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transmission is analyzed using random matrix theory. The key idea is to investigate the eigenvalue distributions related to channel
capacity and to analyze the moments of this distribution in large wireless networks. A performance upper bound is derived, the
performance in the low signal-to-noise-ratio regime is analyzed, and two approximations are obtained for high and low relay-
to-destination link qualities, respectively. Finally, simulations are provided to validate the accuracy of the analytical results. The
analysis in this paper provides important tools for the understanding and the design of large cooperative wireless networks.
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1. INTRODUCTION

In recent years, cooperative transmission [1, 2] has gained
considerable attention as a potential transmit strategy for-
wireless networks. Cooperative transmission efficiently takes
advantage of the broadcast nature of wireless networks, and
also exploits the inherent spatial and multiuser diversities
of the wireless medium. The basic idea of cooperative
transmission is to allow nodes in the network to help
transmit/relay information for each other, so that cooper-
ating nodes create a virtual multiple-input/multiple-output
(MIMO) transmission system. Significant research has been
devoted to the design of cooperative transmission schemes
and the integration of this technique into cellular, WiFi,
Bluetooth, ultrawideband, Worldwide Interoperability for
Microwave Access (WiMAX), and ad hoc and sensor net-
works. Cooperative transmission is also making its way into
wireless communication standards, such as IEEE 802.16j.

Most current research on cooperative transmission
focuses on protocol design and analysis, power control, relay
selection, and cross-layer optimization. Examples of repre-

sentative work are as follows. In [3], transmission protocols
for cooperative transmission are classified into different types
and their performance is analyzed in terms of outage proba-
bilities. The work in [4] analyzes more complex transmitter
cooperative schemes involving dirty paper coding. In [5],
centralized power allocation schemes are presented, while
energy-efficient transmission is considered for broadcast
networks in [6]. In [7], oversampling is combined with
the intrinsic properties of orthogonal frequency division
multiplexing (OFDM) symbols, in the context of maximal
ratio combining (MRC) and amplify-and-forward relaying,
so that the rate loss of cooperative transmission can be
overcome. In [8], the authors evaluate cooperative-diversity
performance when the best relay is chosen according to
the average signal-to-noise ratio (SNR), and the outage
probability of relay selection based on the instantaneous
SNR. In [9], the authors propose a distributed relay selection
scheme that requires limited network knowledge and is
based on instantaneous SNRs. In [10], sensors are assigned
for cooperation so as to reduce power consumption. In
[11], cooperative transmission is used to create new paths
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so that energy depleting critical paths can be bypassed.
In [12], it is shown that cooperative transmission can
improve the operating point for multiuser detection so that
multiuser efficiency can be improved. Moreover, network
coding is also employed to improve the diversity order and
bandwidth efficiency. In [13], a buyer/seller game is proposed
to circumvent the need for exchanging channel information
to optimize the cooperative communication performance.
In [14], it is demonstrated that boundary nodes can help
backbone nodes’ transmissions using cooperative transmis-
sion as future rewards for packet forwarding. In [15], auction
theory is explored for resource allocation in cooperative
transmission.

Most existing work in this area analyzes the performance
gain of cooperative transmission protocols assuming small
numbers of source-relay-destination combinations. In [16],
large relay networks are investigated without combining
of source-destination and relay-destination signals. In [17],
transmit beamforming is analyzed asymptotically as the
number of nodes increases without bound. In this paper,
we analyze the asymptotic (again, as the number of nodes
increases) performance improvement of cooperative trans-
mission over direct transmission and relay transmission.
Relay nodes are considered in this paper while only beam-
forming in point-to-point communication is considered in
[17]. Unlike [16], in which only the indirect source-relay-
destination link is considered, we consider the direct link
from source nodes to destination nodes. The primary tool
we will use is random matrix theory [18, 19]. The key
idea is to investigate the eigenvalue distributions related to
capacity and to analyze their moments in the asymptote
of large wireless networks. Using this approach, we derive
a performance upper bound, we analyze the performance
in the low signal-to-noise-ratio regime, and we obtain
approximations for high and low relay-to-destination link
qualities. Finally, we provide simulation results to validate
the analytical results.

This paper is organized as follows. In Section 2, the
system model is given, while the basics of random matrix
theory are discussed in Section 3. In Section 4, we analyze
the asymptotic performance and construct an upper bound
for cooperative relay networks using random matrix theory.
Some special cases are analyzed in Section 5, and simulation
results are discussed in Section 6. Finally, conclusions are
drawn in Section 7.

2. SYSTEMMODEL

We consider the system model shown in Figure 1. Suppose
there are M source nodes, M destination nodes, and K
relay nodes. Denote by H, F, and G the channel matri-
ces of source-to-relay, relay-to-destination, and source-to-
destination links, respectively, so that H is M×K , F is K×M,
and G is M × M. Transmissions take place in two stages.
Further denote the thermal noise at the relays by the K-
vector z, the noise in the first stage at the destination by
the M-vector w1 and the noise in the second stage at the
destination by the M-vector w2. For simplicity of notation,
we assume that all of the noise variables have the same power

K relays
Stage 1 Stage 2

S1

S2

SM

D1

D2

DM

Figure 1: Cooperative transmission system model.

and denote this common value by σ2
n , the more general case

being straightforward. The signals at the source nodes are
collected into the M-vector s. We assume that the transmit
power of each source node and each relay node is given by
Ps and Pr , respectively. For simplicity, we further assume
that matrices H, F, and G have independent and identically
distributed (i.i.d.) elements whose variances are normalized
to 1/K , 1/M, and 1/M, respectively. Thus, the average norm
of each column is normalized to 1; otherwise the receive
SNR at both relay nodes and destination nodes will diverge
in the large system limit. (Note that we do not specify the
distribution of the matrix elements since the large system
limit is identical for most distributions, as will be seen
later.) The average channel power gains, determined by path
loss, of source-to-relay, source-to-destination, and relay-to-
destination links are denoted by gsr, gsd, and grd, respectively.

Using the above definitions, the received signal at the
destination in the first stage can be written as

ysd =
√
gsdPsGs + w1, (1)

and the received signal at the relays in the first stage can be
written as

ysr =
√
gsrPsHs + z. (2)

If an amplify-and-forward protocol [16] is used, the received
signal at the destination in the second stage is given by

yrd =
√

grd gsrPrPs
P0

FHs +

√
grdPr
P0

Fz + w2, (3)

where

P0 =
gsrPs
K

trace
(
HHH

)
+ σ2

n , (4)

namely, the average received power at the relay nodes, which
is used to normalize the received signal at the relay nodes so
that the average relays transmit power equals Pr . To see this,
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we can deduce the transmitted signal at the relays, which is
given by

trd =
√

gsrPrPs
P0

Hs +

√
Pr
P0

z. (5)

Then, the average transmit power is given by

1
K

trace
[
E
[
trdtHrd

]] = 1
K

trace
[
gsrPrPs
P0

HHH +
Prσ2

n

P0
I
]

= Pr
KP0

trace
[
gsrPsHHH + σ2

nI
]

= Pr ,
(6)

where the last equation is due to (4).
Combining the received signal in the first and second

stages, the total received signal at the destination is a 2M-
vector:

y = Ts + w, (7)

where

T =

⎛
⎜⎜⎜⎝

√
gsdPsG

√
gsrgrdPrPs

P0
FH

⎞
⎟⎟⎟⎠ ,

w =

⎛
⎜⎜⎝

w1
√

grdPr
P0

Fz + w2

⎞
⎟⎟⎠ .

(8)

The sum capacity of this system is given by

Csum

= log det
(
I + THE−1[wwH

]
T
)

= log det

⎡
⎢⎢⎣I+

(√
gsdPsGH ,

√
gsrgrdPrPs

P0
HHFH

)

×

⎛
⎜⎝
σ2
nI 0

0 σ2
n

(
I+

grdPr
P0

FFH
)
⎞
⎟⎠

−1⎛
⎜⎜⎝

√
gsdPsG

√
gsrgrdPrPs

P0
FH

⎞
⎟⎟⎠

⎤
⎥⎥⎦

= log det

[
I +

gsdPs
σ2
n

GHG

+
gsrgrdPrPs
P0σ2

n
HHFH

(
I +

grdPr
P0

FFH
)−1

FH

]

= log det
[
I + γ1GHG + βγ2HHFH

(
I + βFFH

)−1
FH
]
.

(9)

Here γ1 � gsdPs/σ2
n and γ2 � gsrPs/σ2

n represent the
SNRs of the source-to-destination and source-to-relay links,

respectively, and β � grdPr/P0 is the amplification ratio of
the relay.

We use a simpler notation for (9), which is given by

Csum = log det(I + Ω) = log det
(
I + Ωs + Ωr

)
, (10)

where Ωs � γ1GHG corresponds to the direct channel from
the source to the destination; and

Ωr � βγ2HHFH
(
I + βFFH

)−1
FH (11)

corresponds to the signal relayed to the destination by the
relay nodes. On denoting the eigenvalues of the matrix Ω by
{λΩm}m=1,2,..., the sum capacity Csum can be written as

Csum =
M∑

m=1

log
(
1 + λΩm

)
. (12)

In the following sections, we obtain expressions or approxi-
mations for Csum by studying the distribution of λΩm.

We are interested in the average channel capacity of the
large relay network, which is defined as

Cavg � 1
M

Csum. (13)

In this paper, we focus on analyzing Cavg in the large system
scenario, namely,K ,M →∞while α � M/K is held constant,
which is similar to the large system analysis arising in the
study of code division multiple access (CDMA) systems [20].
Therefore, we place the following assumption on Cavg.

Assumption 1.

Cavg −→ E
[

log
(
1 + λΩ

)]
, almost surely, (14)

where λΩ is a generic eigenvalue of Ω, as K ,M →∞.
This assumption will be validated by the numerical result

in Section 6, which shows that the variance of Cavg decreases
to zero as K and M increase. In the remaining part of this
paper, we consider Cavg to be a constant in the sense of the
large system limit, unless noted otherwise.

3. BASICS OF LARGE RANDOMMATRIX THEORY

In this section, we provide some basics of random matrix
theory, including the notions of noncrossing partitions,
isomorphic decomposition, combinatorial convolution, and
free cumulants, which provide analytical machinery for
characterizing the average channel capacity when the system
dimensions increase asymptotically.

3.1. Freeness

Below is the abstract definition of freeness, which is origi-
nated by Voiculescu [21–23].

Definition 1. Let A be a unital algebra equipped with a
linear functional ψ : A → C, which satisfies ψ(1) = 1.
Let p1, . . . , pk be one-variable polynomials. We call elements
a1, . . . , am ∈A free if for all i1 /= i2 /= · · · /= ik, we have

ψ
[
p1
(
ai1
) · · · pk

(
aik
)] = 0, (15)
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whenever

ψ
[
pj
(
aij
)] = 0, ∀ j = 1, . . . , k. (16)

In the theory of large random matrices, we can consider
random matrices as elements a1, . . . , am, and the linear
functional ψ maps a random matrix A to the expectation of
eigenvalues of A.

3.2. Noncrossing partitions

A partition of a set {1, . . . , p} is defined as a division of the
elements into a group of disjoint subsets, or blocks (a block
is termed an i-block when the block size is i). A partition is
called an r-partition when the number of blocks is r.

We say that a partition of a p-set is noncrossing if, for any
two blocks {u1, . . . ,us} and {v1, . . . , vt}, we have

uk < v1 < uk+1 ⇐⇒ uk < vt < uk+1, ∀k = 1, . . . , s, (17)

with the convention that us+1 = u1. For example, for the set
{1, 2, 3, 4, 5, 6, 7, 8}, {{1, 4, 5, 6}, {2, 3}, {7}, {8}} is noncross-
ing, while {{1, 3, 4, 6}, {2, 5}, {7}, {8}} is not. We denote the
set of noncrossing partitions on the set {1, 2, . . . , p} by NCp.

3.3. Isomorphic decomposition

The set of noncrossing partitions in NCp has a partial
ordering structure, in which π ≤ σ if each block of π is a
subset of a corresponding block of σ . Then, for any π ≤ σ ∈
NCp, we define the interval between π and σ as

[π, σ] �
{
ψ ∈ NCp | π ≤ ψ ≤ σ

}
. (18)

It is shown in [21] that, for all π ≤ σ ∈ NCp, there exists
a canonical sequence of positive integers {ki}i∈N such that

[π, σ] ∼=
∏

j∈N
NC

kj
j , (19)

where∼= is an isomorphism (the detailed mapping which can
be found in the proof of Proposition 1 in [21]), the product
is the Cartesian product, and {kj} j∈N is called the class of
[π, σ].

3.4. Incidence algebra, multiplicative function,
and combinatorial convolution

The incidence algebra on the partial ordering structure of
NCp is defined as the set of all complex-valued functions
f (ψ, σ) with the property that f (ψ, σ) = 0 if ψ � σ [20].

The combinatorial convolution between two functions f
and g in the incidence algebra is defined as

f � g(π, σ) �
∑

π≤ψ≤σ
f (π,ψ)g(ψ, σ), ∀π ≤ σ. (20)

An important subset of the incidence algebra is the set of
multiplicative functions f on [π, σ], which are defined by the
property

f (π, σ) �
∏

j∈N
a
kj
j , (21)

where {aj} j∈N is a series of constants associated with
f , and the class of [π, σ] is {kj} j∈N. We denote by fa
the multiplicative function with respect to {aj} j∈N. An
important function in the incidence algebra is the zeta
function ζ , which is defined as

ζ(π, σ) �
⎧⎨
⎩

1, if ψ ≤ σ ,

0, else.
(22)

Further, the unit function I on the incidence algebra is
defined as

I(π, σ) �
⎧⎨
⎩

1, if ψ = σ ,

0, else.
(23)

The inverse of the ζ function, denoted by μ, with respect
to combinatorial convolution, namely, μ� ζ = I , is termed
the Möbius function.

3.5. Moments and free cumulants

Denote the pth moment of the (random) eigenvalue λ by
mp � E[λp]. We introduce a family of quantities termed
free cumulants [22] denoted by {kp} for Ω where pdenotes
the order. We will use a superscript to indicate the matrix
for which the moments and free cumulants are defined.
The relationship between moments and free cumulants is
given by combinatorial convolution in the incidence algebra
[21, 22], namely,

fm = fk � ζ ,

fk = fm � μ,
(24)

where the multiplicative functions fm (characterizing the
moments), fk (characterizing the free cumulants), zeta func-
tion ζ , Möbius function μ, and combinatorial convolution�
are defined above.

By applying the definition of a noncrossing partition,
(24), can be translated into the following explicit forms for
the first three moments and free cumulants:

m1 = k1,

m2 = k2 + k2
1,

m3 = k3 + 3k1k2 + k3
1,

k1 = m1,

k2 = m2 −m2
1,

k3 = m3 − 3m1m2 + 2m3
1.

(25)

The following lemma provides the rules for the addition
[22] (see (B.4)) and product [22] (see (D.9)) of two free
matrices.

Lemma 1. If matrices A and B are mutually free, one has

fkA+B = fkA + fkB , (26)

fkAB = fkA � fkB . (27)
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4. ANALYSIS USING RANDOMMATRIX THEORY

It is difficult to obtain a closed-form expression for the
asymptotic average capacity Cavg in (13). In this section,
using the theory of random matrices introduced in the
last section, we first analyze the random variable λΩ by
characterizing its moments and providing an upper bound
for Cavg. Then, we can rewrite Cavg in terms of a moment
series, which facilitates the approximation.

4.1. Moment analysis of λΩ

In contrast to [16], we analyze the random variable Cavg via
its moments, instead of its distribution function, because
moment analysis is more mathematically tractable. For
simplicity, we denote βFH(I + βFFH)−1F by Γ, which is
obviously Hermitian. Then, the matrix Ω is given by

Ω = γ1GHG + γ2HHΓH. (28)

In order to apply free probability theory, we need as a
prerequisite that GHG, HHH, and FH(I + βFFH)−1F be
mutually free (the definition of freeness can be found in
[23]). It is difficult to prove the freeness directly. However,
the following proposition shows that the result obtained
from the freeness assumption coincides with [24, Theorem
1.1] (same as in (29)) in [24], which is obtained via an
alternative approach.

Proposition 1. Suppose γ1 = γ2 = 1 (note that the
assumption γ1 = γ2 = 1 is for convenience of analysis; it
is straightforward to extend the proposition to general cases).
Based on the freeness assumption, the Stieltjes transform of the
eigenvalues in the matrix Ω satisfies the following Marcĕnko-
Pastur equation:

mΩ(z) = mGHG

[
z − 1

α

∫
τdF (τ)

1 + τ(z)mΩ(z)

]
, (29)

where F is the probability distribution function of the
eigenvalues of the matrix Γ, and m(z) denotes the Stieltjes
transform [20].

Proof. See Appendix A.

Therefore, we assume that these matrices are mutually
free (the freeness assumption) since this assumption yields the
same result as a rigorously proved conclusion. The validity
of the assumption is also supported by numerical results
included in Section 6. Note that the reason why we do not
apply the conclusion in Proposition 1 directly is that it is
easier to manipulate using the moments and free probability
theory.

Using the notion of multiplicative functions and
Lemma 1, the following proposition characterizes the free
cumulants of the matrix Ω, based upon which we can
compute the eigenvalue moments of Ω from (24) (or (25)
explicitly for the first three moments).

Proposition 2. The free cumulants of the matrixΩ in (28) are
given by

fkΩ = fkΩs +
(((

fkΓ � fkH̃
)
� ζ

)
� δ1/α

)
� μ, (30)

where kΩs
p = 1, the free cumulant of kH̃p = γ

p
2 /α, ∀p ∈ N ,

H̃ = γ2HHH , and the multiplicative function δ1/α is defined as

δ1/α(τ,π) =

⎧⎪⎪⎨
⎪⎪⎩

1
α

, if τ = π;

0, if τ /=π.
(31)

Proof. The proof is straightforward by applying the relation-
ship between free cumulants and moments. The reasoning is
given as follows:

(i) fkΓ� fkH̃ represents the free cumulants of the matrix
γ2ΓHHH (applying Lemma 1);

(ii) ( fkΓ� fkH̃ )�ζ represents the moments of the matrix
γ2ΓHHH ;

(iii) (( fkΓ � fkH̃ )� ζ)� δ1/α represents the moments of
the matrix γ2HHΓH;

(iv) ((( fkΓ � fkH̃ ) � ζ) � δ1/α) � μ represents the free
cumulants of the matrix γ2HHΓH;

(v) the final result is obtained by applying Lemma 1.

4.2. Upper bound of average capacity

Although in Section 4.1 we obtained all moments of λΩ,
we did not obtain an explicit expression for the average
channel capacity. However, we can provide an upper bound
on this quantity by applying Jensen’s inequality, which we
summarize in the following proposition.

Proposition 3. The average capacity satisfies

C(u)
avg ≤ log

(
1 + γ1 +

αβγ2

α + β

)
. (32)

Proof. By applying Jensen’s inequality, we have

E
[

log
(
1 + λΩ

)] ≤ log
(
1 + E

[
λΩ
])

= log
(
1 + E

[
λΩs
]

+ E
[
λΩr
])
.

(33)

From [20], we obtain

E
[
λΩs
] = γ1. (34)

For Ω, we can show

E
[
λΩr
] = 1

α
E
[
λΩ

′
r
]
, (35)

where

Ω′
r = βγ2FH

(
I + βFFH

)−1
FHHH. (36)

By applying the law of matrix product in Lemma 1, we
can further simplify (35) to

E
[
λΩr
] = γ2

α
E
[
λHHH ]

E
[
λΓ
] = γ2E

[
λHHH ]

E
[

βλFF
H

1 + βλFFH

]
.

(37)
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By applying Jensen’s inequality again, we have

E
[
λΩ

′
r
] ≤ γ2E

[
λHHH ] βE

[
λFF

H ]

1 + βE
[
λFFH

] = αβγ2

α + β
, (38)

where we have applied the facts E[λHHH
] = α and E[λFF

H
] =

1/α.
Combining the above equations yields the upper bound

in (32).

4.3. Expansion of average capacity

In addition to providing an upper bound on the average
capacity, we can also expand Cavg into a power series so that
the moment expressions obtained from Proposition 2 can be
applied. Truncating this power series yields approximations
for the average capacity.

In particular, by applying a Taylor series expansion
around a properly chosen constant x0, Cavg can be written
as

Cavg = log
(
1 + x0

)
+

∞∑

k=1

(−1)k−1E

[ (
λ− x0

)k

k
(
1 + x0

)k
]
. (39)

Taking the first two terms of the series yields the approxima-
tion

Cavg ≈ log
(
1 + x0

)
+
m1 − x0

1 + x0
− m2 − 2x0m1 + x2

0

2
(
1 + x0

)2 . (40)

We can set x0 = γ1 + αβγ2/(α + β), which is an upper bound
for E[λΩ] as shown in Proposition 3. We can also set x0 =
0 and obtain an approximation when λΩ is small.Equations
(40) will be a useful approximation for Cavg in Sections 5.2
and 5.3 when β is large or small or when SNR is small.

5. APPROXIMATIONS OF Cavg

In this section, we provide explicit approximations to Cavg for
several special cases of interest. The difficulty in computing
Cavg lies in determining the moments of the matrix Γ.
Therefore, in the low SNR region (Section 5.1), we consider
representing Cavg in terms of the average capacities of
the source-destination link and the source-relay-destination
link. Then, we consider the region of high (Section 5.2) or
low β (Section 5.3), where Γ can be simplified; thus we will
obtain approximations in terms of α, β, γ1, and γ2. Finally,
higher-order approximation will be studied in Section 5.4.

5.1. Approximate analysis in the low SNR regime

Unlike Section 4 which deals with general cases, we assume
here that both the source-to-destination and relay-to-
destination links within the low SNR regime, that is, Ps/σ2

n

and Pr/σ2
n are small. Such an assumption is reasonable when

both source nodes and relay nodes are far away from the
destination nodes.

Within the low-SNR assumption, the asymptotic average
capacity can be expanded in the Taylor series expansion
about x0 = 0 in (40), which is given by

Cavg = E
[

log
(
1 + λΩ

)] =
∞∑

i=1

(−1)i+1 m
Ω
i

i
. (41)

We denote the pth-order approximation of Cavg by

Cp =
p∑

i=1

(−1)i+1 m
Ω
i

i
, (42)

which implies

mΩ
i = (−1)i+1i

(
Ci − Ci−1

)
. (43)

We denote by {Cs
p} and {Cr

p} the average capacity
approximations (the same as in (42)) for the source-
destination link and the source-relay-destination link,
respectively. Our target is to represent the average capacity
approximations {Cp} by using {Cs

p} and {Cr
p} under the

low-SNR assumption, which reveals the mechanism of
information combining of the two links.

By combining (25), (26), and (43), we can obtain

C1 = Cs
1 + Cr

1,

C2 = Cs
2 + Cr

2 − Cs
1C

r
1,

C3 = Cs
3 + Cr

3 − Cs
1C

r
1 + 4Cs

1C
r
1 − 2Cs

1C
r
2 − 2Cr

1C
s
2,

(44)

where Cs
p and Cr

p denote the pth-order approximations of
the average capacity of the source-destination link and the
source-relay-destination link, respectively.

Equation (44) shows that, to a first-order approximation,
the combined effect of the source-destination and source-
relay-destination links is simply a linear addition of average
channel capacities, when the low-SNR assumption holds. For
the second-order approximation in (44), the average capacity
is reduced by a nonlinear term Cs

1C
r
1. The third-order term in

(44) is relatively complicated to interpret.

5.2. High β region

In the high β region, the relay-destination link has a better
channel than that of the source-relay link. The following
proposition provides the first two moments of the eigenval-
ues λ in Ω in this case.

Proposition 4. As β → ∞, the first two moments of the
eigenvalues λ in Ω converge to

m1 =
⎧⎨
⎩
γ1 + αγ2, if α ≤ 1,

γ1 + γ2, if α > 1,

m2 =
⎧⎨
⎩

2
(
γ2

1 + αγ2
2 + αγ1γ2

)
, if α ≤ 1,

2γ2
1 + 2γ1γ2 + γ2

2(1 + α), if α > 1.

(45)

Proof. See Appendix B.
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5.3. Low β region

In the low β region, the source-relay link has a better channel
than the relay-destination link does. Similar to the result
of Section 5.2, the first two eigenvalue moments of Ω are
provided in the following proposition, which can be used to
approximate Cavg in (40).

Proposition 5. Suppose βγ2 = D. As β → 0 and D remains
a constant, the first two moments of the eigenvalues λ in Ω
converge to

m1 = γ1 + D,

m2 = 2γ2
1 + 2γ1D + D2(α + 2).

(46)

Proof. See Appendix C.

5.4. Higher-order approximations for
high and low β regions

In the previous two subsections, taking a first order
approximation of the matrix Γ = βFH(I + βFFH)−1F
resulted in simple expressions for the moments. We can also
consider higher-order approximations, which provide finer
expressions for the moments. These results are summarized
in the following proposition, a proof of which is given in
Appendix D. Note that m1 and m2 denote the first-order
approximations given in Propositions 4 and 5, and m̃1 and
m̃2 denote the expressions after considering higher-order
terms. Note that, when β is large, we do not consider the case
α = 1 since the matrix FFH is at a critical point in this case,
that is, for any α < 1, FFH is of full rank almost surely; for
any α > 1, FFH is singular.

Proposition 6. For sufficiently small β, one has

m̃1 = m1 − γ2β
2
(

1 +
1
α

)
+ o
(
β2),

m̃2 = m2 − 2γ2β
2(γ1 + βγ2

)(
1 +

1
α

)
+ o
(
β2).

(47)

For sufficiently large β and α < 1, one has

m̃1 = m1 −
γ2α2

β(1− α)
+ o
(

1
β

)
,

m̃2 = m2 −
2γ2α2

(
γ1 + αγ2

)

β(1− α)
+ o
(

1
β

)
.

(48)

For sufficiently large β and α > 1, one has

m̃1 = m1 −
αγ2

β(α− 1)
+ o
(

1
β

)
,

m̃2 = m2 −
2γ2α

(
γ1 + γ2

)

β(α− 1)
+ o
(

1
β

)
.

(49)

Proof. See Appendix D.
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Figure 2: Variance of Cavg versus different K.

6. SIMULATION RESULTS

In this section, we provide simulation results to validate the
analytical results derived in the previous sections. Figure 2
shows the variance of Cavg normalized by E2[Cavg] versus K .
The configuration used here is γ1 = 1, γ2 = 10, β = 1, and
α = 0.5/1/2. For each value of K , we obtain the variance
of Cavg by averaging over 1000 realizations of the random
matrices, in which the elements are mutually independent
complex Gaussian random variables. We can observe that the
variance decreases rapidly as K increases. When K is larger
than 10, the variance of Cavg is very small. This supports the
validity of Assumption 1.

In the following simulations, we fix the value of K to be
40. All accurate values of average capacities Cavg are obtained
from 1000 realizations of the random matrices. Again, the
elements in these random matrices are mutually indepen-
dent complex Gaussian random variables. All performance
bounds and approximations are computed by the analytical
results obtained in this paper.

Figure 3 compares the accurate average capacity obtained
from (9) and the first three orders of approximation given
in (44) with γ1 ranging from 0.01 to 0.1. We set γ2 = γ1

and β = 1. From Figure 3, we observe that, in the low-SNR
region, the approximations approach the correct values quite
well. The reason is that the average capacity is approximately
linear in the eigenvalues when SNR is small, which makes
our expansions more precise. When the SNR becomes larger,
the approximations can be used as bounds for the accurate
values. (Notice that the odd orders of approximation provide
upper bounds while the even ones provide lower bounds.)

In Figure 4, we plot the average capacity versus α,
namely the ratio between the number of source nodes (or
equivalently, destination nodes) and the number of relay
nodes. The configuration is γ1 = 0.1, γ2 = 10, and β = 10.
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Figure 4: Performance versus various α.

We observe that the average capacity achieves a maximum
when α = 1, namely, when using the same number of relay
nodes as the source/destination nodes. A possible reason for
this phenomenon is the normalization of elements in H.
(Recall that the variance of elements in H is 1/K such that
the norms of column vectors in H are 1.) Now, suppose that
M is fixed. When α is small, that is, K is large, the receive SNR
at each relay node is small, which impairs the performance.
When α is large, that is, K is small, we lose degrees of
freedom. Therefore, α = 1 achieves the optimal tradeoff.
However, in practical systems, when the normalization is
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Figure 5: Eigenvalue moments versus various α in the high β
region.
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Figure 6: Eigenvalue moments versus various α in the low β region.

removed, it is always better to have more relay nodes if the
corresponding cost is ignored. We also plot the upper bound
in (32), which provides a loose upper bound here.

In Figures 5 and 6, we plot the precise values of m1

and m2 obtained from simulations and the corresponding
first- and second-order approximations. The configuration
is β = 10 (Figure 5) or β = 0.1 (Figure 6), γ1 = 2 and γ2 =
10. We can observe that the second-order approximation
outperforms the first-order approximation except when α is
close to 1 and β is large. (According to Proposition 6, the
approximation diverges as α→ 1 and β →∞.)
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In Figure 7, we plot the average capacity versus α in the
high β region, with configuration β = 10, γ1 = 2, and
γ2 = 10. We can observe that the Taylor expansion provides a
good approximation when α is small. Similar to Figure 7, the
second-order approximation outperforms the first-order one
except when α is close to 1. In Figure 8, we plot the average
capacity versus α in the low β region. The configuration is the
same as that in Figure 7 except that β = 0.1. We can observe
that the Taylor expansion provides a good approximation
for both small and large α. However, unlike the moment
approximation, the error of the second-order approximation
is not better than that of the first-order approximation.
This is because (40) is also an approximation, and bet-
ter approximation of the moments does not necessarily
lead to a more precise approximation for the average
capacity.

In Figure 9, we plot the ratio between the average
capacity in (9) and the average capacity when the signal from
the source to the destination in the first stage is ignored,
as a function of the ratio γ1/γ2. We test four combinations
of γ2 and β. (Note that α = 0.5.) We observe that the
performance gain increases with the ratio γ1/γ2 (the channel
gain ratio between source-destination link and source-relay
link). The performance gain is substantially larger in the low-
SNR regime (γ2 = 1) than in the high-SNR regime (γ2 = 10).
When the amplification ratio β decreases, the performance
gain is improved. Therefore, substantial performance gain is
obtained by incorporating the source-destination link when
the channel conditions of the source-destination link are
comparable to those of the relay-destination link and the
source-relay link, particularly in the low-SNR region. In
other cases, we can simply ignore the source-destination link
since it achieves marginal gain at the cost of having to process
a high-dimensional signal.
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7. CONCLUSIONS

In this paper, we have used random matrix theory to analyze
the asymptotic behavior of cooperative transmission with a
large number of nodes. Compared to prior results of [23],
we have considered the combination of relay and direct
transmission, which is more complicated than considering
relay transmission only. We have constructed a performance
upper-bound for the low signal-to-noise-ratio regime, and
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have derived approximations for high and low relay-to-
destination link qualities, respectively. The key idea has been
to investigate the eigenvalue distributions related to capacity
and to analyze eigenvalue moments for large wireless net-
works. We have also conducted simulations which validate
the analytical results. Particularly, the numerical simulation
results show that incorporating the direct link between
the source nodes and destination nodes can substantially
improve the performance when the direct link is of high
quality. These results provide useful tools and insights for the
design of large cooperative wireless networks.

APPENDICES

A. PROOF OF PROPOSITION 1

We first define some useful generating functions and trans-
forms [22], and then use them in the proof by applying some
conclusions of free probability theory [23].

A.1. Generating functions and transforms

For simplicity, we rewrite the matrix Ω as

Ω = GHG + ΞΓΞH , (A.1)

where Ξ � (1/α)HH is an M × K matrix, in which the
elements are independent random variables with variance
1/M.

For a large random matrix with eigenvalue moments
{mi}i=1,2,... and free cumulants {kj} j=1,2,..., we define the
following generating functions:

Λ(z) = 1 +
∞∑

i=1

miz
i, C(z) = 1 +

∞∑

j=1

kjz
j . (A.2)

We define the Stieltjes transform

m(z) = E
[

1
λ− z

]
, (A.3)

where λ is a generic (random) eigenvalue.
We also define a “Fourier transform” given by

D(z) = 1
z

(
C(z)− 1

)〈−1〉
, (A.4)

which was originally defined in [25].
The following lemma provides some fundamental rela-

tions among the above functions and transforms.

Lemma 2. For the generating functions and transforms in
(A.2)–(A.4), the following equations hold:

Λ
[
zD(z)
z + 1

]
= z + 1, (A.5)

m
[
C(z)
z

]
= −z, (A.6)

C
(−m(z)

) = −zm(z), (A.7)

Λ(z) = −m
(
z−1
)

z
. (A.8)

Note that we use subscripts to indicate the matrix for
which the generating functions and transforms are defined.
For example, for the matrix M, the eigenvalue moment
generating function is denoted by ΛM(z).

A.2. Proof of Proposition 1

We first study the matrix ΞΓΞH in (A.1). In order to apply
the conclusions about matrix products, we can work on the
matrix J = ΓΞHΞ instead since we have the following lemma.

Lemma 3.

ΛΞΓΞH (z)− 1 = 1
α

(
ΛΓΞHΞ(z)− 1

)
. (A.9)

Proof. For any n ∈ N , we have

1
M

trace
((
ΞΓΞH

)n) = 1
M

trace
((
ΓΞHΞ

)n)

= K

M

1
K

trace
((
ΓΞHΞ

)n)
.

(A.10)

Letting K ,M →∞, we obtain

mΞΓΞH

n = 1
α
mΓΞHΞ

n . (A.11)

Then, we have

ΛΞΓΞH (z)− 1 =
∞∑

j=1

mΞΓΞH

n zn

= 1
α

∞∑

j=1

mΓΞHΞ
n zn

= 1
α

(
ΛΓΞHΞ(z)− 1

)
.

(A.12)

On denoting ΞHΞ by B, the following lemma discloses
the law of matrix product[22] and is equivalent to (27).

Lemma 4. Based on the freeness assumption, for the matrix
J = ΓB, we have

DJ(z) = DΓ(z)DB(z). (A.13)

In order to use the “Fourier Transform,” we need the
following lemma.

Lemma 5. For the matrix B, we have

DB(z) = α

z + α
. (A.14)

Proof. Due to the definition of Ξ, we have

ΞHΞ = 1
α
HHH. (A.15)

Then, it is easy to check that

mΞHΞ
n =

(
1
α

)n
mHHH

n ,

kΞ
HΞ

n =
(

1
α

)n
kHHH

n ,

(A.16)
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which is equivalent to

CΞHΞ(z) = CHHH

(
z

α

)
. (A.17)

By applying the conclusion in [20], all free cumulants in
HHH are equal to α. Therefore,

CΞHΞ(z) = CHHH (z) = 1 +
αz

1− z
. (A.18)

The conclusion follows from computing the inverse
function of CΞHΞ(z)− 1 = αz/(α− z).

The following lemma relates ΛΓ(z) to F . (Recall that F
is the distribution of eigenvalues of the matrix Γ.)

Lemma 6. For the matrix Γ, the following equation holds:

ΛΓ(z)− 1 =
∫

τz

1− τz
dF (τ). (A.19)

Proof. Based on the definition of ΛΓ(z), we have

ΛΓ(z)−1=
∞∑

j=1

mjz
j=

∞∑

j=1

E
[
λjz j

]=E

[ ∞∑

j=1

(λz) j
]
=E

[
λz

1−λz
]

,

(A.20)

from which the conclusion follows.

Based on the above lemmas, we can show the following
important lemma.

Lemma 7. Based on the freeness assumption, for the matrix
ΞΓΞH , we have

CΞΓΞH (z) = 1 +
1
α

∫
zτ

1− zτ
dF (τ). (A.21)

Proof. The lemma can be proved by showing the following
series of equivalent equations:

CΞΓΞH (z) = 1 +
1
α

∫
zτ

1− zτ
dF (τ) (A.22)

⇐⇒ mΞΓΞH (z) = 1
−z + (1/α)

∫
(τ/1+ τmΞΓΞH (z))dF (τ)

(A.23)

⇐⇒ ΛΞΓΞH (z) = 1
1− (1/α)

∫
(zτ/1− τzΛΞΓΞH (z))dF (τ)

(A.24)

⇐⇒ ΛΞΓΞH (z)− 1
α

∫
zτΛΞΓΞH (z)

1− τzΛΞΓΞH (z)
dF (τ) = 1 (A.25)

⇐⇒ ΛΞΓΞH (z)− 1 = 1
α

(
ΛΓ

(
zΛΞΓΞH (z)

)− 1
)

(A.26)

⇐⇒ ΛΓΞHΞ(z) = ΛΓ

(
z
(

1
α

(
ΛΓΞHΞ(z)− 1

))
+ 1
)

(A.27)

⇐⇒ z + 1 = ΛΓ

(
zDΓΞHΞ(z)

z + 1

(
1
α
z + 1

))
(A.28)

⇐⇒ z + 1 = ΛΓ

(
zDΓ(z)
z + 1

)
. (A.29)

The equivalence of the above equations is explained as
follows:

(i) substituting (A.6) into (A.22) yields (A.23);
(ii) substituting (A.8) into (A.23) yields (A.24);
(iii) equations (A.25) and (A.26) are equivalent due to
Lemma 6;

(iv) equations (A.26) and (A.27) are equivalent due to
Lemma 3;

(v) equations (A.27) and (A.28) are equivalent by
substituting z = zDΓΞHΞ(z)/(z + 1) into (A.27) and
applying (A.5);

(vi) equations (A.28) and (A.29) are equivalent due to
Lemmas 4 and 5;

(vii) equation (A.29) holds due to (A.5).

Based on Lemma 7, we can prove Proposition 1.

Proof. By applying (26) and the freeness assumption, we have

CΩ(z) = CGHG(z) + CΞΓΞH (z)(z)− 1, (A.30)

which implies

CGHG(z)
z

= CΩ(z)
z

− CΞΓΞH (z)
z

+
1
z
. (A.31)

Taking both sides of (A.31) as arguments of mGHG(z), we
have

−z = mGHG

(
CΩ(z)
z

− CΞΓΞH (z)
z

+
1
z

)
, (A.32)

where the left-hand side is obtained from (A.6).
Letting z = −mΩ(t) in (A.32), we have

mΩ(t)

=mGHG

(
CΩ
(−m(t)

)

−m(t)

− 1+(1/α)
∫

(mΩ(t)τ/(1+mΩ(t)τ))dF (τ)
−mΩ(t)

− 1
mΩ(t)

)

= mGHG

(
t − 1

α

∫
τ

1 + mΩ(t)τ
dF (τ)

)
,

(A.33)

where the first equation is based on (A.7).

B. PROOF OF PROPOSITION 4

Proof. We first consider the matrix Γ′ = β(I + βFFH)
−1
FFH .

When K ≥M, it is easy to check that FFH is invertible almost
surely since F is an M × K matrix. Then

Γ′ −→ I, (B.1)

as β →∞. Therefore, mΓ′
p = 1,∀p ∈ N .
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When K ≤ M, let FFH = UHΛU, where U is unitary and
Λ is diagonal. Then, we have

mΓ′
p =

1
M

trace
[
(Γ′)p

]

= 1
M

trace
[
β(I + βΛ)−pΛp]

= K

M
,

(B.2)

where the last equation is due to the fact that only K elements
in Λ are nonzero since K ≤ M. Therefore, mΓ′

p = 1/α, ∀p ∈
N .

Applying the same argument as in Lemma 3, we obtain

mΓ
p =

⎧⎨
⎩

1, if K ≤M,

α, if K ≥M,
∀p ∈ N , (B.3)

which is equivalent to

kΓ1 =
⎧⎨
⎩

1, if K ≤M,

α, if K ≥M,

kΓ2 =
⎧⎨
⎩

0, if K ≤M,

α− α2, if K ≥M.

(B.4)

Define Ω′
r = βFH(I + βFFH)−1FHHH . Due to the law of

the matrix product in Lemma 1, the free cumulants of Ω′
r are

given by

k
Ω′

r
1 = kΓ1k

HHH

1 ,

k
Ω′

r
2 = kΓ2

(
kHHH

1

)2
+ kHHH

2

(
kΓ1
)2
.

(B.5)

Then, combining (B.5), kHHH

1 = α and kHHH

2 = α, we
obtain

k
Ω′

r
1 =

⎧⎨
⎩
α2, if α ≤ 1,

α, if α ≥ 1,

k
Ω′

r
2 =

⎧⎨
⎩

2α3 − α4, if α ≤ 1,

α, if α ≥ 1.

(B.6)

which imply

m
Ω′

r
1 =

⎧⎨
⎩
α2, if α ≤ 1,

α, if α ≥ 1,

m
Ω′

r
2 =

⎧⎨
⎩

2α3, if α ≤ 1,

α + α2, if α ≥ 1.

(B.7)

Applying the same argument as in Lemma 3, we obtain

mΩr
1 =

⎧⎨
⎩
γ2α, if α ≤ 1,

γ2, if α ≥ 1,

mΩr
2 =

⎧⎨
⎩

2γ2
2α

2, if α ≤ 1,

γ2
2(1 + α), if α ≥ 1.

(B.8)

which is equivalent to

kΩr
1 =

⎧⎨
⎩
γ2α, if α ≤ 1,

γ2, if α ≥ 1,

kΩr
2 =

⎧⎨
⎩
γ2

2α
2, if α ≤ 1,

γ2
2α, if α ≥ 1.

(B.9)

The conclusion follows from the facts that ∀p ∈ N ,
kΩs
p = γ

p
1 and kΩp = kΩs

p + kΩr
p .

C. PROOF OF PROPOSITION 5

Proof. When β → 0, we have (recall D = γ2β)

Ω = γ1GHG + DHHFHFH,

kF
HF

1 = 1,

kF
HF

2 = 1
α

,

kHHH

1 = α,

kHHH

2 = α.

(C.1)

Then, applying (B.5), we obtain

kF
HFHHH

1 = α,

kF
HFHHH

2 = 2α,
(C.2)

which is equivalent to

mFHFHHH

1 = α,

mFHFHHH

2 = α2 + 2α.
(C.3)

Then, for matrix HHFHFH, we have

mHHFHFH
1 = 1,

mHHFHFH
2 = α + 2,

(C.4)

which results in

kH
HFHFH

1 = 1,

kH
HFHFH

2 = α + 1.
(C.5)

The remaining part of the proof is the same as the proof
of Proposition 4 in Appendix B.

D. PROOF OF PROPOSITION 6

We first prove the following lemma which provides the
impact of perturbation on mΓ

1 and mΓ
2. We use X̃ to represent

the perturbed version of the quantity X .
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Lemma 8. Suppose the first and second moments of the matrix
Γ are perturbed by small δ1 and δ2, respectively, where δ1 and
δ2 are of the same order O(δ), namely,

m̃Γ
1 = mΓ

1 + δ1,

m̃Γ
2 = mΓ

2 + δ2.
(D.1)

Then, we have

m̃Ω
1 = mΩ

1 + γ2δ1,

m̃Ω
2

=mΩ
2 +αγ2

2δ2 +2γ2
(
k
Ω′

r
1 γ2−mΩr

1 +kΩ1 +(1− α)kΓ1γ2
)
δ1 +o(δ),

(D.2)

where

Ω′
r = βFH

(
I + βFFH

)−1
FHHH. (D.3)

Proof. We begin from k̃Γ1 and k̃Γ2 . Suppose small perturba-
tions ε1 and ε2, which are both of order O(ε), are placed on
kΓ1 and kΓ2 , namely,

k̃Γ1 = kΓ1 + ε1,

k̃Γ2 = kΓ2 + ε2.

(D.4)

We have

k̃
Ω′

r
1 = k

Ω′
r

1 + αε1,

k̃
Ω′

r
2 = k

Ω′
r

2 + α2ε2 + 2αkΓ1ε1 + o(ε),

(D.5)

which implies

m̃
Ω′

r
1 = m

Ω′
r

1 + αε1,

m̃
Ω′

r
2 = m

Ω′
r

2 + α2ε2 + 2α
(
kΓ1 + k

Ω′
r

1

)
ε1 + o(ε).

(D.6)

For Ωr = γ2βHHFH(I + βFFH)
−1
FH, we have

m̃Ωr
1 = mΩr

1 + γ2ε1,

m̃Ωr
2 = mΩr

2 + αγ2
2ε2 + 2γ2

2

(
kΓ1 + k

Ω′r
1

)
ε1 + o(ε),

(D.7)

which implies that we have

k̃Ωr
1 = kΩr

1 + γ2ε1,

k̃Ωr
2 = kΩr

2 + αγ2
2ε2 + 2γ2

(
kΓ1γ2 + k

Ω′r
1 γ2 −mΩr

1

)
ε1 + o(ε).

(D.8)

Then, for Ω, we have

k̃Ω1 = kΩ1 + γ2ε1,

k̃Ω2 = kΩ2 + αγ2
2ε2 + 2γ2

(
kΓ1γ2 + k

Ω′r
1 γ2 −mΩr

1

)
ε1 + o(ε),

(D.9)

which implies

m̃Ω
1 = mΩ

1 + γ2ε1,

m̃Ω
2

= mΩ
2 + αγ2

2ε2 + 2γ2
(
kΓ1γ2 + k

Ω′r
1 γ2 −mΩr

1 + kΩ1
)
ε1 + o(ε).

(D.10)

Now, we compute ε1 and ε2. Equation (D.1) implies

k̃Γ1 = kΓ1 + δ1,

k̃Γ2 = kΓ2 + δ2 − 2mΓ
1δ1 + o(δ),

(D.11)

which is equivalent to

ε1 = δ1,

ε2 = δ2 − 2mΓ
1δ1.

(D.12)

Combining (D.10) and (D.12), we obtain (D.2).

Based on Lemma 8, we can obtain the following lemma,
where δ1 and δ2 are defined the same as in Lemma 8. The
proof is straightforward by applying the intermediate results
in the proofs of Propositions 4 and 5.

Lemma 9. For sufficiently high β, (D.2) is equivalent to

m̃Ω
1 = mΩ

1 + γ2δ1,

m̃Ω
2 = mΩ

2 + αγ2
2δ2 + 2γ2

(
αγ2 + γ1

)
δ1 + o(δ), when α ≤ 1,

(D.13)

or

m̃Ω
1 = mΩ

1 + γ2δ1,

m̃Ω
2 = mΩ

2 + αγ2
2δ2 + 2γ2

(
γ1 + γ2

)
δ1 + o(δ), when α ≥ 1.

(D.14)

For sufficiently small β, we have

m̃Ω
1 = mΩ

1 + γ2δ1,

m̃Ω
2 = mΩ

2 + αγ2
2δ2 + 2γ2

(
γ1 + βγ2

)
δ1 + o(δ).

(D.15)

Now, we can prove the proposition by computing explicit
expressions of δ1 and δ2.

Proof. We note that

E
[
λΓ
] = αE

[
βλFF

H

1 + βλFFH

]
, (D.16)

which has been addressed in (37).
When β is sufficiently small, we have

E
[

βλFF
H

1 + βλFFH

]

= βE
[
λFF

H (
1− βλFF

H )
+ o(β)

] = β
(

1− β

α
− β

α2

)
+ o(β),

(D.17)
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where we have applied the facts that E[λFF
H

] = 1/α and
E[(λFF

H
)2] = 1/α + 1/α2. This implies

δ1 = −β2
(

1 +
1
α

)
+ o(β). (D.18)

Now, we consider the case of large β, for which we have

E
[

βλFF
H

1 + βλFFH

]
= E

[
1

1/βλFFH | λFF
H
> 0
]

= 1− E
[

1
βλFFH | λFF

H
> 0
]

+ o
(

1
β

)
.

(D.19)

Therefore, we have

δ1 = −αE
[

1
βλFFH | λFF

H
> 0
]

+ o
(

1
β

)
. (D.20)

Then, we need to compute E[1/βλFF
H | λFFH

> 0]. An
existing result for an m × n (m > n) large random matrix
X having independent elements and unit-norm columns is
[26]

E
[

1
λXHX

]
= 1

1− n/m
. (D.21)

We apply (D.21) to (D.20). When α < 1 (M ≤ K), all
λFF

H
> 0 almost surely. Therefore

E
[

1
βλFFH | λFF

H
> 0
]

= E
[

1
βλFFH

]
= E

[
α

βλF̂H F̂

]
= α

βα(1− α)
,

(D.22)

where F̂ � √
αFH is a K ×M matrix and FFH = (1/α)F̂

H
F̂.

This is equivalent to

δ1 = − α2

β(1− α)
+ o
(

1
β

)
. (D.23)

When α > 1 (M > K), we have

P
(
λFF

H
> 0
) = 1

α
. (D.24)

Note that FHF is of full rank when α > 1. Then we have

E
[

1
βλFFH | λFF

H
> 0
]

= 1
α
E
[

1
βλFHF

]
= 1

αβ

1
1− 1/α

= 1
β(α− 1)

,
(D.25)

which implies

δ1 = − α

β(α− 1)
+ o
(

1
β

)
. (D.26)

It is easy to verify that δ2 = o(β2) for small β and δ2 =
o(1/β) for large β. This concludes the proof.
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