors are accumulated over a few frames
and they are further interpolated to get a dense motion vector
field. The final object segmentation is obtained by applying
the expectation maximization (EM) algorithm and finally
by extracting precise object boundaries with an edge refine-
ment strategy. Even if this method starts working with mo-
tion vectors extracted from a compressed stream, partial de-
coding is required for a subsequent refinement phase. These
approaches, which can be considered as partial compressed-
domain methods, although significantly faster than pixel-
domain algorithms, cannot however be executed in real time.

Here, we propose a fast method for foreground object ex-
traction from MPEG2 compressed video streams. The work
is organized in two parts: in the first part, each group of pic-
ture (GOP) is analyzed and, based on color and motion in-
formation, foreground objects are extracted; the second part
is a postprocessing filtering, realized using a new approach
based on a quadric surface able to refine the result and to
correct the errors due to the low-resolution approach.

The paper is organized as follows: in Section 2, the
“rough indexing” paradigm is introduced; in Section 3, a
general framework of the method is presented and it is devel-
oped in details in Sections 4, 5, and 6. In Section 4, we will ex-
plain how rough object masks can be obtained from P-frame
extracted motion information and extrapolated to I-frames.
Next, Section 5 describes how these results are combined

with rough low-resolution color segmentation applied to I-
frames to refine the object shape and to capture meaningful
objects at I-frame temporal resolution. In Section 6, a spa-
tiotemporal algorithm to derive approximate object shapes
and trajectories is presented; and the way to use it to can-
cel errors resulting from previous stages of the approach is
shown. Our comments on experimental results are intro-
duced in Section 7 and finally some conclusions are drown
in Section 8.

2. ROUGH INDEXING PARADIGM

The rough indexing paradigm is the concept we introduced
in [29] to describe this new trend in analyzing methods for
quick indexing multimedia content. In many cases [14, 15],
for a rapid and approximate analysis of multimedia con-
tent, it is sufficient to start from a low (or intentionally de-
graded) resolution of the original material. Encoded multi-
media streams provide a rich base for the development of
these methods, as limited resolution data can be easily de-
coded from the compressed streams. Thus, many authors
have proposed to extract moving foreground objects from
compressed MPEG1,2 video with still background [16], by
starting to estimate, as in [17], a global camera model with-
out decompressing the stream in pixel domain. These rough
data alone, for example, the noisy motion vectors and the DC
images, can be used to achieve an acceptable level of index-
ing. Due to the noisiness of input data and due to missing
information, “rough indexing” does not aim at a full recov-
ering of objects in video but it is intended for a fast browsing
of the content, that is to say when the attention is focused
only on the most salient features of video scenes.

An example of “rough indexing” has been presented in
[13] where an algorithm for real-time, unsupervised, spa-
tiotemporal segmentation of video sequences in the com-
pressed domain is proposed. This method works with low-
resolution data using P-frame motion vectors and I-frame
color information to extract rough foreground objects.
When object boundaries are uncertain due to low-resolution
data used, they are refined with a pixel-domain processing.
The drawback is that if the object motion does not differ
enough from the camera motion model or if the object is still,
the algorithm can miss the detection. With the spatiotempo-
ral filtering proposed in our work, we are able in most cases
to locate the object and find its approximate dimensions us-
ing only the information associated to immediately previous
and following frames.

In the next section, we describe our methodology devel-
oped in this “rough indexing” context.

3. METHODOLOGY FOR FOREGROUND
OBJECT EXTRACTION

In this section, a brief overview of the proposed system
is given, leaving the details for the subsequent sections.
The global block-diagram for object extraction is shown in
Figure 1; the blocks in italic are the ones that present some-
thing novel with respect to the literature.
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Figure 1: Flow chart of the proposed moving object detection algorithm.

The first part, illustrated on the left side of Figure 1, is
based on a combined motion analysis and color-based seg-
mentation which turns out to be an effective solution when
working in the framework of a “rough indexing” paradigm:
regions having a motion model inconsistent with the cam-
era are first extracted from P-frames; these regions define
the “object masks” since it is reasonable to expect that mov-
ing foreground objects are contained with a high probabil-
ity within such regions. This kind of approach has demon-
strated to be effective when looking for moving objects, so
that many works in literature ([13], e.g.) use MPEG2 mo-
tion vectors to detect the outlier regions. A similar approach
is also presented in [18] where MPEG motion vectors are
used for pedestrian detection in video scenes with still back-
ground. In this case, motion vectors can be efficiently clus-
tered. As in our work, in [18] too, a filtering is applied to
refine the object mask result.

The upper left part of Figure 1 indicates the motion anal-
ysis process; we first perform the camera motion estimation
starting from the P-frame macroblock motion vectors [19] to
be able to separate the “foreground blocks” which do not fol-
low the camera motion. Then, since it is necessary to discrim-
inate the macroblock candidates which are part of a fore-
ground object from the ones that are noisy, an outlier re-
moval is performed by means of a postprocessing step. The
next stage consists in evaluating the P-frame “object masks”
using the results of two consecutive GOPs, to interpolate the
“object masks” of the I-frame for which no motion vectors
are available. In Section 4, the first part from camera motion
estimation to I-frame “object mask” extraction is explained.

In parallel, a color-based segmentation of I-frames at
DC resolution is realized by a morphological approach. The
color-based segmentation is indicated in the lower left part of
Figure 1 and can be subdivided into three steps: first, a pre-
processing morphological filtering is applied to the I-frames

of the sequence to reduce the image granularity due to the
DC resolution, then a morphological gradient computation
follows to detect the borders of homogeneous color regions.
The final step is a modified watershed segmentation pro-
cess, performed in the regions detected with the gradient
computation, to isolate and label the different color regions.
This morphological segmentation is presented in details in
Section 5.

Once color and motion information for I-frames has
been extracted, it is possible to merge them to obtain a first
estimate of the foreground objects which appears, in most
cases, quite accurate.

The second part of our approach is a novel temporal
object modeling. It is based on the computation of the ob-
ject shape and trajectory followed by the computation of a
quadric function in 2D+ t so as to model the object behavior
for along time. At any given moment of time, the section of
this function represents the rough foreground object shape
so that the object can be recovered in those few cases where
the first processing stage has led to an inaccurate detection.

In the next sections, all steps of our methodology will be
described in details.

4. MOTION ANALYSIS

We assume that objects in a video scene are animated by their
proper motion which is different from the global camera mo-
tion. The basic idea here to roughly define objects masks is to
extract for each P-frame those foreground blocks which do
not follow the global camera motion and to separate them
out from noise and camera motion artifacts. The initial ob-
tained resolution is at macroblock level and since for MPEG1
or MPEG2 compressed video, the macroblock size is lim-
ited to 16 × 16 pixels, the resulting motion masks have a
very low resolution. The next step tries to increase this low
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resolution. For this purpose, I-frames foreground moving
objects are first projected starting from previously obtained
P-frame rough object masks without any additional motion
information usage, this way keeping the algorithm computa-
tionally efficient. This initial I-frame object extraction is then
combined with a color-based segmentation (see Section 5)
to increase the precision of the moving object detection. Be-
fore describing the segmentation process, the motion analy-
sis that is first performed is discussed in more details.

4.1. Global cameramotion estimation

In order to detect “foreground blocks” which do not follow
the global camera motion, we have to estimate this motion
first. Here, we consider a parametric affine motion model
with 6 parameters, as the “parametric motion” descriptor
proposed in MPEG7 which is defined as follows for each
macroblock (xi, yi) with motion vector (dxi,dyi):

dxi = a1 + a2xi + a3yi,

dyi = a4 + a5xi + a6yi.
(1)

The obtained estimation vector can be written as θ =
(a1, a2, a3, a4, a5, a6)T and it allows us to represent the differ-
ent camera movements (pan, tilt, zoom, rotation).

To estimate vector θ that models the camera motion pa-
rameters from an MPEG2 macroblock motion field, we use a
robust weighted least-square estimator (see [19] for more de-
tails) taking the MPEG2 macroblock motion vectors as mea-
sures. The robustness of the method is based on the use of
Tukey biweight estimator [20]. This estimation process [19]
not only gives the optimal values of the model parameters,
but also assigns two additional parameters (wdx,wdy), called
weights, to the initial measures which express their relevance
to the estimated model in the (x, y) directions. Hence, it is
possible to use this information to define “outliers” with re-
spect to global motion model and then to use them in the so
called “object masks” building process. This is illustrated in
the next.

4.2. Outlier postprocessing in P-frames

Once the estimation of camera motion model is performed,
the problem of object extraction can be formulated as separa-
tion of the macroblocks with irrelevant motion with respect
to the estimated model so that objects in the frame with in-
dependent motion can be detected.

Let us consider a normalized grey-level image Ix,y , called
camera motion incoherence image, defined using the weights
wdx,wdy in the directions x and y and normalized to fit an
interval [0, Imax] as follows:

Ix,y =
[(

1−max
(
wdx,wdy

))·Imax
]
. (2)

Accordingly, the brighter pixels correspond to macroblocks
with low weights and thus they belong to macroblocks that
do not follow the global camera motion. Consequently, rel-
evant pixels that well represent those areas with an indepen-
dent motion are simply identified with a binary image Ibx,y
obtained by threshold Ix,y .

The whole process is graphically exemplified in Figure 2.
In Figure 2(a), a P-frame is shown with two objects of inter-
est representing two walking women tracked by the camera.
In Figure 2(b), we see the motion vectors associated to this
frame. As it can be seen, in the middle of the frame, there are
two regions with completely different motion vectors from
their surroundings due to the presence of associated objects.
Figure 2(c) shows the associated binary image Ibx,y . The two
white regions in the middle match the zones where the fore-
ground objects are located. In Figure 2(c), it is possible to
notice that on the right side of the frame some additional
“outliers” exist because of camera motion. The problem is
that in each frame there are some new macroblocks entering
the frame in the direction opposite to the camera movement.
The pixels of the original video frame for these macroblocks
do not have any reference in the previous frame. Therefore,
motion vectors are erroneous and do not follow camera mo-
tion in most cases so there are high irrelevance weights along
these zones even if no foreground moving object is present.

Often, the outlier problem is solved in the literature by
simply removing the border macroblocks from the whole im-
age; instead, we prefer to filter the image using camera mo-
tion information (as we are going to explain in the next sub-
section) to ensure the preservation of possible useful infor-
mation near the image boundaries.

With forward prediction motion coding, the displace-
ment vector d = (dx,dy)T of a macroblock in the current
frame relates the coordinates of a pixel (xc, yc)

T in the current
frame to its reference pixel (xr , yr)

T in the reference frame by

dx = xr − xc,

dy = yr − yc.
(3)

Now using the camera model equations (1), we solve (3)
for each of the reference frame camera corner macroblocks
taking as reference pixels the corners of the reference frame.
Consequently, the reference frame is warped into the current
frame, leading to the geometry of the previous frame domain
entering the current frame. If some “outliers” are present in
that zone, we can assume that they have been caused by the
camera motion so they are discarded from being candidate
object masks (see Figure 3).

Repeating the method described above for all P-frames
within a single video shot, we obtain the motion masks for all
the foreground moving objects in the shot which represent a
first guess for the foreground moving object at the reduced
temporal resolution according to the previously introduced
rough indexing paradigm.

4.3. Moving object mask extraction in I-frames

The approximated motion masks estimated so far represent a
good guess for locating the foreground moving object shape
in P-frames. Nevertheless, using motion information alone
is not sufficient for a robust and to some extent for accu-
rate object extraction. Thus, we propose to merge the mo-
tion masks with the result of a color-based intraframe seg-
mentation process performed on the I-frames. Since motion
masks have been obtained for P-frames only, we have to build
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(a) (b) (c)

Figure 2: Extraction of motion masks from P-frames: (a) the original P-frame; (b) the associated motion vectors; (c) the corresponding
binary image Ibx,y , SFRS-CERIMES.
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Figure 3: An example of outlier detection as a result of camera mo-
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Figure 4: Motion mask construction for I-frames: creation of the
mask for the I-frame by interpolation of two P-frames.

the corresponding masks for the I-frames in order to over-
lap them to color-based segmentation result. As the MPEG
decoder does not give motion vectors for I-frames, we can-
not extract the mask using the information available in an
MPEG stream as we have done for P-frames, but we can have
a good estimate interpolating the masks available in adjacent
P-frames so as to predict a projection of such motion masks
on the I-frame.

The interpolation can be fulfilled by two approaches: (i) a
motion-based one [22], where the region masks are projected
into the frame to be interpolated; (ii) a simpler spatiotem-
poral interpolation without using the motion information.
For the sake of low computational cost, we decided to use a
spatiotemporal interpolation (as shown in Figure 4) using a
morphological filter. As a result, the binary mask in I-frame
Ĩbx,y(t) is computed as

Ĩbx,y(t) = min
(
δĨbx,y(t − Δt), δĨbx,y(t + Δt)

)
. (4)

Here, δ denotes the morphological dilation with a 4-
connected structural element of radius 1, Ĩbx,y(t − Δt) and

Ĩbx,y(t + Δt) are the binary masks of previous and next P-
frames, respectively. In this way, we obtain the mask for the
I-frame that exhibits the approximate position of the objects.

This process leads to a rough estimate of the mask for
the I-frame which will approximately locate the objects in
the I-frame. Figure 5 depicts some I-frames extracted for an
MPEG2 video and the resulting I-frame masks.

5. OBJECTMASK REFINEMENT BY COLOR
SEGMENTATION

Interpolated motion masks for I-frames indicate the likely
locus of objects with independent motion but with limited
resolution, so using I-frame color information inside such
masks, we refine the object shapes and furthermore estimate
their appearance (color, texture information, and so on),
thus indexing the video content by spatial features at I-frame
temporal resolution.

For this reason, a color segmentation is performed on
the I-frame to subdivide it into homogeneous regions (recall
Figure 1). Regions overlapping with the foreground mov-
ing object masks are retained and they represent the set of
objects of interest. In order to follow the rough indexing
paradigm, only DC coefficients of the I-frames are taken into
account [23] since they are easily extracted from the com-
pressed stream with only partial decoding.

In this work, we applied a morphological approach for
color-based segmentation that we first proposed for full, mid,
and low-resolution video for MPEG4, MPEG7 content de-
scription [24]. The approach follows the usual morpholog-
ical scheme: simplification-filtering, computation of mor-
phological gradient, watershed-based region growing. Here,
we will briefly describe these principal steps and justify their
necessity for low-resolution DC frames.

The first step, simplification, is useful for DC frames to
smooth the typical granularity of DC images. This simplifi-
cation is realized by open-close filter with partial reconstruc-
tion. The morphological gradient is then calculated on the
simplified signal (see [29] for more details).

The particularity of the third step is a simplified version
of a classical watershed [30]. The main difference is twofold.
First of all, in a classical watershed, at the initialization, only
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(a) (b) (c)

(d) (e) (f)

Figure 5: Extracted motion masks from I-frames: (a), (b), (c) original I-frames at DC resolution; (d), (e), (f) the corresponding masks,
SFRS-CERIMES.

zero gradient values are taken as seeds for “water” propaga-
tion. In our scheme, all pixels with gradient values lower than
a threshold are labelled in connected components. These
connected components are considered as a marker image,
that is, seeds for regions. Secondly, in a classical watershed,
a creation of new regions is possible at each grey level. In our
method, the creation of new regions is prohibited. Instead,
we keep on making grow initial connected components. This
region growing algorithm is realized in a color space with
progressively relaxed threshold. Thus, a pixel from a strong
gradient area (uncertainty area) is assigned to its neighbor-
ing region if

|IY (x, y)−mY | + |IU(x, y)−mU |
+ |IV (x, y)−mV | < 3F(m)g(Δ).

(5)

Here, (mY ,mU ,mV )
T

is the color mean value of the region,
F(m) = |m− 127| + 128. The function F(m) in (5) depends
on the mean color level m = (mY +mU +mV )/3 of the consid-
ered region and is adjusted according to the principles of the
Weber-Fechner law, which implies that the gray-level differ-
ence which the human eye is able to perceive is not constant
but depends on the region intensity.

The function g(Δ) is an incremental term that pro-
gressively relax the thresholds to merge boundary pixels of
increasing grey-level difference. The threshold is continu-
ously relaxed until all uncertain pixels are assigned to a sur-
rounding region (see [24] for more details). Figure 6 shows
the result of the segmentation process. Here, the original
low-resolution DC frame is presented in Figure 6(a), the
marker (black) and uncertainty (white) pixels are presented
in Figure 6(b), the resulting region map with mean color per
region is shown in Figure 6(c).

As our previous studies show [24], this modified water-
shed algorithm reduces the number of regions, as the cre-

ation of new regions is prohibited. Furthermore, the initial-
ization step already gives regions of larger area than the ini-
tialization by gradient.

The modified watershed algorithm is of the same com-
plexity as a classical watershed, but the number of operations
is reduced. Let us consider n the new number of pixels from
uncertain areas to be assigned to one region at each iteration,
J the number of iterations, and K the number of initial re-
gions. Then in our modified watershed, the mean complexity
is KnJ . In a classical watershed, if the number of new regions
to be added at each iteration is Kj then the mean complexity

would be n(KJ +
∑ J

j=1
Kj).

Once the above I-frame segmentation has been per-
formed, foreground objects are finally extracted from I-
frames by superimposing and merging motion masks and
color regions at DC frame resolution. In Figure 7, we
show examples of intraframe segmentation within the pro-
jected foreground object masks for the sequence “de l’arbre
l’ouvrage” (see [29] for more details on this first part). It can
be seen that, in general, the segmentation process makes clear
the aliased structure of object borders (due to DC image for-
mation), but still gives a good overview of an object.

6. SPATIOTEMPORAL FILTERING USING
QUADRIC SURFACES

Once color and motion information have been merged, mov-
ing foreground objects at I-frame temporal resolution are
obtained. However, as I-frames are processed independently,
one from the others, no information about objects variations
in time is given. Furthermore, it may happen that if the ob-
ject movement does not differ a lot from the camera mo-
tion or the object is still, this object cannot be detected or
some of its components could be lost. In fact, nothing can
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(a) (b) (c)

Figure 6: Morphological color-based segmentation: (a) original DC frame, (b) morphological gradient after threshold, (c) region map.

Figure 7: Examples of “intraframe” segmentation for the sequence “De l’arbre l’ouvrage,” SFRS-CERIMES.
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prevent some annoying effects of segmentation such as flick-
ering [26], especially when dealing with low-spatial and tem-
poral resolution. Nevertheless, it can be assumed that an ob-
ject cannot appear and disappear rapidly along a short se-
quence of frames, so we can preserve existing moving objects
at I-frame temporal resolution and try to recover any “lost”
information. The objective here is to build the object trajec-
tory along the sequence of I-frames starting from its initial
estimates and then to approximate its shape with a quadric
surface for all other frames where it might have been poorly
or not detected at all. The purpose is to try to extract a sort
of “tube” where each section (namely, the intersection of the
tube with the I-frame image plan) along time represents the
object position at every frame.

Therefore, the tube sections at each moment of time ap-
proximate the object shape and can be used to recover any
mistakes occurred in the first stage of the object extraction
process. Furthermore, the visualization of the tube along
time will provide information about the temporal evolution
of objects.

As a natural video sequence can contain several objects,
the preliminary step for tube construction consists in the
identification of the same object from the detected masks
in consecutive I-frames. Consequently, the scheme for spa-
tiotemporal filtering comprises of two stages (see Figure 1).

(i) Object identification and trajectory computation.
(ii) Object fitting by quadric surfaces.

Object identification and trajectory computation

The objective is to separately track the extracted objects along
each I-frame. To do this, we estimate the motion for each
detected object and project the object mask from I-frame at
time t to I-frame at time t + Δt. If such projection overlaps
with the result of the moving object detection in the forward
I-frame (at time t + Δt), the object is confirmed for the con-
sidered pair of frames. To perform the projection, the object
motion has to be estimated.

As we are interested in the global object motion consid-
ered as a rigid mask, we can suppose that the motion of each
object Ok can be sufficiently well described using the affine
model (introduced in (1)) for a pair of I-frames at times t and
t+Δt. Since we have no motion vectors in the MPEG stream,
to determine the I-frame motion model, we can interpolate
the motion vector fields of the object from closer P-frames.
Such motion vectors are then used by a least square estimator
[25] to estimate the global object motion model θk.

The estimated motion vector given by θk = (a0, a1, a2,
a3, a4, a5)T describes the object Ok movement. Once θk has
been obtained, the object motion model is reversed for all
involved I- and P-frames so as to define the object projected
location, this way linking the object along the sequence be-
tween any two consecutive I-frames.

Next step then is to calculate the object trajectory, which
will become the principal axis of the quadric surface to be
computed. As it may happen that the objects are not cor-
rectly detected or occluded, the real object centers can be dif-
ferent from the estimated one. As we suppose that the object

motion does not change along the sequence, we can suppose
that the object centers also follow a straight line trajectory
or a piecewise linear approximation. It can seem a weak as-
sumption but if we consider that in most cases the length
of a GOP varies between 15 to 30 frames in NTSC or 12 to
25 in PAL SECAM; taking into account only I-frames means
that we observe the object position every half a second, and
in most cases, it can be observed that the object trajectory
with respect to the camera is constant in such time interval.
We have observed that in short sequences the objects follow a
straight-line trajectory, while in longer ones, it has been nec-
essary to use a piecewise linear approximation to model the
object behavior. To obtain the approximation of the object
center of mass line, we use again the least-square fitting.

Object fitting by quadric surfaces

To recover objects in the frames where a miss detection has
occurred, we will construct a spatiotemporal tube and we will
center it on the trajectory computed in the previous step.
In order to use a suitable model, we assume that the object
trajectory is linear in the simpler cases and that a piecewise
linear approximation can be employed in the more com-
plex ones. Accordingly, all objects have to be aligned prior
to computing the tube approximation, as will be explained
later. Based on this assumption, we propose as tube model a
quadric surface in a (2D + t) dimensional space.

Generally speaking, a quadric equation in an n-dimen-
sional space is written as follows:

∑

1≤i≤ j≤n
ai jxix j +

∑

1≤i≤n
bixi + c = 0, (6)

where ai j , bi, c are coefficients in the n-dimensional space,
and at least one of the ai j is different from zero; in the partic-
ular case of n = 3, the function is called quadric surface [27]
and becomes

f
(
x, y, t; ai j

) = a11x
2 + a22y

2 + a33t
2 + a12xy + a13xt

+ a23yt + a14x + a24y + a34t + a44 = 0.
(7)

The purpose now is to find the coefficient ai j in (7) that
can best approximate the contours of the moving objects in
the sequence.

Usually, finding the best approximation of the objects
with this surface means to compute the parameters ai j that
minimize the distance between Ck

x,y,t, intended as the con-
tour of the object Ok at the time instant t , and the quadric
f (x, y, t; ai j) = 0 defined in (7), that is,

min
ai j

∑
d
(
Ck
x,y,t − f

(
x, y, t; ai j

))
. (8)

This minimization problem is not so easy to be solved as
it could seem. In fact, the function to be minimized is the
sum of the distances in the different instants of time of two
curves which is not even easy to be defined. Moreover, the
presented problem is not linear, that is, a variable cannot be
written as function of the others maintaining a linear relation
between the explicit variable and the parameters ai j ; in this



Francesca Manerba et al. 9

last condition, in fact, some fast methods could be used to
easily solve the problem. Because of these difficulties, we can
propose a different solution which can nonetheless give us a
good approximation, even if it is not the optimal one.

Instead of considering the object contour which is quite
difficult, we consider a new image obtained computing the
function z(x, y, t) which is a 2D Gaussian function cen-
tered on the object centroid (μx,μy) and with variance values
(σx, σ y) obtained in this way: the estimated coordinates of
the optimal straight-line (xc(t), yc(t)) are used to set μx(t) =
xc(t),μy(t) = yc(t) for each value of t. The standard devia-
tions (σx(t), σ y(t)) are represented by the maximum distance
between the optimal center of mass (xc, yc) and the object
bounding box in both x and y directions (see Figure 8(b)).
So z(x, y, t) becomes

z(x, y, t)=exp

⎛

⎝− 1
2

⎛

⎝
(
x(t)− μx(t)

)2

σx(t)2 +

(
y(t)− μy(t)

)2

σ y(t)2

⎞

⎠

⎞

⎠ .

(9)

In Figure 8, an example of z function computation is given.
In Figure 8(a), a DC image of the sequence is presented and
in Figure 8(b), the corresponding object masks are shown; in
particular, for the object on the left, σx and σ y are depicted.
It is possible to notice that in this case the centroid does not
correspond to the center of mass of the object mask, in fact
in this case, the object is half-detected, so when computing
the object trajectory using the least-square approximation as
illustrated in the previous paragraph, using the masks of the
adjacent frames, it is possible to partially correct the detec-
tion and to obtain a more realistic center of mass.

We may have chosen instead of 9 any other function with
the same characteristics, that is, having maximum value on
the object centroid and decreasing values as a function of ob-
ject size.

Then, we force the quadric equation to verify

z(x, y, t) = a11x
2 + a22y

2 + a33t
2 + a12xy + a13xt

+ a23yt + a14x + a24y + a34t + a44.
(10)

This is translated into forcing a sort of regular behavior in
time for the z(x, y, t) functions, which are obtained indepen-
dently one from the other, at each time t.

The result will not be exactly a quadric, but a function
in four dimensions x, y, t, z representing a set of quadrics
with the same axis and different extent so that fixing a value
of z, it will be possible to obtain different quadrics which
will depend on the quality of the values (μx(t),μy(t)) and
(σx(t), σ y(t)) used, the latter being related to the object char-
acteristics.

Equation (7) represents a generic quadric function, but
for the purpose it is being used, it can be simplified and only
some specific cases can be considered. As one is not inter-
ested in recovering the 3D volume but only in the volume
slices along the time, the computation is reduced by forcing
all object center of mass to lie parallel to the time axis. This
eliminates all xy, xt, or yt in (7).

Furthermore, we can add to (10) some further con-
straints to the parameters to avoid degenerate cases (such as

(a)

σy

σx

(b)

Figure 8: Computation of standard deviation on the extracted ob-
jects: (a) original DC frame; (b) σx and σ y on the object mask,
SFRS-CERIMES.

a couple of planes). Under this constraints, (10) in this way
becomes

z(x, y, t) = a11x
2 + a22y

2 + a33t
2 + a14x + a24y + a34t + a44.

(11)

Adopting further a canonic form of the quadric solution cen-
tered in (x0, y0), assuming positive values of t, we have

z(x, y, t)

= a11x
2 + a22y

2 + a33t
2 − 2a11x0x − 2a22y0y + a34t + a44

(12)

with the following constraints adopted to avoid degenerate
cases:

a11 > 0,

a22 > 0.
(13)

The problem has been reduced to estimate the five pa-
rameters in (12) to obtain the function which best approx-
imates the evolution of object shape and dimensions along
the sequence.

Given the set of coordinates (x1, y1, t1), . . . , (xW , yH , tN )
for the sequence of N I-frames of dimensions W ×H , given
the vector of measures z = [z1, . . . , zW×H×N ]T computed on
this set of coordinates, we can write (12) in a matrix form, as

z =Hβ (14)

under the constraint

ATβ > 0, (15)
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where β is the parameter vector. Here,

H =

⎡

⎢
⎢
⎣

x2
1 − 2x0x1 y2

1 − 2y0y1 t2
1 t1 1

...
...

x2
N − 2x0xN y2

N − 2y0yN t2
N tN 1

⎤

⎥
⎥
⎦ ,

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0
0 1
0 0
0 0
0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦
.

(16)

Let us denote by e (β) = z−Hβ the error with respect to the
exact model (14). We will solve the following optimization
problem:

min
1
2
eTe,

under constraint ATβ ≥ 0.
(17)

This is a quadratic programming. Generally speaking, if a
problem of quadratic programming can be written in the
form

min
1
2
xTGx + gTx,

under constraint ATx − b ≥ 0,
(18)

then it is possible to define the dual problem [28]

max
1
2
xTGx + gTx − λT(ATx− b),

under constraint Gx + g−Aλ = 0 with λ ≥ 0,
(19)

where λ is a vector of Lagrange multipliers. Equation (19) can
be rewritten as

max − 1
2
λT
(
ATG−1A

)
λ

+ λT
(
b + ATG−1g

)− 1
2
gTG−1g,

under constraint λ ≥ 0.

(20)

This is still a quadratic programming problem in λ , but it is
easier to solve. Once the value of λ has been found, the value
of x is obtained by solving (19). In our case, developing (17)
for e = z−Hβ, we obtain

min
1
2
βT
(
HTH

)
β − zTHβ +

1
2
zTz,

under constraint ATβ ≥ 0.
(21)

This problem is in the same form of (19). It can be rewritten
in the form of (20), where G = HTH and g = −HTz. The
value of λ is obtained by solving the derivative in (20):

λ = −[AT
(
HTH

)−1
A
]−1[

AT(HTH)
−1
HTz

]
. (22)

Consequently, the vector β can be obtained from (19) setting
β to x , G to HTH , and g to −HTz:

β = (HTH
)−1(

Aλ + HTz
)
. (23)

Now with these optimal parameters, a set of quadric surfaces
with different extent but with the same central axis can be
obtained. To compute the function that best fits all the object
masks, we have to fix the value of z.

To choose the value of z and find a unique quadric sur-
face that gives a good approximation of all object masks, we
minimize the following global criterion:

min
∑

(x,y,t)

δ(x, y, t), (24)

where, for a fixed t,

δ(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

α1 if (x, y) ∈ (quadric section−mask),

0 if (x, y) ∈ (quadric section∩mask),

α2, (x, y) ∈ (mask− quadric section),
(25)

with α2 � α1. This function will privilege “larger” quadrics
enclosing object masks.

The result of quadric computation for an extract of
“aquaculture” sequence at I-frame resolution is shown in
Figure 9.

It can be seen that when objects are not detected due to
the very weak relative motion with respect to the camera, the
quadric section still allows for object location in the frame.

In this work, the overlapping of objects is handled only
partially. If objects that were separated in a given frame su-
perimpose, that is, will partially occlude in the next frame,
we will be able to identify which object is closer to the view-
point by collecting motion vectors in the projected bounding
box and identifying the object label in the past frame with the
estimated motion model. If the objects overlap strongly, then
the tube will be maintained only for the object closer to the
viewpoint. In case of objects crossing their trajectories, when
an object will reappear in the sequence, we start a new tube.

An example of overlapping objects is given in Figure 10.
On the first frames, we have three objects, of which two over-
lap. These two objects are detected as only one object, then
when they split, the object the most in the background is
identified as a new object, and thus a new tube is created.

We are conscious that such a method is limited. We can-
not apply such fine technique for occlusion handling as we
did in [31]. Rough indexing paradigm is not a framework
for this. Nevertheless, the objects can be identified by the
method of object matching we propose in [32], in the context
of rough indexing paradigm constraints such as low resolu-
tion and noisy segmentation results.

7. RESULTS AND PERSPECTIVES

The motion and color-based approach with spatiotemporal
postprocessing which has been presented in this paper has
been tested on different sequences from a set of natural video
content. Two types of content have been used: feature docu-
mentaries and cartoons; the duration of each sample docu-
ment was of about 15 minutes.

The temporal segmentation of the video into shots is
available in advance. A random set of shots amongst those
containing foreground objects is selected.
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Figure 9: Object approximation by quadric functions: (a) video sequence at I-frame temporal resolution and DC spatial resolution; (b)
shape of the quadric functions, SFRS-CERIMES.
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Figure 10: Results on sequence with overlapping objects, SFRS-CERIMES.

As far as camera motion is concerned for the set of pro-
cessed content, pan, tilt, zoom, and hand-carried camera
motion artifacts have been observed. In order to assess the
performance of the method, it is obviously very difficult to
use precise metrics such as the number of pixel mismatch
with respect to a ground truth segmentation. Indeed, the
rough indexing paradigm is not designed to achieve a very
accurate segmentation of the objects. In this paper, the fol-
lowing user-centered approach has been instead adopted: the
object is said to be detected if the user recognizes it as a
meaningful moving object in the scene. On the contrary, an
overdetection is declared when there are background areas
which do not contain any moving object of interest.

Tables 1 and 2 display the results of our segmentation
method for the documentaries and for the cartoons, respec-
tively.

As it can be seen from Tables 1 and 2, the method per-
forms worse for the cartoons with respect to more “natu-
ral” video content. The reason for this is that in cartoons,
which contain a lot of uniform color areas, the MPEG mo-
tion vector fields contain a lot of erroneous values, so that
a good motion model cannot be estimated. Outlier motion
areas are not appropriate to determine easily moving object
areas.

The algorithm has also been tested under limit condi-
tions, that is to say with objects so near to the camera to
cover a large part of the background (30%) and in the case
of no foreground objects. In the first case, the robustness of
the motion detection algorithm has led to a correct extrac-
tion of the camera motion parameters and consequently to
a correct detection of the object as foreground moving ones.
In the second case, even if the noise present on the MPEG
motion vectors has caused the presence of macroblocks with
high-weight value during the motion estimation, the used
postprocessing has allowed to classify the “outliers” as pure
noise.

Various results of spatiotemporal filtering of the segmen-
tation masks by quadrics are shown in Figure 11. It can be
seen that objects can be tracked along time. A quadric is a
locked object along time and it allows to “highlight” it. In
case the object disappears, the cross-section of the quadric
still allows for a smooth object observation along time. Thus
a computation of object descriptors is still possible in the area
delimited by the quadric section, allowing for a more accu-
rate indexing process to take place in a second stage.

Detailed computational times for the examples of
Figure 11 are listed in Table 3. Note that we do not per-
form the complete decoding process, but only need decoded
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Figure 11: Change the title to Results on the excerpts of documentaries “Comportement alimentaire de homes pre-historiques” (sequences
(b)S2, (c)S3, (d)S4), “Aquaculture” (sequences (a)S1, (e)S5), “Hiragasy” (sequence (f)S6), SFRS-CERIMES.

Table 1: Results of object extraction on feature documentaries.

Sequence % detected objects Miss detection Overdetection % correct frames Miss detection Overdetection

Arbre �1 48/59 (81%) 10/59 1/59 32/40 (80%) 8/40 0

Arbre �2 21/26 (81%) 4/26 0 16/19 (84%) 3/19 0

Arbre �3 47/71 (66%) 5/71 19/71 42/63 (67%) 1/63 20/63

Arbre �4 6/10 (60%) 2/10 2/10 6/11 (54%) 0 5/11

Arbre �5 10/16 (63%) 6/16 0 23/29 (79%) 6/29 0

Arbre �6 15/22 (68%) 5/22 2/22 15/22 (68%) 5/22 2/22

Arbre �7 22/64 (34%) 42/64 0 15/32 (47%) 17/32 0

Arbre �8 53/64 (83%) 11/64 0 22/24 (92%) 2/24 0

Hiragasy �1 3/30 (10%) 0 27/30 3/30 (10%) 0 27/30

Hiragasy �2 26/26 (100%) 0 0 13/13 (100%) 0 0

Hiragasy �3 7/11 (64%) 0 4/11 7/11 (64%) 0 4/11

Hiragasy �4 6/8 (75%) 2/8 0 6/8 (75%) 2/8 0

Hiragasy �5 8/10 (80%) 0 2/10 4/5 (80%) 0 2/10

Chancre 18/18 (100%) 0 0 9/9 (100%) 0 0

Aqua 30/60 (60%) 24/60 0 14/29 (48%) 15/29 0
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Table 2: Result of object extraction on cartoon content.

Sequence % detected objects Miss detection Overdetection % correct frames Miss detection Overdetection

Ferrailles 9/11 (82%) 2/11 0 9/11 (82%) 2/11 0

Escapade 8/10 (80%) 1/10 1/10 8/10 (80%) 1/10 1/10

Boutdumonde 0/12 (0%) 10/12 2/12 0/12 (0%) 10/12 2/12

Casa 11/50 (22%) 35/50 4/50 0/24 (0%) 24/24 0

François 7/26 (27%) 17/26 2/26 7/26 (27%) 17/26 2/26

Bouche 13/20 (65%) 7/20 0 13/20 (65%) 7/20 0

Chat 2/12 (17%) 6/12 4/12 2/12 (17%) 6/12 4/12

Moine 7/26 (27%) 17/26 2/26 2/14 (14%) 10/14 2/14

Roman �1 15/50 (30%) 6/50 29/50 15/50 (30%) 6/50 29/50

Roman �2 13/24 (54%) 6/24 5/24 13/24 (54%) 6/24 5/24

Table 3: Computation times for the sequences in Figure 11.

Sequence Number of frames Movie duration(s) Motion estimation(s) Object extraction(s) Tube construction(s)

S1 27 13.5 1.54 0.43 2.36

S2 7 3.5 0.43 0.12 0.73

S3 13 6.5 0.74 0.21 1.49

S4 11 5.5 0.65 0.18 0.98

S5 23 11.5 0.95 0.35 2.01

S6 5 2.5 0.32 0.08 0.88

motion information for P-frames and DC coefficients for I-
frames. This partial stream decoding time has been discarded
since it is highly dependent on the efficiency of the used de-
coder, and it can be in general considered negligible.

8. CONCLUSIONS

In this paper, we have presented a method for foreground ob-
ject extraction following a “rough indexing” paradigm which
allows extraction of foreground objects in MPEG1,2 com-
pressed video at I-frame temporal resolution.

The method performs in near real time and gives promis-
ing results. It is clear that, because of the low-resolution data
used, a good detection will be obtained only in low-crowding
and low-occlusion situation, as in the state-of-the-art in this
field anyway.

It can be used with a user-oriented interface for fast visual
browsing of video content or as a starting point for object-
based indexing of compressed video. The advantage of the
method is that it is not limited to a fixed camera. The ex-
tension of the method to handled compressed bit-streams
of forthcoming Scalable Video Coding (SVC) standards is
straight forward, as only the low-frequency information is
used and motion information remains available. These are
the perspectives of this work from the application point of
view. Due to its performance, the method can be used for
indexing broadcast or multicast streams at the client side. It
can also be used for semantic video adaptation, allowing for
intelligent downsampling of video resolution.
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