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An algorithm based on space fast time adaptive processing to estimate the physical location of an interference source closely asso-
ciated with a physical object and enhancing the detection performance against that object using a phased array radar is presented.
Conventional direction finding techniques can estimate all the signals and their associated multipaths usually in a single spectrum.
However, none of the techniques are currently able to identify direct path (source direction of interest) and its associated multipath
individually. Without this knowledge, we are not in a position to achieve an estimation of the physical location of the interference
source via ray tracing. The identification of the physical location of an interference source has become an important issue for some
radar applications. The proposed technique identifies all the terrain bounced interference paths associated with the source of inter-
est only (main lobe interferer). This is achieved via the introduction of a postprocessor known as the terrain scattered interference
(TSI) finder.
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1. INTRODUCTION

The issue of source localization has been discussed in the lit-
erature widely by mainly referring to the estimation of source
powers, bearings, and associated multipaths. By sources we
mean electromagnetic sources that emit random signals,
which can be considered as interferers in communication or
radar applications. Some of the conventional techniques that
can be used to estimate the signal direction and its associated
multipaths include MUSIC [1], spatially smoothed MUSIC
[2, 3], maximum likelihood methods (MLM) [4], and esti-
mation of signal parameters via rotational invariance tech-
nique (ESPIRIT) [5]. All these techniques use the array’s spa-
tial covariance matrix to estimate the direction of arrivals
(DOAs), some of which are direct emissions and others are
multipath bounces off various objects including the ground
or sea surface. For example, the MLM estimator is capable
of estimating all the bearings and the associated multipaths.
However, none of the techniques are able to identify each
source and its associated multipaths when there are multiple
sources and multipaths. If we are able to identify each source
and its associated multipath, then we will be able to use the

ray tracing to locate the position of each offending source. In
many applications, it is sufficient to estimate the direction of
an interferer and place a null in the direction of the source
to retain the performance of the system; however, there are a
number of scenarios where the interference is closely associ-
ated with an object that we wish to detect and characterize; in
which case, we need to localize and suppress the interference
and enhance our ability to detect and characterize the object
of interest.

The objective of this study is to present a technique based
on the space fast time covariance matrix to locate the mul-
tipath arrival or, in radar applications, the terrain scattered
interference (TSI) related to each source of interest and to
use this information to estimate the location of the offend-
ing source. In earlier work [6], a space fast time domain
TSI finder was introduced to determine the formation of
an efficient space fast time adaptive processor which would
efficiently null the main lobe interferer and detect a target
which shares the same direction of arrival with the interfer-
ence source. The TSI finder is able to identify the associated
multipath arrivals with each source of interest (once the di-
rection of the source is identified).
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In this paper, we briefly discuss the available techniques
for identifying the DOA of sources. The main body of the
work concentrates on the application of the TSI finders for
identifying the physical location of the source of interest.
First, we study the TSI finder in detail for its processing gain
properties, which has not been discussed earlier [6]. Fur-
thermore, we introduce a new angle domain TSI finder that
works in conjunction with the lag domain TSI finder as a
postprocessor. These two processors can lead to the physical
location of the source of interest.

Section 2 formulates the multichannel radar model with
several interference sources and Section 3 briefly discusses
some appropriate direction finding techniques including the
recently introduced super gain beamformer (SGB) [7]. It
is important to note that MUSIC and ESPRIT also present
potential processing techniques applicable to this problem,
but these methods consume considerably more computation
power and require additional processing to extract all of the
information of interest. The rest of the paper assumes the re-
ceiver processing has clearly identified the direction of arrival
of the offending source. Under this assumption, in Sections
4 and 5 we introduce the TSI finder in the lag and angle do-
mains and analyse them in detail. Section 6 introduces the
necessary formulas for estimating the location of the inter-
ferer source using TSI. Section 7 illustrates some simulated
examples.

2. FORMULATION

Suppose an N-channel airborne radar whose N × 1 steering
manifold is represented by s(ϕ, θ), where ϕ is the azimuth
angle and θ is the elevation angle, transmits a single pulse
where s(ϕ, θ)Hs(ϕ, θ) = N , and the superscript H denotes
the Hermitian transpose. For the range gate r (r is also the
fast time scale or an instant of sampling in fast time), N × 1
measured signal x(r) can be written as

x(r) = j1(r)s
(
ϕ1, θ1

)
+ j2(r)s

(
ϕ2, θ2

)

+
a1∑

m=1

β1,m j1
(
r − n1,m

)
s
(
ϕ1,m, θ1,m

)

+
a2∑

m=1

β2,m j2
(
r − n2,m

)
s
(
ϕ2,m, θ2,m

)
+ ε,

(1)

where j1(r), j2(r) represent a series of complex random
amplitudes corresponding to two far field sources, with
the directions of arrival pairs, (ϕ1, θ1) and (ϕ2, θ2), respec-
tively. The third term represents the terrain scattered in-
terference (TSI) paths of the first source with time lags
(path lags) n1,1,n1,2,n1,3, . . . ,n1,a1 , the scattering coefficients
|β1,m|2 < 1, m = 1, 2, . . . , a1, and the associated direction
of arrival pairs (ϕ1,m, θ1,m) (m = 1, 2, . . . , a1). The fourth
term is the TSI from the second source with path delays
n2,1,n2,2,n2,3, . . . ,n2,a2 , the scattering coefficients |β2,m|2 < 1,
m = 1, 2, . . . , a2, and the associated direction of arrivals
(ϕ2,m, θ2,m) (m = 1, 2, . . . , a2). More sources and multiple
TSI paths from each source are accepted in general, but for
the sake of brevity, we are restricting this paper to one of
each, and ε represents the N × 1 white noise component.

In this study, we consider the clutter-free case (in practice,
this can be achieved in many ways, by exploiting a trans-
mission silence, by using Doppler to suppress the clutter,
or by shaping the transmit beam). Furthermore, we assume
ρ2
k = E{| jk(r)|2} (k = 1, 2, . . . ) are the power levels of each

source and |βk,m|2ρ2
k (m = 1, 2, . . . ) represent the TSI power

levels associated with each TSI path from the kth source,
where E{· · · } denotes the expectation operator over the fast
time samples. Throughout the analysis we assume that we are
interested only in the source powers (as offending sources)
that are above the channel noise power, that is, Jk = ρ2

k/σ
2
n >

1, k = 1, 2, . . . , E{εεH} = σ2
nIN , where Jk is the interferer

source power to noise power ratio per channel, σ2
n is the white

noise power present in any channel and IN is the unit iden-
tity matrix. Without loss of generality, we use the notation s1

and s2 to represent s(ϕ1, θ1) and s(ϕ2, θ2), respectively, but
the steering vectors associated with TSI arrivals are repre-
sented by two subscript notation s1,m = s(ϕ1,m, θ1,m)(m =
1, 2, . . . , a1), s2,m = s(ϕ2,m, θ2,m)(m = 1, 2, . . . , a2), and so
forth. Furthermore, it is assumed that E{ jk(r+l) j∗k (r+m)} =
ρ2
kδ(l−m) (k = 1, 2, . . . ), where∗ denotes the complex con-

jugate operation. This last assumption restricts the applica-
tion of this theory to noise sources that are essentially con-
tinuous over the period of examination.

In general, the first objective would be to identify the
source directions of high significance to the radar systems
performance, which are identified as Jk = ρ2

k/σ
2
n > 1. Choices

for estimating the direction of arrival using the array’s mea-
sured spatial covariance matrix are diverse as discussed ear-
lier. The most commonly used beamformer for estimating
the number of sources and the power levels in a single spec-
trum is the MPDR [8]. This approach optimizes the power
output of the array subject to a linear constraint and is ap-
plicable to arbitrary array geometries and achieves signal to
noise gain of N at the output, using N sensors. Other compu-
tationally intensive super resolution direction finding tech-
niques such as the MUSIC, ESPRIT, or multidimensional op-
timization techniques based on the MLM estimator are suit-
able for locating the direction of arrival of signals, but require
further postprocessing to estimate the source power levels.

This study proposes the recently introduced [7] superior
version of the MPDR estimator to achieve an upper limit of
N2 processing gain in noise. Furthermore, the new estimator
is able to detect extremely weak signals if a large number of
samples are available which is particularly applicable to air-
borne radar.

3. DIRECTION OF ARRIVAL ESTIMATION

3.1. MPDR approach

The MPDR [1] power spectrum obtained by minimizing
wH

1 Rxw1 subject to the constraint wH
1 s(ϕ, θ) = 1 is given by

Pm(ϕ, θ) = w1(ϕ, θ)HRxw1(ϕ, θ)

= (s(ϕ, θ)HR−1
x s(ϕ, θ)

)−1
,

(2)
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where

w1(ϕ·θ) = R−1
x s(ϕ, θ)

s(ϕ, θ)HR−1
x s(ϕ, θ)

(3)

and Rx = E{x(r)x(r)H}.
To understand the concept of the processing gain in

noise, let us assume a single source in the direction (ϕ, θ) is
present. In this case, we have Rx = ρ2

1s(ϕ1, θ1)s(ϕ1, θ1)H +
σ2
nIN . The inverse of Rx is

R−1
x = 1

σ2
n

[
IN −

s
(
ϕ1, θ1

)
s
(
ϕ1, θ1

)H

N + σ2
n/ρ

2
1

]
. (4)

The MPDR power spectrum is given by

PM(ϕ, θ) = ρ2
1N + σ2

n

ρ2
1

(
N2 − ∣∣sHs1|2

)
/σ2

n + N
, (5)

where s = s(ϕ, θ) and s1 = s(ϕ1, θ1). This can be rewritten
(noting that for (ϕ, θ) /= (ϕ1, θ1), sHs1 ≈ 0) as

Pm(ϕ, θ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ2
1 +

σ2
n

N
for (ϕ, θ) = (ϕ1, θ1

)
,

σ2
n

N
for (ϕ, θ) /=

(
ϕ1, θ1

)
.

(6)

The output signal to residual noise ratio (residual interfer-
ence in the case of multiple sources) is

PM
(
ϕ1, θ1

)

PM
(
ϕ, θ

)
(ϕ,θ) /= (ϕ1,θ1)

= ρ2
1N

σ2
n

+ 1 ≈ Nρ2
1

σ2
n

(7)

which is approximately N times the input signal to interfer-
ence plus noise ratio (SINRin). Note. (ϕ, θ) /= (ϕ1, θ1) really
means that the value of (ϕ, θ) is not in the vicinity of the
point (ϕ1, θ1) or any other source direction. This notation
will be used throughout this study as a way of indicating the
averaged power output corresponding to a direction with no
associated source power. This can be considered as the aver-
aged output power due to the input noise.

This improvement factor (N) can generally be defined as
the processing gain factor. In theory, the processing gain can
take higher values as the number of sources increases. For
example, if P1 represents the total input power due to other
sources, SINRin = ρ2

1/(σ
2
n+P1). If all of them are nulled while

maintaining wHs = 1, then SINRout ≈ ρ2
1/(σ

2
out), where σ2

out
is the output noise power. This leads to the processing gain:
SINRout/SINRin = G × INR, where G = σ2

n/σ
2
out is the pro-

cessing gain in noise (≈N when a small number of interfer-
ing sources are present), and INR = (σ2

n + P1)/σ2
n is the total

interference to noise at the input (≥1).

3.2. Super gain beam former (SGB)

Consider the SGB [7] spectrum |Ps(ϕ, θ)| where

Ps(ϕ, θ) = 1
N2

N∑

k=1

(
uH
k s(ϕ, θ)

rHk s(ϕ, θ)
− 1

uH
k rk

)
. (8)

uk is an N × 1 column vector of zeros except unit value at
the kth position, and rk is the kth column of R−1

x . For a sin-
gle source Rx = ρ2

1s(ϕ1, θ1)s(ϕ1, θ1)H + Rn. In order to gain
some insight in to the behaviour of (8), we break the uniform
noise assumption and assume Rn = diag(σ2

1, σ2
2, . . . , σ2

N ) is
the noise only spatial covariance matrix. The exact inver-
sion of Rx is given by R−1

x = R−1
n − βR−1

n s1sH1 R−1
n , where

β = (Δ + 1/ρ2
1)−1 and Δ =

∑ N

j=1
σ−2
j . Furthermore rk =

R−1
x uk = σ−2

k (IN − βR−1
n s1sH1 )uk, and for (ϕ, θ) = (ϕ1, θ1) we

have sH1 R−1
n s = Δ and sH1 R−1

n s ≈ 0 whenever (ϕ, θ) /= (ϕ1, θ1)
(in fact, when (ϕ, θ) point is furthest away from (ϕ1, θ1)).
Therefore, for a single source, assuming ρ2

1 /= 0 we have

Ps(ϕ, θ)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρ2
1

N2

N∑

k=1

(
σ2
kΔ−1

)(
ρ2

1Δ+1
)

ρ2
1Δ+1−ρ2

1/σ
2
k

for (ϕ, θ)=(ϕ1, θ1
)
,

ρ2
1

N2

N∑

k=1

−1
ρ2

1Δ+1−ρ2
1/σ

2
k

for (ϕ, θ) /=
(
ϕ1, θ1

)
.

(9)

Now if we restore the uniform noise assumption, σ2
k =

σ2
n (k = 1, 2, . . . ,N), we have

Ps(ϕ, θ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ2
1 +

σ2
n

G
for (ϕ, θ) = (ϕ1, θ1

)
,

−σ2
n

G
for (ϕ, θ) /=

(
ϕ1, θ1

)
,

(10)

where G = N(N−1)+Nσ2
n/ρ

2
1 ≈ N2 is the processing gain of

|Ps(ϕ, θ)|. This also suggests that for extremely weak signals,
that is, as p→0, the processing gain tends to infinity [7]. In
fact this is not the case, and the gain will be determined by the
number of samples averaged to produce the covariance ma-
trix. The SGB estimator is clearly able to identify the source
signals as well as weak TSI signals in a single spectrum with a
very clear margin as discussed in [7]. The price to pay to get a
very low output noise level is a large sample support (>10N)
for SGB. The angular resolution is only slightly better than
the MPDR solution. The main advantage of SGB spectrum is
its very low output noise floor level which enables us to de-
tect weak signals. Attempting to apply higher processing gain
algorithms, such as SGB(N3) would require more than 100N
sample support and this would not be practical for radar ap-
plications. Hence, direction finding is a matured area and the
intention of this section is to highlight the fact that it is not
possible to relate each source with its associated TSI path us-
ing available techniques. This task will be carried out using
the TSI finders.

4. TSI FINDER (LAG DOMAIN)

This section looks at a technique that will identify each
source (given the source direction) and its associated TSI ar-
rival (if present). Here we assume that the radar has been able
to identify the DOA of an offending source (i.e., ρ2

k/σ
2
n > 1)

and we would like to identify all its associated TSI paths. The
formal use of the TSI paths or the interference mainlobe mul-
tipaths is very well known in the literature under the topic
mainlobe jammer nulling, for example [9–11]. However the
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use of the TSI path in this study is to locate the noise source.
The array’s N × N spatial covariance matrix has the follow-
ing structure (for the case where two sources and one TSI off
each source is present):

Rx = ρ2
1s1sH1 + ρ2

2s2sH2 + ρ2
1

∣
∣β1,1

∣
∣2

s1,1sH1,1

+ ρ2
2

∣
∣β2,1

∣
∣2

s2,1sH2,1 + σ2
nIN .

(11)

Suppose now we compute the space fast time covariance
R2 of size 2N × 2N corresponding to an arbitrarily chosen
fast time lag n; then we have

R2 = E
{

Xn(r)Xn(r)H
} =

(
Rx ON×N

ON×N Rx

)

for n /= n1,m or n2,m m = 1, 2, . . . ,

(12)

where Xn(r) = (x(r)T , x(r + n)T)
T

is termed as the 2N × 1
space fast time snapshot for the selected lag n and ON×N is the
N ×N matrix with zero entries. However, if n = n1,m or n2,m

for some m, then we have (say n = n1,1 as an example)

Xn1 (r) =
(

x(r)
x
(
r + n1,1

)

)

= j1(r)

(
s1

β1,1s1,1

)

+ j2(r)

(
s2

oN×1

)

+ β1,1 j1
(
r − n1,1

)
(

s1,1

oN×1

)

+ β2,1 j2
(
r − n2,1

)
(

s2,1

oN×1

)

+ j1
(
r + n1,1

)
(

oN×1

s1

)

+ j2
(
r + n1,1

)
(

oN×1

s2

)

+ β2,1 j2
(
r − n2,1 + n1,1

)
(

oN×1

s2,1

)

+

(
ε1

ε2

)

,

(13)

where ε1 and ε2 represent two independent measurements of
the white noise component, and oN×1 is the N × 1 column
of zeros. In this case, the space fast time covariance matrix is
given by

R2 =
(

Rx QH

Q Rx

)

, (14)

where Q = ρ2β1,1s1,1sH1 .
It is important to note that we assume n1,m (m = 1, 2, . . . )

represent digitized sample values of the fast time variable r
and the reflected path is an integer valued delay of the di-
rect path. If this assumption is not satisfied, one would not
achieve a perfect decorrelation, resulting in a nonzero off di-
agonal term in (12). In other words, a clear distinction be-
tween (12) and (14) will not be possible. The existence of the
delayed value of the term Q can be made equal to zero or not
be suitably choosing a delay value for n1,1 when forming the
space time covariance matrix. However, Q is a matrix and,
as a result one may tend to consider its determinant value
in order to differentiate the two cases in (12) and (14). After
extensive analysis, one may find the signal processing gain

is not acceptable for this choice. More physically meaningful
measure would be to consider its contribution to the overall
processor output power (when minimized with respect to the
look direction constraint). Depending on whether the power
contribution is zero or not, we have the situation described
in (12) or (14) clearly identified under the above assump-
tions. Therefore, the scaled measure was introduced as the
TSI finder [6], which is a function of the chosen delay value,
nmust represent the scaled version of the contribution due to
the presence of Q at the total output power. Even thought one
can come up with many variations of the TSI finder based on
the same principle, one expressed in this study is tested and
verified to have high signal processing gain as seen later. Now
suppose the direction of arrival of the interference source to
be (ϕ1, θ1), the first objective is to find all its associated path
delays, which may be of low power and may not have been
identified by the usual direction finders. This is carried out
by the TSI finder in the lag domain by searching over all pos-
sible lag values while the look direction is fixed at the desired
source direction (ϕ1, θ1). This is given by the spectrum

Ts(n) =
{

1
Pout

(
sH1 R−1

x s1
) − 1

}
, (15)

where Pout = wHR2w, w is the 2N × 1 space fast time
weights vector which minimizes the power while looking into
the direction of the source of interest subject to the con-

straints: wHsA = 1 and wHsB = 0, where sA = (sT1 , oT
N×1)

T
,

sB = (oT
N×1, sT1 )

T
. The solution w for each lag is given by

w = λR−1
2 sA+μR−1

2 sB where the parameters λ and μ are given
by (one may apply Lagrange multiplier technique and opti-
mize the function Φ(w) = wHR2w + β(wHsA − 1) + ρwHsB
with respect to w, where β, ρ are arbitrary parameters, as a
result, ∂Φ/∂w = 0 gives us w = λR−1

2 sA + μR−1
2 sB)

⎛

⎝
sHA R−1

2 sA sHB R−1
2 sA

sHA R−1
2 sB sHB R−1

2 sB

⎞

⎠

(
λ∗

μ∗

)

=
(

1
0

)

. (16)

As the search function Ts(n) scans through all potential
lag values, one is able to identify the points at which a corre-
sponding delayed version of the look direction signal is en-
countered as seen in the next section.

Denoting Rx = ρ2
1s1sH1 + R1, we have

R1 = ρ2
2s2sH2 +

∣
∣β1,1

∣
∣2
ρ2

1s1,1sH1,1 +
∣
∣β2,1

∣
∣2
ρ2

2s2,1sH2,1 + σ2
nIN .

(17)

4.1. Analysis of the TSI finder

Now, for the sake of convenience, we represent the 2N × 1

space fast time weights vector as wT = (wT
1 , wT

2 )
T

, where the
N × 1 vector w1 refers to the first N components of w and
the rest is represented by the N × 1 vector w2. First suppose
the chosen lag n is not equal to any of the values n1, j ( j =
1, 2, . . . ). In this case, substituting (12) and (17) in Pout =
wHR2w we have

Pout = wH
1 R1w1 + wH

2 R1w2 + ρ2
1wH

1 s1sH1 w1 + ρ2
1wH

2 s1sH1 w2.
(18)
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The minimization of power subject to the same constraints,
wHsA = 1 and wHsB = 0 (i.e., wH

1 s1 = 1 and wH
2 s1 = 0),

leads to the following solution:

w1 = R−1
1 s1

sH1 R−1
1 s1

, w2 = oN×1. (19)

In this case, we have the following expression for the space
fast time processor output power:

Pout=wHR2w=wH
1 R1w1 +ρ2

1wH
1 s1sH1 w1=

(
sH1 R−1

1 s1
)−1

+ρ2
1.

(20)

Substituting this expression into (15) leads to

Ts(n)n /=nk =
(

sH1 R−1
x s1

)−1

(
sH1 R−1

1 s1
)−1

+ ρ2
1

− 1 ≡ 0 (21)

(see Appendix A for a proof of the result (sH1 R−1
x s1)

−1 =
(sH1 R−1

1 s1)
−1

+ρ2
1). It was noticed that w2 = 0N×1 if and only if

Q = 0N×N . As a result, we would consider the scaled quantity
(Pout−wH

1 R1w1−ρ2
1wH

1 s1sH1 w1)/Pout which is a function of w2

only as a suitable TSI finder. Simplification of this quantity
using the look direction constraints together with the results
in Appendix A and (19) leads to (15).

The most important fact here is that we do not have to
assume the simple case of a main lobe interferer and one TSI
path to prove that this quantity is zero. The TSI finder spec-
trum has the following properties, as we look into the direc-
tion (ϕ1, θ1):

Ts(n) ≈
⎧
⎨

⎩
P−1

out

(
sH1 R−1

x s1
)−1 − 1, n = n1, j for some j,

0, n /= n1, j .

(22)

The TSI estimator indicates infinite processing gain when in-
verted (at least in theory), and is able to detect extremely
small TSI power. In the next section we would like to further
investigate the properties of the estimator and its processing
gain.

The output power at the processor Pout (for n = n1,1) is
given by (using (14))

Pout = wHR2w = wH
1 R1w1 + wH

2 R1w2

+ ρ2wH
1 s1sH1 w1 + ρ2

1wH
2 s1sH1 w2

+ ρ2
1β
∗
1,1wH

1 s1sH1,1w2 + ρ2
1β1,1wH

2 s1,1sH1 w1.

(23)

When the constraints wH
1 s1 = 1 and wH

2 s1 = 0 are imposed,
we have

Pout = wHR2w = wH
1 R1w1 + wH

2 R1w2

+ ρ2
1 + ρ2

1

(
β∗1,1sH1,1w2 + β1,1wH

2 s1,1
)
.

(24)

The original power minimization problem can now be
broken into two independent minimization problems as fol-

lows.

(1) Minimize wH
1 R1w1 subject to the constraint wH

1 s1 = 1.
(2) Minimize wH

2 R1w2 + ρ2
1 + ρ2

1(β∗1,1sH1,1w2 + β1,1wH
2 s1,1)

subject to wH
2 s1 = 0.

The solution can be expressed as

w1 = R−1
1 s1

sH1 R−1
1 s1

, (25)

w2 = −β1,1ρ
2
1R−1

1 s1,1 + β1,1ρ
2
1

(
sH1 R−1

1 s1,1

sH1 R−1
1 s1

)
R−1

1 s1. (26)

The above representation of the solution cannot be used to
compute the space-time weights vector w due to the fact that
the quantities involved are not measurable. Instead, the re-
sult in (16) is implemented to evaluate w as described in the
previous section.

Substituting R1=ρ2
2s2sH2 +ρ2

1|β1,1|2s1,1sH1,1+ρ
2
2|β2,1|2s2,1sH2,1+

σ2
nIN into (24) and noting that ρ2

1|β1,1|2wH
2 s1,1sH1,1w2 + ρ2

1 +

ρ2
1(β∗1,1sH1,1w2 + β1,1wH

2 s1,1) = ρ2
1|1 + β1,1wH

2 s1,1|2, we have the
following expression for the output power:

Pout = ρ2
1

∣
∣β1,1

∣
∣2∣∣wH

1 s1,1
∣
∣2

+ ρ2
1

∣
∣1 + β1,1wH

2 s1,1
∣
∣2

+ wH
1 R0w1 + wH

2 R0w2 + σ2
n

(
wH

1 w1 + wH
2 w2

)
,

(27)

where R0 = ρ2
2s2sH2 + |β2|2ρ2

2s2,1sH2,1 is the output energy due
to any second source and associated multipaths present at
the input. It should be noted that this component of the
output also contains any output energy due to any second
(unmatched) multipath of the look direction source (e.g.,
|β1,2|2s1,2sH1,2 terms). The most general form would be

R0 =
a1∑

j=2

ρ2
1

∣
∣β1, j

∣
∣2

s1, jsH1, j +
q∑

k=2

ρ2
ksks2

k

+
q∑

k=2

ak∑

j=1

ρ2
k

∣
∣βk, j

∣
∣2

sk, jsHk, j ,

(28)

where q is the number of sources, and ak is the number of TSI
paths available for the kth source. The expression for Pout in
(27) clearly indicates that the best w1 that (which has N de-
grees of freedom) would minimize Pout is likely to be orthog-
onal to s1,1, that is, |wHs1,1| ≈ 0, and furthermore it would

be attempting to satisfy |1 + β1,1wH
2 s1,1|2 ≈ 0 while being or-

thogonal to all other signals present in R0.
Note that

wH
1 R0w1 =

a1∑

j=2

ρ2
1

∣∣β1, j

∣∣2∣∣wH
1 s1, j

∣∣2
+

q∑

k=2

ρ2
k

∣∣wH
1 sk

∣∣2

+
q∑

k=2

ak∑

j=1

ρ2
k

∣
∣βk, j

∣
∣2∣∣wH

1 sk, j
∣
∣2

(29)

and a similar expression holds for wH
2 Rw2.

Any remaining degrees of freedom would be used to min-
imize the contribution due to the white noise component. In
order to investigate the properties of the solution for w, let us
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assume we have only a look direction signal and its TSI path,
in which case we have R0 = ON×N and

Pout = ρ2
1

∣
∣β1,1

∣
∣2∣∣wH

1 s1,1
∣
∣2

+ ρ2
1

∣
∣1 + β1,1wH

2 s1,1
∣
∣2

+ σ2
n

(
wH

1 w1 + wH
2 w2

)
.

(30)

In this case, R1 = |β1,1|2ρ2
1s1,1sH1,1 + σ2

nIN and the inverse of
which is is given by

R−1
1 = 1

σ2
n

[

IN −
(
ρ2

1

∣
∣β1,1

∣
∣2

s1,1sH1,1

)

(
σ2
n + N

∣
∣β1,1

∣
∣2
ρ2

1

)

]

. (31)

As a result, we have

R−1
1 s1 = 1

σ2
n

[

s1 −
(
ρ2

1

∣
∣β1,1

∣
∣2

s1,1sH1,1s1
)

(
σ2
n + N

∣
∣β1,1

∣
∣2
ρ2

1

)

]

, (32)

R−1
1 s1,1 = s1,1

(
σ2
n + N

∣
∣β1,1

∣
∣2
ρ2

1

) , (33)

sH1,1R−1
1 s1,1 = N

(
σ2
n + N

∣
∣β1,1

∣
∣2
ρ2

1

) , (34)

sH1,1R−1
1 s1 =

sH1,1s1
(
σ2
n + N

∣
∣β1,1

∣
∣2
ρ2

1

) . (35)

Furthermore, we adopt the notation J1 = J for the look di-
rection interferer to noise power and (for N|β1,1|2J� 1)

sH1 R−1
1 s1 = 1

σ2
n

[

N −
(
ρ2

1

∣
∣β1,1

∣
∣2∣∣sH1 s1,1

∣
∣2)

(
σ2
n + N

∣
∣β1,1

∣
∣2
ρ2

1

)

]

= N

σ2
n

[

1−
∣∣sH1 s1,1

∣∣2∣∣β1,1

∣∣2
J

N
(
1 + N

∣∣β1,1

∣∣2
J
)

]

≈ N

σ2
n

(
1−

∣
∣sH1 s1,1

∣
∣2

N2

)
≈ N

σ2
n
.

(36)

The assumption made in the last expression (i.e.,

|sH1 s1,1|2/N2 ≈ 0) is very accurate when the signals are not
closely spaced. This assumption cannot be verified analyti-
cally, it depends on the structure of the array, however, it can
be numerically verified for a commonly used linear equis-
paced array with half wavelength spacing. The other assump-
tion made throughout this study is that the look direction in-
terferer is above the noise floor (i.e., J > 1). In this case, we
need at least |β1,1|2 � 1/N (or equivalently N|β1,1|2J � 1)
in order to detect any TSI power as seen later. We will also
see that when |β1,1|2 is closer to the lower bound of 1/N we
do not achieve good processing gain to detect TSI unless J is
extremely large (but this case is not presented here).

Now, we would like to investigate the two cases |β1,1|2 �
1/N and |β1,1|2 � 1/N simultaneously.

The value of the expression (36) for |β1,1|2 � 1/N can be
simplified as follows:

sH1 R−1
1 s1 ≈ N

σ2
n

[

1−
∣
∣sH1 s1,1

∣
∣2∣∣β1,1

∣
∣2

J

N

]

≈ N

σ2
n

[
1−

∣
∣sH1 s1,1

∣
∣2(

N
∣
∣β1,1

∣
∣2)

J

N2

]
≈ N

σ2
n
.

(37)

Throughout the study, this case is taken to be equivalent to
N|β1,1|2J � 1 as well, because J is not assumed to take ex-

cessively large values for |β1,1|2 � 1/N . The investigation of

the signal processing gain for the case where |β1,1|2 � 1/N
and at the same time J is very large is outside of the scope of
this study.

Furthermore, applying the above formula and (33) in
(25), we can see that

∣
∣wH

1 s1,1
∣
∣2 =

∣
∣
∣
∣

sH1 R−1
1 s1,1

sH1 R−1
1 s1

∣
∣
∣
∣

2

=
∣
∣
∣
∣

sH1
sH1 R−1

1 s1
· s1,1
(
σ2
n + N

∣
∣β1,1

∣
∣2
ρ2

1

)

∣
∣
∣
∣

2

≈
(∣∣sH1 s1,1

∣
∣2
/N2

)

(
1 + N

∣
∣β1,1

∣
∣2

J
)2 ≈ 0.

(38)

This expression shows how closely we have achieved the
orthogonality requirement expected above. It is reasonable

to assume that wH
1 s1,1 ≈ 0 (or equivalently |sH1 s1,1|2/N2 ≈ 0)

for all possible positive values of N|β1,1|2. We may now in-
vestigate the second and third terms as the dominant terms
at the processor output in (30). The approximate expres-
sions for these two terms can be derived using (32)–(36) (see
Appendix B) as

∣
∣1 + β1,1wH

2 s1,1
∣
∣2 ≈

⎧
⎪⎪⎨

⎪⎪⎩

1
(
N
∣
∣β1,1

∣
∣2

J
)2 for N

∣∣β1,1

∣∣2
J � 1,

1− 2N
∣
∣β1,1

∣
∣2

J for N
∣
∣β1,1

∣
∣2

J � 1,

σ2
n‖w‖2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σ2
n

(
1
N

+
1

N
∣
∣β1,1

∣
∣2

)

for N
∣
∣β1,1

∣
∣2

J � 1,

σ2
n

(
1
N

+ N
∣
∣β1,1

∣
∣2

J2
)

for N
∣
∣β1,1

∣
∣2

J � 1.

(39)

Substituting (39) in (30), we can evaluate Pout/σ2
n as

Pout

σ2
n
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1
N

+
1

N
∣
∣β1,1

∣
∣2

)
+

1

N2
∣
∣β1,1

∣
∣4

J

for N
∣∣β1,1

∣∣2
J � 1,

1
N

+ J−N
∣
∣β1,1

∣
∣2

J2

for N
∣
∣β1,1

∣
∣2

J � 1

(40)

which becomes

Pout

σ2
n

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

=
N
∣∣β1,1

∣∣4
J + N

∣∣β1,1

∣∣2
J + 1

N2
∣∣β1,1

∣∣4
J

for N
∣
∣β1,1

∣
∣2

J � 1,

≈ 1
N

+ J for N
∣
∣β1,1

∣
∣2

J � 1.

(41)
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After substituting N|β1,1|4J + N|β1,1|2J + 1 ≈ N|β1,1|4J +

N|β1,1|2J in the above expression for the N|β1,1|2J� 1 case,
we have

σ2
n

Pout
≈

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

N
∣∣β1,1

∣∣2

1 +
∣∣β1,1

∣∣2 for N
∣
∣β1,1

∣
∣2

J � 1,

N

1 + NJ−N2
∣
∣β1,1

∣
∣2

J2
for N

∣∣β1,1

∣∣2
J � 1.

(42)

As seen later in the simulation section, the conclusions drawn
here do not change significantly when one or two sidelobe in-
terferers (other sources) are considered. The only difference
is that (30) will have additional terms due to side lobe inter-
ferers and other TSI paths. The added terms in (30) are of

the form ρ2
k|wH

1 sk|2 (k = 1, 2, . . . ) and they should satisfy the
orthogonality requirement in a very similar manner. By de-
noting the value of Ts(n) for n = n1,1 by Ts(n)n=n1,1

we can
use the result in (42) and the identity obtained in Appendix A
to further simplify (22) to show that

Ts
(
n
)
n=n1,1

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ρ2

1 +
(

sH1 R−1
1 s1

)−1) N
∣
∣β1,1

∣
∣2

σ2
n

(
1 +

∣
∣β1,1

∣
∣2) − 1,

N
∣∣β1,1

∣∣2
J � 1,

(
ρ2

1 +
(

sH1 R−1
1 s1

)−1)

× N

σ2
n

(
1 + NJ−N2

∣
∣β1,1

∣
∣2

J2
) − 1

N
∣
∣β1,1

∣
∣2

J � 1.
(43)

For the case of a small number of jammers and TSI paths,
we have shown that (sH1 R−1

1 s) ≈ N/σ2
n for N|β1,1|2J� 1 and

N|β1,1|2J� 1. As a result, we have for N|β1,1|2J� 1 that

Ts(n)n=n1,1
=
(
ρ2

1 +
σ2
n

N

) N
∣
∣β1,1

∣
∣2

σ2
n

(
1 +

∣
∣β1,1

∣
∣2) − 1

≈
N
∣
∣β1,1

∣
∣2

J− 1
(
1 +

∣
∣β1,1

∣
∣2) ≈ N

∣∣β1,1

∣∣2
J

(44)

and for N|β1,1|2J� 1 that

Ts(n)n=n1,1
=
(
ρ2

1 + σ2
n/N

)

Pout
− 1

= N
(
ρ2

1 + σ2
n/N

)

σ2
n

(
1 + NJ−N2

∣
∣β1,1

∣
∣2

J2
) − 1

≈
N2
∣∣β1,1

∣∣2
J2

(
1 + NJ

(
1−N

∣
∣β1,1

∣
∣2

J
))

≈
N2
∣
∣β1,1

∣
∣2

J2

1 + NJ
≈ N

∣
∣β1,1

∣
∣2

J.

(45)

The TSI finder spectrum has the following properties:

Ts(n) =
⎧
⎨

⎩
N
∣
∣β1,1

∣
∣2

J for n = n1,1,

0 for n /= n1,1.
(46)

In order to quantify the processing gain of this spectrum
one has to replace the zero figure with a quantity which
would represent the average output interference level present
in the spectrum whenever a lag mismatch occurs. Replac-
ing QH = ON×N in (12) by an approximate figure (when
n /= n1,1) would give rise to a small nonzero value. This figure
can be shown to be of the order N/MJ (written as O(N/MJ))
where M is the number of samples used in covariance aver-
aging. As a result we can establish processing gain as

Ts(n)n=n1,1

Ts(n)n /=n1,1

≈
N
∣∣β1,1

∣∣2
J

O(N/MJ)
≈ O

(
M
∣
∣β1,1

∣
∣2

J2) (47)

(see Appendix C for the proof). This equation allows us to
establish the following lemma.

Lemma 1. In order to detect very small TSI power level of the
order 1/N (i.e., |β1,1|2 ≈ 1/N while satisfying J > 1), with
a processing gain of approximately 10 dB (value at peak point
when a match occurs/the average output level when amismatch
occurs), one needs to average about 10N (=M) samples at the
covariance matrix. However, if J is very large (i.e.,� 1) we can
use fewer samples.

For example if J = 10 dB, then any value of N(> M) can
produce 20 dB processing gain at the spectrum for TSI sig-
nals of order |β1,1|2 ≈ 1/N . In fact, simulations generally
show much better processing gains in the TSI estimator as
discussed later.

5. TSI FINDER IN ANGLE DOMAIN

The fundamental assumption we make here is that given the
interferer direction of arrival (ϕ1, θ1), one is able to accu-
rately identify at least one TSI path and its associated fast
time lag (= n1,1). The remaining issue we need to resolve
here is to estimate the direction of arrival of this particu-
lar TSI path (i.e., (ϕ1,1, θ1,1)) in the azimuth/elevation plane.

This is carried out by the search function ‖F(ϕ, θ)‖−2 =
1/F(ϕ, θ)HF(ϕ, θ), where

F(ϕ, θ) = NQs1
(
ϕ1, θ1

)

s(ϕ, θ)HQs1
(
ϕ1, θ1

) − s(ϕ, θ), (48)

QH = E
{

x(r)x
(
r + n1,1

)H}

= ρ2
1β1,1s1sH1,1

(
or Q = ρ2

1β1,1s1,1sH1
)
.

(49)

At this stage of postprocessing, the existence of β1,1( /= 0) has
been guaranteed, but the value of this reflectivity constant
maybe anywhere between zero and 1 (or higher).

The reason for choosing (48) as a suitable spectrum is
as follows: if we manipulate the value of Q to avoid the
unknown quantities β1,1 and ρ2

1 we can see the fact that
NQs1/sHQs1 = Ns1,1/(sHs1,1) where s is a general search vec-
tor to represent the array manifold. This quantify approaches
s1,1 as s approaches s1,1. Since Q is guaranteed to be nonzero
due to the known presence of the TSI path, we can now es-
timate the steering value of the TSI direction. The best way
to achieve the desired result is to set up a search function by
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inverting the difference function (NQs1/sHQs1 − s). Such a
search function will face a singularity at the point of interest
which will generally result in a good signal processing gain as
seen later.

Now we would like to include the next highest order term
for Q as (using (C.3))

QH = ρ2
1β1,1s1sH1,1 + O

(
ρ2

1s1sH1 /
√
M
)

(50)

or we may write this as

Q = ρ2
1β1,1s1,1sH1 + A

(
ρ2

1s1sH1 /
√
M
)
, (51)

where A is a small scalar which is only used in identifying
the nature of the spectrum in (48) whenever β1,1 is close to

zero (i.e., N|β1,1|2 � 1) and at all other times we ignore its
presence.

Now we have

NQs1

sHQs1
=

N2β1,1ρ
2
1s1,1 + AN2ρ2

1s1/
√
M

Nβ1,1ρ
2
1sHs1,1 + ANρ2

1sHs1/
√
M

, (52)

‖F(ϕ, θ)‖−2

=
∣∣β1,1sHs1,1 +AsHs1/

√
M
∣∣2

∥
∥β1,1

[
Ns1,1−

(
sHs1,1

)
s
]
+
[
(A/
√
M)
(
Ns1−

(
sHs1

)
s
)]∥∥2 .

(53)

For N|β1,1|2 � 1, we have the following generic pattern:

‖F(ϕ, θ)‖2 =
∣∣sHs1,1

∣∣2

∥
∥Ns1,1 −

(
sHs1,1

)
s
∥
∥2 (54)

which has a singularity when (ϕ, θ) = (ϕ1,1, θ1,1) (i.e., s =
s1,1) which is the direction of arrival of the TSI path. This
pattern is independent of the radar parameters and its first
side lobe occurs below −35 dB (for 16× 16 planer array) the
pattern is illustrated in Figure 1. Here in general we are in-
terested only in the case N|β1,1|2 � 1, but if β1,1 is negligibly
small and A is of dominant value then, we would obtain the
spectrum (letting β1,1→0 in (53))

‖F(ϕ, θ)‖2 =
∣
∣sHs1

∣
∣2

∥
∥Ns1 − s

(
sHs1

)∥∥2 . (55)

This is the same pattern as before but the peak is at
(ϕ, θ) = (ϕ1, θ1) (corresponds to the look direction of the
interferer). This sudden shift of the peak (singularity) occurs
when β1,1 is incredibly small. We may now represent the two
cases as

∥
∥F(ϕ, θ)

∥
∥2=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∣∣sHs1,1
∣∣2

∥
∥Ns1,1−

(
sHs1,1

)
s
∥
∥2 for β1,1 /=0,

∣
∣sHs1

∣
∣2

∥∥Ns1−s
(

sHs1
)∥∥2 for β1,1=0 or n /=n1,1.

(56)

The case for β1,1 = 0 is not relevant at this stage of post-
processing since this is the case where TSI was nonexistent
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Figure 1: Theoretical pattern for the TSI finder (elevation, θ =
−5◦) in the angle domain where the angle of arrival is 10◦ in az-
imuth (16 × 16 planar equispaced array with half wavelength ele-
ment spacing in azimuth and elevation).
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Figure 2: Theoretical pattern for the TSI finder (azimuth, ϕ = 10◦)
in the angle domain where the angle of arrival is −5◦ in azimuth.
(16× 16 planar equispaced array with half wavelength spacing).

or negligible, but it can be shown that any lag mismatch is
equivalent to the case β1,1 = 0 as well. Figures 1 and 2 illus-
trate horizontal and vertical cuts of the pattern in (55) for a
two dimensional 16 × 16 element linear equispaced rectan-
gular array with half wavelength spacing when the angle of
arrival of the TSI path is (ϕ1,1, θ1,1) = (10◦,−5◦). The signal
processing gain of this processor approaches infinity due to
the fact that the peak point is a singularity. In practice, this
is not the case. In order to get a feel for the value of the peak
point, we may use the following argument. Suppose (ϕ, θ)
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is approaching (ϕ1,1, θ1,1), and using (Ns1,1 − (sHs1,1)s)→0,
then in (53) we have

∥
∥F(ϕ, θ)

∥
∥2

=
∣∣β1,1sHs1,1

∣∣2

∥
∥[(A/

√
M)
(
Ns1−

(
sHs1

)
s
)]∥∥2 ≈

∣
∣β1,1sHs1,1

∣
∣2

A2(1/M)
∥
∥(Ns1−

(
sHs1

)
s
)∥∥2

≈
M
∣
∣β1,1

∣
∣2

A2
∥
∥(s1 −

(
sHs1

)
s/N

)∥∥2 ≈
M
∣
∣β1,1

∣
∣2

A2
∥
∥s1
∥
∥2 ≈

M
∣
∣β1,1

∣
∣2

A2N

(57)

(we have replaced sHs1,1 by N (as sH→s1,1) to obtain the first
term in the second row of the above equation and further
assumed that (sHs1)s/N→(sH1,1s1)s1,1/N which is a very small
contribution compared to s1). Consider the case where 10N
or more data points are averaged in forming the covariance
matrix; we have a rough figure of 10|β1,1|2/A2. When we as-
sume the smallest expected value of detecting the TSI as indi-
cated earlier, as |β1,1|2 ≈ 1/N , then the peak value of the spec-
trum is of the order 10/(NA2). Now for an array of around 10
elements or more we have 10/A2 which is still expected to be
of greater than unity since A is generally expected to be be-
tween 0 and 1. The peak point occurs at a much higher point
than at 0 dB point on the pattern, while the first side lobe
occurs below −35 dB thus producing a very good ability to
detect the presence of the signal.

6. SOURCE LOCATION

The diagram in Figure 3 illustrates the geometry of the sce-
nario related to the selected TSI path of the mainlobe in-
terference only. The unit vector pointing from the array to
source is denoted by ks and the unit vector representing the
TSI path is kt (only the section of the path from array to re-
flection point on the ground). The unit vector kh points to-
wards the ground vertically below the platform. The distance
form source to array is D, the distance form ground reflec-
tion point (of the TSI path) to the source is d1, the distance
form the source to the ground reflection point is d2, and the
array height is h. Now assuming an xyz right-handed coor-
dinate system where the y axis is pointed upwards positive,
the x axis points to the direction of travel (array is assumed
to be in the xy plane), we have the following data:

kh = (0, − h, 0),

ks =
(

cos θ1sinϕ1, sinθ1, cos θ1 cosϕ1

)
,

kt =
(

cos θ1,1sinϕ1,1, sinθ1,1, cos θ1,1 cosϕ1,1

)
.

(58)

The angles ϕ0 and ϕ1 (as seen in Figure 3) maybe com-
puted from

ϕ0 = cos−1
(

ks·kt∥
∥ks

∥
∥·∥∥kt

∥
∥

)
,

ϕ1 = cos−1
(

kt·kh∥∥kt

∥∥·∥∥kh

∥∥

)
.

(59)

y

x

z

θ ks (direct path)

kt (TSI path)

kh

d1

d2

Array

h

Source

Ground

D

Δ

φ

φ0

φ1

Figure 3: TSI scenario and associated parameters.

Furthermore, we have

ld1 + d2 = D + mδR,

d2
2 =

(
Dsinϕ0

)2
+
(
d1 −D cosϕ0

)2
,

d1 = h

cosϕ1

.

(60)

The integer value m is the estimated TSI lag and δR is
the radar range resolution which is the fast time sampling
interval muliplied by the speed of light. The assumption
that the path difference is an integer multiple of the range
resoltion is only an approximation. This is reasonable for
high-resolution radar. If this figure is not an integer value it
can cause some error in the estimate of D. It should be noted
that h is only a very rough value to represent the height of
the platform, since the terrain below is not generally flat and
may not lie in the same horizontal plane as the ground re-
flection point as shown in Figure 3. We have represented this
difference by the symbol Δ which will not be directly mea-
sureable. It is also possible to use all the TSI paths available
(of the interference source, identified by the TSI finder) to
be used in making multiple estimates of the same parameter
D. Multiple ground reflections are a real possibility in many
environments.

Assuming Δ = 0 and eliminating d2 from the above three
equations, we arrive at

(
D + mδR− d1

)2 = D2 − 2Dd1 cosϕ0 + d2
1,

D = mδR
(
2h−mδR cosϕ1

)

2
(
mδR cosϕ1 − h + h cosϕ0

)
(61)

which is a function of ϕ1, θ1, ϕ1,1, θ1,1, and h only.

7. SIMULATION

In the simulated example, we have considered a 16× 16(N =
256) planar array, with a first interferer arriving from the
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(b) Scenario 2: as in scenario 1, except that the noise floor has been in-
creased by a factor of four and the first TSI path is now at a lag of 30.5
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Figure 4: The output of the TSI finder in the lag domain.

array broadside, (ϕ1, θ1) = (0◦, 0◦), with an interferer to
noise ratio of 10 dB (= σ2

j ), where σ2
n = 1 is set without loss

of generality. Four TSI paths are simulated with power levels
β2

1 = 1/20, β2
2 = 1/40, β2

3 = 1/80 and β2
4 = 1/90. The corre-

sponding TSI angles of arrival pairs are given by (ϕ1,1, θ1,1) =
(10◦,−3◦), (ϕ1,2, θ1,2) = (0◦,−20◦), (ϕ1,3, θ1,3) = (0◦,−30◦)
and, (ϕ1,4, θ1,4) = (0,◦−35◦). The corresponding fast time
lags are 30, 80, 82, and 84, respectively. The second inde-
pendent interferer is 10 dB above noise and has an angle of
arrival pair (ϕ2, θ2) = (20◦,−40◦). For the second interfer-
ence source we have added one multipath with parameters
(ϕ2,1, θ2,1) = (30◦,−15◦), β2 = 1/20. In this study we will as-
sume the direction of arrival of the interferer has been iden-
tified to be the array’s broadside and do not display the di-
rection of arrival spectrum (a well-established capability).
Figure 4(a) shows the output of the lag domain TSI finder
as defined in (15). The postprocessor identifies all the TSI ar-
rivals and their associated fast time lags very clearly in the
simulation. The presence of the second interference source
and its multipath does not visibly affect the processing gain
of the TSI spectrum (spectrum is almost the same, with or
without the second interference and its multipaths for the ar-
ray of 16× 16 elements, this is due to the high degree of free-
dom available in a 256 element array). TSI spectrum is de-
signed to puck up every delayed version of the look direction
interferer only (by an integer multiple of the range resolu-
tion, as we can scan through all possible fast time lag values).
Also, the TSI spectrum excludes the look direction of the in-
terferer itself. In other words, the spectrum contains only the
multipaths of the look direction interferer. Further it was no-
ticed that if the number of sidelobe interference sources and
their multipaths increases, then the TSI spectrums which is
related to the mainlobe interferer gradually looses its pro-
cessing gain by increasing the noise floor. This is expected in
any array processor due to its degree of freedom limitations.

This effect is really not significant until 6 or more interferes
are introduced for this simulated example with 16 × 16 el-
ements. For this simulation, we have generated 2000 range
samples (≈4 × 2N . where 2N × 2N is the size of the space
time covariance matrix). Processing gain is much better than
the theoretically expected values. For the smallest peak, that
is, for β2

4 = 1/90, the theoretical expectation of the process-
ing gain is around O(4×256× (1/90)×10) ≈ 20 dB whereas
in the simulation this peak rises more than 20 dB above the
average output noise floor level in Figure 4.

The simulation study has shown that the usual 3×2N ( =
number of samples) rule seems to be sufficient in averaging
the covariance matrix in order to obtain better than the the-
oretical predicted processing gain levels. The computational
complexity of the TSI finder is of the order of N3 (for an N
element array) which is expected as it requires to invert the
covariance matrix in (15). Figure 4(b) illustrates the results
when the noise floor is increased by a factor 4 (σ2 = 4). The
raise can be continued until the mainlobe interferer is rea-
sonably above the noise floor (at least 3 dB for this array).
Due to high signal processing gain of the TSI finder, one is
able to detect very weak TSI signals (β2 < 1/40) of the main
lobe interferer provided the direct interferer power is 3 or
4 dB above the noise level. A large number of simulation runs
have confirmed that when the TSI path is not an integer mul-
tiple of the range resolution, the performance degradation in
the TSI spectrum is less than 1 or 2 dB at most. This was car-
ried out by linearly interpolating generated TSI path data and
shifting it by a fraction of the fast time lag.

The input to the second processor can be selected as any
one those lag values selected from Figure 4. In our example,
the lag = 30 as the input to the angle domain finder is used,
the output of which is illustrated in Figure 5. The TSI finder
in the angle domain has shown more robustness in all above
cases discussed.
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Figure 5: Output of the angle domain TSI finder where the desired
lag is fixed at 30. Peak occurs at ϕ = 10◦, θ = −3◦.

Suppose the angle of arrival of one of the TSI paths
is used to estimate the distance to the interferer by setting
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Figure 6: Estimated SNR for each iteration (data points) and mean
estimated SNR (the line) at lag 30 in scenario 1, plotted against the
number of samples used in the space time covariance matrix (2N ×
2N) expressed as a multiple of 2N .

Δ = 0. For example if h = 4000 meters, m = 5600, ϕ0 =
ϕ1 = 45◦, δR = 1 meter, the estimate for D is approxi-
mately 4057 meters. However, if h is changed to 0.9h (which
is equivalent to having Δ = 0.1h) we have D = 3122 meters.
This implies a sensitivity of around 20% due to the change
of 10% in the input parameter h for the chosen set of input
values. One can always estiamte a reasonable confidence level
of each estimation for the interfer distance when more than
one multipath is being used. This of course depends on the
ability to estimate a reasonable mean value of the parameter
Δ. Other cases which we are not able to simulate or predict
is the fact that the naturally scattering coefficients fluctuate.
Another potential problem is the rays from the direct path
and those from the TSI path may not intersect always. Hence,
in practice we may be limited to making only a very crude as-
sumption as the distance of the interference source.

In order to provide a wider investigation of the perfor-
mance of the TSI finder as a function of the sample size used,
we have included (Figure 6) a Monte Carlo simulation of sce-
nario 1. Ninety simulations were run, and an estimate of the
output SNR was generated at a lag of 30 (see Figure 4(a)) as a
function of the number of samples used in estimating the co-
variance. In Figure 6, the number of samples used has been
expressed as a multiple of the dimension of the size of the
space time covariance matrix (2N × 2N).

8. CONCLUDING REMARKS

Generally, the space fast time adaptive processor is employed
to null main lobe interference and detect the target using a
TSI finder as discussed in [6]. In addition to the usual lag
domain TSI finder which we use for main lobe interferer
nulling, we have introduced the angle domain TSI finder. As
a result, this research extends its application to locating air-
borne interferers via the TSI arrivals, mainly using the re-
flection off the ground or ocean. Furthermore formulas were
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established for processing gains of both TSI finders. These
can be very helpful indicators in predetermining some of the
radar parameters in order to achieve a desired performance
level. The technique uses any one of the TSI rays to identify
its angle of arrival in azimuth plane as well as in elevation
plane and then locates the position of the transmitter. How-
ever, in general one maybe able to use more than one TSI
path of the same interferer as illustrated in the simulated ex-
ample. This will allow us to further refine the solution at least
in theory. However, there are a number of hurdles to over-
come in getting an estimate of the location of an interference
source. The approach of ray tracing in known to encounter
variety of problems particularly when the paths do not inter-
sect. The aim of this research is to highlight the importance
of having a procedure to get a crude estimate of the location
of an interference source.

APPENDICES

A. MATRIX LEMMA

Lemma 2. Suppose the square matrix A is added to an addi-
tional Dyad term uuH , where u is a column vector, then the
inversion of the new matrix is given by (e.g., Van Trees [8, page
1348])

(
A + uuH

)−1 = A−1 − A−1uuHA−1

1 + uHA−1u
. (A.1)

By definition, one has Rx = ρ2
1s1sH1 + R1. Applying the above

lemma, one has the following identity:

R−1
x = R−1

1 − ρ2
(

R−1
1 s1sH1 R−1

1

)

1 + ρ2
1

(
sH1 R−1

1 s1
) . (A.2)

This leads to the expression

sH1 R−1
x s1 = sH1 R−1

1 s1 −
ρ2

1

(
sH1 R−1

1 s1sH1 R−1
1 s1

)

1 + ρ2
1

(
sH1 R−1

1 s1
)

= sH1 R−1
1 s1

1 + ρ2
1

(
sH1 R−1

1 s1
) ,

(A.3)

(
sH1 R−1

x s1
)−1 = ρ2

1 +
(

sH1 R−1
1 s1

)−1
. (A.4)

B. SPECTRUMDERIVATION

Using w2 from (26), we have

β1,1wH
2 s1,1

= β1,1

[
− β1,1ρ

2
1R−1

1 s1,1+β1,1ρ
2
1

(
sH1 R−1

1 s1,1

sH1 R−1
1 s1

)
R−1

1 s1

]H
s1,1

= −∣∣β1,1

∣∣2
ρ2

1sH1,1R−1
1 s1,1 +

∣
∣β1,1

∣
∣2
ρ2
∣
∣sH1 R−1

1 s1,1
∣
∣2

sH1 R−1
1 s1

.

(B.1)

Simplification of (B.1) using (34) leads to

1 + β1,1wH
2 s1,1

= 1−
∣∣β1,1

∣∣2
ρ2

1N

σ2
n + N

∣∣β1,1

∣∣2
ρ2

1

+

∣∣β1,1

∣∣2
ρ2

1

∣∣sH1 R−1
1 s1,1

∣∣2

sH1 R−1
1 s1

= σ2
n

σ2
n + N

∣
∣β1,1

∣
∣2
ρ2

1

+

∣
∣β1,1

∣
∣2
ρ2

1

∣
∣sH1 r−1

1 s1,1
∣
∣2

sH1 R−1
1 s1

,

(B.2)

where the second term on the right-hand side can be simpli-
fied using (35), (36) and finally assuming N|β1,1|2J� 1 (i.e.,

1 + N|β1,1|2J ≈ N|β1,1|2J) as follows:

∣
∣β1,1

∣
∣2
ρ2

1

∣
∣sH1 R−1

1 s1,1
∣
∣2

sH1 R−1
1 s1

=
∣
∣β1,1

∣
∣2
ρ2

1

∣
∣sH1,1s1

∣
∣2

(
N/σ2

n

)(
σ2
n + N

∣
∣β1,1

∣
∣2
ρ2

1

)2 =
∣
∣β1,1

∣
∣2∣∣sH1,1s1

∣
∣2

J

N
(
1 + N

∣
∣β1,1

∣
∣2

J
)2

≈
(∣∣sH1,1s1

∣
∣2
/N2

)

(
N
∣
∣β1,1

∣
∣2

J
) ≈ 0 for N

∣
∣β1,1

∣
∣2

J� 1,

(B.3)

∣∣β1,1

∣∣2
ρ2

1

∣∣sH1 R−1
1 s1,1

∣∣2

sH1 R−1
1 s1

=
∣
∣β1,1

∣
∣2∣∣sH1,1s1

∣
∣2

J

N
(
1 + N

∣
∣β1,1

∣
∣2

J
)2 ≈

∣
∣β1,1

∣
∣2∣∣sH1,1s1

∣
∣2

J

N

= (N∣∣β1,1

∣
∣2

J
)
∣∣sH1,1s

∣∣2

N2
≈ 0 for N

∣
∣β1,1

∣
∣2

J� 1.

(B.4)

As a result, we have

|1 + β1,1wH
2 s1,1|2

≈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
∣
∣1 + N

∣
∣β1,1

∣
∣2

J
∣
∣2 ≈

1
(
N
∣
∣β1,1

∣
∣2

J
)2 for N

∣
∣β1,1

∣
∣2

J� 1,

1− 2N
∣
∣β1,1

∣
∣2

J for N
∣
∣β1,1

∣
∣2

J� 1.
(B.5)

The final term of the power output at the processor, that is,
σ2
n(wH

1 w1 + wH
2 w2) = σ2

2‖w‖2, can be approximated as fol-
lows.

Using (25) and (36), we have

wH
1 w1 =

(
R−1

1 s1

sH1 R−1
1 s1

)H(
R−1

1 s1

sH1 R−1
1 s1

)
≈ σ4

n

N2

(
R−1

1 s1
)H(

R−1
1 s1

)
.

(B.6)
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Substituting (32) and sH1 s1 = N in the above expression and
noting if N|β1,1|2J � 1 that 1 + N|β1,1|2J ≈ N|β1,1|2J, we
get

wH
1 w1

≈ σ4
n

N2
· 1
σ4
n

⎛

⎜
⎝N− 2ρ2

1

∣
∣β1,1

∣
∣2∣∣sH1 s1,1

∣
∣2

σ2
n +N

∣
∣β1,1
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∣2
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1

+
ρ4

1

∣
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∣
∣4∣∣sH1 s1,1
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∣2
N

(
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n + N

∣
∣β1,1

∣
∣2
ρ2

1

)2

⎞

⎟
⎠

= 1
N
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(
2
∣
∣β1,1

∣
∣2

J
∣
∣sH1 s1,1

∣
∣2
/N2

)

(
1 + N

∣
∣β1,1

∣
∣2

J
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(∣∣β1,1

∣
∣4

J2
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∣sH1 s1,1
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(
1 + N

∣
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≈ 1
N
−
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∣2

N3
≈ 1

N
for N

∣
∣β1,1

∣
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J� 1.

(B.7)

For N|β1,1|2J� 1, we have 1 + N|β1,1|2J ≈ 1 and

wH
1 w1

≈
(

1
N
−

2
∣
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J
∣
∣sH1 s1,1
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≈ 1
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From (26), we have

wH
2 w2

= ∣∣β1,1

∣∣2
ρ4

1

[
− R−1

1 s1,1 +
(

sH1 R−1
1 s1,1

sH1 R−1
1 s1

)
R−1

1 s1

]H

×
[
− R−1

1 s1,1 +
(

sH1 R−1
1 s1,1

sH1 R−1
1 s1

)
R−1

1 s1

]
.

(B.9)

The dominant term in the expression for wH
2 w2 is given

by the first term inside the bracket involving R−1
1 s1,1, which

can be simplified using (33) as

wH
2 w2
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The final experssion is

wH
2 w2 ≈
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(B.11)

We can show that the contributions arising from the
three other terms in (B.9) are negligible as follows. The
second term in the brackets of (B.9) contains the term

(sH1 R−1
1 s1,1/sH1 R−1

1 s1)R−1
1 s1, the square of which after substi-

tuting (35) and (36) takes the following form:
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where from (32),
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Simplifying the above expression and considering the ex-
treme cases as before, we have

∥
∥R−1

1 s1
∥
∥2

≈

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N

σ4
n

(
1−

∣∣sH1 s1,1
∣∣2

N2

)
≈ N

σ4
n

for N
∣
∣β1,1

∣
∣2

J� 1,

N

σ4
n

(

1− (2N∣∣β1,1

∣
∣2

J
)
∣
∣sH1 s1,1

∣
∣2

N2

+
(
N
∣∣β1,1

∣∣2
J
)2
∣
∣s1s1,1

∣
∣2

N2

)

≈ N

σ4
n

for N
∣
∣β1,1

∣
∣2

J� 1.
(B.14)

Back substitution of these expressions in (B.12) and the
use of 1 + N|β1,1|2J ≈ N|β1,1|2J lead to the expression

∣
∣β1,1

∣
∣2
ρ4

1

∣∣
∣
∣

sH1 R−1
1 s1,1

sH1 R−1
1 s1

∣∣
∣
∣

2∥
∥R−1

1 s1
∥
∥2

=
∣∣β1,1

∣∣2
J2
∣∣sH1 s1,1

∣∣2

N
(
1 + N

∣∣β1,1

∣∣2
J
)2

≈
∣
∣sH1 s1,1

∣
∣2
/N2

N
∣
∣β1,1

∣
∣2 ≈ 0 for N

∣∣β1,1

∣∣2
J� 1,

(B.15)

and for N|β1,1|2J� 1 we have

∣
∣β1,1

∣
∣2

J
∣
∣sH1 s1,1

∣
∣2

N
(
1 + N

∣
∣β1,1

∣
∣2

J
)

≈
∣
∣β1,1

∣
∣2

J2
∣
∣sH1 s1,1

∣
∣2

N
≈ (N∣∣β1,1

∣
∣2

J2)
(∣∣sH1 s1,1

∣∣2

N2

)
≈ 0.

(B.16)
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The third contribution in (B.9) is given by (sum of two
terms)

−2R

{
ρ4

1

∣
∣β1,1

∣
∣2(

sH1,1R−1
1 s1

)(
sH1 R−1

1 R−1
1 s1,1

)

(
sH1 R−1

1 s1
)

}

=
2
∣
∣β1,1

∣
∣2

J2
∣
∣sH1,1s1

∣
∣2

N
(
1 + N

∣
∣β1,1

∣
∣2

J
)3 .

(B.17)

(Note. Replacing (sH1 R−1
1 s1) by the approximation N/σ2

n and
using of (32), (33), and (35) in (B.17), we arrive at the ex-
pression in the right-hand side of (B.17).)

After applying the approximation 1 + N|β1,1|2J ≈
N|β1,1|2J or 1+N|β1,1|2J ≈ 1, we can conclude that the right-
hand side of (B.17) is approximately equal to zero. From
(B.7) and (B.11), the final expression for σ2

n‖w‖2 is obtained
by combining (B.7) and (B.11):

σ2
n‖w‖2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σ2
n

(
1
N

+
1

N
∣∣β1,1

∣∣2

)

for N
∣
∣β1,1

∣
∣2

J� 1,

σ2
n

(
1
N

+ N
∣
∣β1,1

∣
∣2

J2
)

for N
∣
∣β1,1

∣
∣2

J� 1.

(B.18)

C. PROCESSING GAINS

Consider the case when n /= n1,1, but β1,1 ≈ 0. In this case we
have

Xn(r) =
(

x(r)
x(r + n)

)

=
(

j1(r)s1 + ε1

j1(r + n)s1 + ε2

)

,

R =
(

Rx QH

Q Rx

)

,

(C.1)

where

QH = E
{
j1(r) j1(r + n)∗

}
s1sH1 + E

{
j1(r)s1ε

H
2

}

+ E
{
j1(r + n)∗ε1sH1

}
+ E

{
ε1ε

H
2

}
.

(C.2)

Generally, this term is zero when a large sample support is
available for estimating the covariance matrix. However, we
would like to estimate the order of the next term as a func-
tion of M (number of samples) for large M. Suppose X and
Y are two independent complex random variables with zero
mean and Gaussian distribution, then E{XY∗} = 0, but the
estimator would be Z = (1/M)

∑M
i=1xi y

∗
i , where xi and yi are

the measured sample values. The variance of the estimator is
given by Var{Z} = E{|Z|2} = (1/M)σ2

xσ
2
y , where σ2

x and σ2
y

are the respective individual variances. As a result we may ap-
proximately take the order of the error term to be in the order
σxσ y/

√
M (one standard deviation of the mean value), or this

will be represented by O(σxσ y/
√
M). Now we may consider

the following approximate representations:

E
{
j1(r) j(r + n)∗s1sH1

} ≈ O
(
ρ2

1s1sH1 /
√
M
)
,

E
{
j1(r)s1ε

H
2

} ≈ O
(
ρ1σns1uH/

√
M
)
,

E
{
j1(r)ε1sH1

} ≈ O
(
ρ1σnusH1 /

√
M
)
,

(C.3)

E
{
ε1ε

H
2

} ≈ O
(
σ2
nuuH/

√
M
)
, (C.4)

where u = (1, 1, . . . 1, )T . The term for E{ε1ε
H
2 } will be ig-

nored as a lower order term when ρ2
1 > σ2

n. Noting that
Rx = R1 + ρ2

1s1sH1 and R1 = σ2
nIN (for β1,1 = 0), we have

Pout = wHE
{

Xn(r)Xn(r)H
}

w

= wH
1 Rxw1 + wH

2 Rxw2

+ O
(

wH
1

[
ρ2

1s1sH1 + ρ1σns1uH + ρ1σnusH1
]

w2
)
/
√
M

+ O
(

wH
2

[
ρ2

1s1sH1 + ρ1σnusH1 + ρ1σns1uH
]

w1
)
/
√
M.
(C.5)

Now, considering the requirements in the minimization
problem (i.e., wH

1 s1 = 1 and wH
2 s1 = 0), we have to minimize

Pout

= ρ2
1 + wH

1 R1w1 + wH
2 R1w2 + O

(
ρ1σn

[
uHw2 + wH

2 u
]
/
√
M
)
.

(C.6)

The solution for w1 (which minimizes Pout subject to wH
1 s1 =

1) is given by

w1 = R−1
1 s1(

sH1 R−1
1 s1

) = s1

N
for R1 = σ2

nIN (C.7)

and the solution for w2 is given by minimizing wH
2 R1w2 +

O(ρ1σn[uHw2 + wH
2 u]/

√
M) subject to wH

2 s1 = 0. This leads
to

w2 = −O
(
ρ1σnR−1

1 u/
√
M
)

+ μR−1
1 s1, (C.8)

where μ is a constant.
Now substituting wH

2 s1 = 0, we have

μ∗ = O
(

ρ1σn
[

uHR−1
1 s
]

([
sH1 R−1

1 s1
]
/
√
M
)
)
. (C.9)

As a result, we have

w2 = O
(
−
(
ρ1σn√
M

)
R−1

1 u +
(
ρ1σn√
M

)( (
sH1 R−1

1 u
)

(
sH1 R−1

1 s1
)
)

R−1
1 s1

)

(C.10)

and for R1 = σ2
nIN this reduces to

w2 = O
(
ρ1

σn

u√
M

+
ρ1

σn

sH1 u
N

s1√
M

)
. (C.11)

Since (sH1 u/N) < 1, it is reasonable to ignore the low-order
term in w2 to take the dominant term only and write (ignor-
ing the -ve sign)

w2 ≈ O
(
ρ1

σn

u√
M

)
(C.12)

and (substituting R1 = σ2
nIN as well as uHu = N in Pout)

Pout ≈ ρ2
1 +

σ2
n

N
+ O

(
ρ2

1N

M

)
. (C.13)
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Therefore, when β1,1 ≈ 0 (i.e., no significant multipath en-
ergy is available at the lag of interest) we may use (15) and
(A.4) to approximate the following:

T(n)n /=n1,1
≈ ρ2

1 +
(

sH1 R−1
1 s1

)−1

ρ2
1 + σ2

n/N + O
(
ρ2

1N/M
) − 1

≈ ρ2
1 + σ2

n/N −
(
ρ2

1 + σ2
n/N + O

(
σ2

1N/M
))

ρ2
1 + σ2

n/N + O
(
ρ2

1N/M
)

≈ O
(
σ2

1N/M
)

ρ2
1

≈ O
(
N

MJ

)
.

(C.14)

Now, we investigate the case n /= n1,1 with TSI energy
present (|β1,1|2 � 1/N). Terms involved in QH are given by

QH = {( j1(r)s1 + β1,1 j1
(
r − n1,1

)
s1,1 + ε1

)

× ( j1(r + n)∗sH1 + β∗1,1 j1
(
r − n1,1 + n

)∗
sH1,1 + εH2

)}
.

(C.15)

This can be represented by

QH ≈ O
(
ρ2

1s1sH1√
M

,

∣
∣β1,1

∣
∣2
ρ2

1s1,1sH1,1√
M

,
σ2
nuuH
√
M

,

β∗1,1ρ
2
1s1sH1,1√
M

,
ρ1σns1uH

√
M

,
β1,1ρ

2
1s1,1sH1√
M

,

β1,1ρ1σns1,1uH

√
M

,
ρ1σnusH1√

M
,
β∗1,1ρ1σnusH1,1√

M

)
.

(C.16)

In Pout = wHR2w, the contribution due to the presence
of nonzero Q is given by the term wH

1 QHw2 + wH
2 Qw1. This

is equivalent to the terms (all positive contributions)

ρ2
1

(
wH

1 s1sH1 w2 + wH
2 s1sH1 w1

)

√
M

,
∣∣β1,1

∣∣2
ρ2

1

(
wH

1 s1,1sH1,1w2 + wH
2 s1,1sH1,1w1

)

√
M

,

σ2
n

(
wH

1 uuHw2 + wH
2 uuHw1

)

√
M

,

ρ2
1

(
β∗1,1wH

1 s1sH1,1w2 + β1,1wH
2 s1,1sH1 w1

)

√
M

,

ρ1σn
(

wH
1 s1uHw2 + wH

2 usH1 w1
)

√
M

,

ρ2
1

(
β1,1wH

1 s1,1sH1 w2 + β∗1,1wH
2 s1sH1,1w1

)

√
M

,

ρ1σn
(
β1,1wH

1 s1,1uHw2 + β∗1,1wH
2 usH1,1w1

)

√
M

,

ρ1σn
(

wH
1 usH1 w2 + wH

2 s1uHw1
)

√
M

,

ρ1σn
(
β∗1,1wH

1 usH1,1w2 + β1,1wH
2 s1,1uHw1

)

√
M

.

(C.17)

As we minimize the power wHRw subject to wH
1 s1 = 1

and wH
2 s1 = 0, the natural selection is that w1 be almost

orthogonal to all the signals including u (except of course
wH

1 s1 = 1). As a result, the order of w1 will not change and

wH
1 R1w1 = (sH1 R−1

1 s1)
−1 ≈ σ2

n/N still holds. After assuming
the orthogonality and substituting the above two constraints
as well, we are left with the contributions O(ρ1σn(uHw2 +
wH

2 u)/
√
M), O(ρ2

1(β∗1,1sH1,1w2 +β1,1wH
2 s1,1)/

√
M), and ρ2

1/
√
M.

Now ignoring the constant terms, our minimization problem
for obtaining an approximate highest order for w2 is equiv-
alent to minimizing wH

2 R1w2 + O(ρ1σn(uHw2 + wH
2 u)/

√
M)

subject to wH
2 s1 = 0 or minimize wH

2 R1w2 +O(ρ2
1(β∗1,1sH1,1w2 +

β1,1wH
2 s1,1)/

√
M) subject to the same constraint. If the dom-

inant term out of the last two terms is O(ρ1σn(uHw2 +
wH

2 u)/
√
M), then we have the same case as before but with

R1 = ρ2
1|β1,1|2s1,1sH1,1 + σ2

nI. However, in this case, using
a similar argument and using (32)–(36) we can prove that
T(n)n /=n1,1

≈ O(N/M) as follows.
The solution for this case would be

w2 = O
(
− ρ1σn√

M

)
R−1

1 u +
ρ1σn√
M

(
sH1 R−1

1 u
)

(
sH1 R−1

1 s1
)R−1

1 s1. (C.18)

The first part of the above expression is simplified as follows
(expanding R−1

1 u):

O
(
ρ1σn√
M

)
R−1

1 u

≈ O
(
ρ1σn√
M

)
· 1
σ2
n

(

IN −
ρ2

1

∣
∣β1,1

∣
∣2

s1,1sH1,1

σ2
n + Nρ2

1

∣
∣β1,1

∣
∣2

)

u

≈ O
(

ρ1√
M

)
· 1
σn

(
IN −

s1,1sH1,1

N

)
u for N

∣
∣β1,1

∣
∣2 � 1

≈ O
(

ρ1u

σn
√
M

)
−O

(
ρ1

σn

s1,1√
M

sH1,1u
N

)
.

(C.19)

The second part of the expression is expanded (using

wH
1 R1w1 = (s1R−1

1 s1)
−1 ≈ σ2

n/N) as

ρ1σn√
M

(
sH1 R−1

1 u
)

(
sH1 R−1

1 s1
)R−1

1 s1

≈ ρ1σn√
M

[(
sH1 R−1

1 u
)
σ2
n

N

]
R−1

1 s1

≈ ρ1σ
3
n

N
√
M

[
sH1
σ2
n

(

IN −
ρ2

1

∣
∣β1,1

∣
∣2

s1,1sH1,1
(
σ2
n + N

∣
∣β1,1

∣
∣2
ρ2

1

)

)

u

]

×
[

1
σ2
n

(

s1 −
ρ2

1

∣
∣β1,1

∣
∣2

s1,1sH1,1s1
(
σ2
n + N

∣
∣β1,1

∣
∣2
ρ2

1

)

)]

(C.20)



16 EURASIP Journal on Advances in Signal Processing

using (32). Now applying N|β1,1|2J � 1 (i.e., σ2
n +

N|β1,1|2ρ2
1 ≈ N|β1,1|2ρ2

1), we have

ρ1σn√
M

(
sH1 R−1

1 u
)

(
sH1 R−1

1 s1
)R−1

1 s1

≈ ρ1

σnN
√
M

[
sH1

(
IN −

s1,1sH1,1

N

)
u
(

s1 −
s1,1sH1,1s1

N

)]

≈ ρ1

σnN
√
M

[(
sH1 u− sH1 s1,1sH1,1u

N

)(
s1 −

s1,1sH1,1s1

N

)]

≈ O

(
ρ1

σn

[(
sH1 u

)
s1

N
√
M

−
(

sH1 u
)

N

s1,1√
M

(
sH1,1s1

)

N

−
(

sH1 s1,1
)

N

(
sH1,1u

)

N

s1√
M

+

(
sH1 s1,1

)

N

(
sH1,1u

)

N

s1,1√
M

(
sH1,1s1

)

N

])

.

(C.21)

When the two expressions (C.19) and (C.21) are com-
bined to estimate (C.18), we can conclude that the dominant
order term is ≈ O(ρ1u/σn

√
M).

If instead the dominant contribution is the
O(ρ2

1(β∗1,1wH
1 s1sH1,1w2 + β1,1wH

2 s1,1sH1 w1)/
√
M) term, then

we have to minimize Pout = wH
1 Rxw1 + wH

2 Rxw2 +
wH

1 QHw2 + w2Qw1, which after substituting the con-
straints and noting that R1 = ρ2

1|β1,1|2s1,1sH1,1 + σ2
nIN

and Rx = R1 + ρ2
1s1sH1 is reduced to minimize Pout =

ρ2
1 + wH

1 R1w1 + wH
2 R1w2 +O(ρ2

1(β∗1,1sH1,1w2 +β1,1wH
2 s1,1)/

√
M)

subject to the constraints wH
1 s1 = 1 and wH

2 s1 = 0. This
problem has been solved earlier without the factor O(1/

√
M),

and as a result, we can write (using (26))

w2=O
(
−

β1,1ρ
2
1√

M
R−1

1 s1,1 + O
(β1,1ρ

2
1√

M

)(
sH1 R−1

1 s1,1

sH1 R−1
1 s1

)
R−1

1 s1

)
,

w1 = R−1
1 s1(

sH1 R−1
1 s1

) .

(C.22)

Now, applying earlier results ((B.7) and (B.11)), we can
show that ‖w1‖2 ≈ 1/N and ‖w2‖2 ≈ O(1/(NM|β1,1|2)) for

N|β1,1|2J� 1, and furthermore,

Pout ≈ ρ2
1 + wH

1 R1w + σ2
n

∥
∥w2

∥
∥2

+ ρ2
1

∣
∣β1,1

∣
∣2∣∣wH

2 s1,1
∣
∣2

+ O

(

ρ2
1

[
β∗1,1sH1,1w2 + β1,1wH

2 s1,1
]

√
M

)

≈ σ2
n‖w‖2 + ρ2

1 + ρ2
1

∣
∣β1,1

∣
∣2∣∣w2s1,1

∣
∣2

+ O

(

ρ2
1

[
β∗1,1sH1,1w2 + β1,1wH

2 s1,1
]

√
M

)

,

(C.23)

where wH
1 s1,1 ≈ 0 has been assumed.

Now we have

β1,1wH
2 s1,1

= O

(

−
∣∣β1,1

∣∣2

√
M

ρ2
1sH1,1R−1

1 s1,1 +

∣∣β1,1

∣∣2

√
M

ρ2
1

∣
∣sH1 R−1

1 s1,1
∣
∣2

sH1 R−1
1 s1

)

;

(C.24)

using the results from (B.3) and (34), we have

β1,1wH
2 s1,1

≈ O

(

−
∣
∣β1,1

∣
∣2
ρ2

1N√
M
(
σ2
n + N

∣
∣β1,1

∣
∣2
ρ2

1

)

)

= O

(

−
∣
∣β1,1

∣
∣2
NJ

√
M
(
1 + N

∣
∣β1,1

∣
∣2

J
)

)

≈ O

(

− 1√
M

)

≈ β∗1,1sH1,1w2

(C.25)

for N|β1,1|2 � 1.
Now, substituting

O

(

ρ2
1

[
β∗1,1sH1,1w2 + β1,1wH

2 s1,1
]

√
M

)

≈ O
(
ρ2

1

M

)
,

wH
1 R−1

1 w1 =
(

sH1 R−1
1 s1

)−1 ≈ σ2
n

N

∥
∥w2

∥
∥2 ≈ O

(
1

NM
∣∣β1,1

∣∣2

)

(C.26)

and the above result into the above expression for Pout and
simplifying we arrive at

Pout

≈ρ2
1 +σ2

n

(
1
N

)
+O

(
σ2
n

MN
∣
∣β1,1

∣
∣2

)

+O
(
ρ2

1

M

)
for N

∣
∣β1,1

∣
∣2�1.

(C.27)

Since the term O(1/MN|β1,1|2) is very small compared to the
orders of all the other terms, we end up with

Pout ≈ ρ2
1 +

σ2
n

N
+ O

(
ρ2

1

M

)
for N

∣
∣β1,1

∣
∣2 � 1. (C.28)

Now substituting this result in (15), we have

Ts(n)n /=n1,1
≈

(
s1R−1

1 s1
)−1

+ ρ2
1

ρ2
1 + σ2

n/N + O
(
ρ2

1/M
) − 1. (C.29)

This is equivalent to

Ts(n)n /=n1,1
≈ O

(
1
M

)
, (C.30)

which produces a small noise floor, and hence this option is
discarded in estimating the signal processing gain.

The final expression for the signal processing gain of the
TSI finder is obtained by the use of the earlier result as

Ts(n)n=n1,1

Ts(n)n /=n1,1

≈ O

(
N
∣
∣β1,1

∣
∣2

J

N/MJ

)

≈M
∣
∣β1,1

∣
∣2

J2. (C.31)
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