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Tracking multiple targets in a cluttered environment is a challenging task. Probabilistic multiple hypothesis tracking (PMHT) is
an efficient approach for dealing with it. Essentially PMHT is based on expectation-maximization for handling with association
conflicts. Linearity in the number of targets and measurements is the main motivation for a further development and extension of
this methodology. In particular, the problem of track extraction and deletion is apparently not yet satisfactorily solved within this
framework. A sequential likelihood-ratio (LR) test for track extraction has been developed and integrated into the framework of
traditional Bayesian multiple hypothesis tracking by Günter van Keuk in 1998. As PMHT is a multiscan approach as well, it also
has the potential for track extraction. In this paper, an analogous integration of a sequential LR test into the PMHT framework
is proposed. We present an LR formula for track extraction and deletion using the PMHT update formulae. The LR is thus a
by-product of the PMHT iteration process, as PMHT provides all required ingredients for a sequential LR calculation. Therefore,
the resulting update formula for the sequential LR test affords the development of track-before-detect algorithms for PMHT. The
approach is illustrated by a simple example.

Copyright © 2008 M. Wieneke and W. Koch. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

The problem of tracking multiple targets in a realistic en-
vironment has been an object of research for a long time.
The traditionalapproaches to multiple hypothesis tracking
(MHT) rely on the complete enumeration of all possible
associationinterpretations of a series of measurements [1].
These Bayesian MHT algorithms use a hard association
model which (in the case of point targets) realistically im-
plies that a target can produce at most one measurement at
a time. A consistent realization of this model would yield an
optimal tracking. Unfortunately, as the underlying problem
is NP-hard, the resulting hypothesis trees grow exponentially.
The so-called growing memory disaster of MHT is avoided
by pruning, gating, and combining techniques which lead to
an approximation of an optimal tracking. The aim is to dras-
tically limit the number of hypotheses by retaining only the
most likely ones, while the main risk is to eliminate correct
measurement sequences. As a path in a hypothesis tree spans
all time scans, from the past up to the present, Bayesian MHT
is counted among the multiscan approaches. Another tradi-
tional approach is realized by the joint probabilistic data as-
sociation filter (JPDAF) [2] that processes only the current

time scan (single scan). The JPDAF is an extension of the
simple PDAF for the case of multiple targets. At each scan,
JPDAF combines all possible hypotheses to one synthetic hy-
pothesis (global combining). The PDAF and JPDAF, respec-
tively, are a second-order approximation of an optimal track-
ing.

A powerful, alternative approach is represented by prob-
abilistic multiple hypothesis Tracking (PMHT) (see [3, 4])
that joins the advantages of MHT and JPDAF. PMHT works
on a sliding data window (multiscan), and exploits the in-
formation of previous and following time scans in every of
its kinematic state estimations. For each window position,
PMHT applies the method of expectation-maximization
(EM) (see [5, 6]) to the underlying data. Using the language
of EM the unknown associations of measurements to targets
are the so called hidden variables. Then the following algo-
rithm, known as PMHT, can be derived. For each scan of
the current window, PMHT calculates one synthetic mea-
surement from the reported measurement set (E-Step). The
particular synthesis weights depend on the state estimates
of the currently processed target. They represent the prob-
ability that a certain measurement belongs to this target.
The synthetic measurements are then processed by a Kalman
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smoother (M-Step), which leads to improved state estimates.
The new state estimates flow into the E-Step of the following
iteration such that the former association weights can be cor-
rected. For each target the E-Step and M-Step are iteratively
repeated until the state estimates converge. After shifting the
window the iteration process is started for the new window
position. The convergence to a local maximum is guaranteed,
because this property has been proven for the EM method
in general. As PMHT is based on EM, its association model
is soft which implies that a target can cause more than one
measurement per scan. Of course a soft association model
does not reflect the reality if point targets are to be tracked,
but it facilitates efficient tracking algorithms. Assuming a soft
association model PMHT works optimally, because the EM-
Method works optimally in general.

So PMHT is a multiple target tracking algorithm of con-
siderable theoretical elegance. Its memory wastage is linear
in all parameters: window length, number of measurements,
and number of targets. Working on a sliding data window,
PMHT takes the information of previous and following time
scans into account. Hence, as it is a multiscan approach, it
has the potential for track extraction.

Unfortunately, the standard PMHT is limited to the as-
sumption that the number of targets is constant and known
in advance. Although there exist several approaches for track
extraction and deletion within PMHT, this problem is ap-
parently not yet satisfactorily solved. The most important
task within a track management system is the choice of an
appropriate test function for track candidates [7, 8]. Some
authors [9] use statistical hypothesis testing outside PMHT
to determine whether a track is true or false. Target visibil-
ity is an approach published in [7, 10, 11]. For track extrac-
tion in Bayesian MHT, a sequential likelihood-ratio (LR) test
has been proposed in [12]. As this LR test has been success-
fully embedded into the framework of Bayesian MHT, we are
motivated to try an analogous integration into the PMHT
framework. In this work, we derive an LR formula for se-
quential track extraction by PMHT. Using this formula the
LR is a by-product of the iteration process on the PMHT data
window.

The remainder of this work is organized as follows. In
Section 2, we provide some basics. The section begins with
an introduction of our notations. Afterwards we briefly ex-
plain the method of EM and a modification of the PMHT al-
gorithm as it is used in our work. In Section 3, we start with
the principle of LR testing, as it is proposed in [12]. Then we
show the derivation of an LR formula for PMHT. Section 4
presents values of the formula in an experimental example.
The last section provides conclusions.

2. PROBABILISTIC MULTIPLE HYPOTHESIS TRACKING

To introduce our notations we start with a formal description
of the considered scenario and the task of tracking multiple
targets.

Our tracking scenario is defined as follows. A sensor ob-
serves S point targets in its field of view (FoV). We denote
the area of the FoV as |FoV|. The sensor generates measure-
ments Z = Z1:T = {zt,Nt}Tt=1 for a time interval [1 : T].

The sensor output at a scan t consists of not only the set of
measurements zt but also the number of measurements Nt.
Thus we model measured data as a pair {zt,Nt}. Measure-
ments znt ∈ R2 with n ∈ [1 : Nt] are assumed to be Cartesian
position data. The spurious, noninformative measurement
n = 0 denotes a missing detection. We introduce it to avoid
the hospitality problem of the standard PMHT. Its impact is
explained in Section 2.3.

The task of tracking consists in estimating the kinematic
states X = X1:T of the observed targets. The states xs

t ∈ R4

with s ∈ [1 : S] comprise position and velocity. Difficul-
ties arise from unkown associations A = A1:T = {at}Tt=1
of measurements to targets. We model the associations as
random variables at = {ant }Nt

n=0 that map each measurement
n ∈ [0 : Nt] to one of the targets s ∈ [0 : S] by assigning
ant = s. The target s = 0 is a spurious planar target that repre-
sents clutter. It corresponds to |FoV| and has been integrated
into PMHT by [13]. So mathematically expressed, the opti-
mization problem

arg max
X

p(X | Z) (1)

is to be solved. Expectation-maximization (EM) is an effi-
cient method for this task.

2.1. Expectation-maximization

Expectation-maximization (EM) is an iterative method for
localizing posterior modes. It has been derived and explained
in many different ways. We decided to follow the work by
Dellaert [5], which is one of the more descriptive derivations.

At each iteration, EM first calculates posterior weight
p(A | Z,Xl). The posterior weights define an optimal lower
bound

Q
(
X;Xl

)= log p(X)+
∑

A

log
(
p(A, Z |X)

)
p
(
A | Z, Xl

)

(2)

of p(X | Z) at the current guess Xl. l is the iteration index.
As Q(X;Xl) is expressed as an expectation, this first step is
called E-Step. In the following M-Step, EM maximizes the
bound with respect to the free variable X, which leads to im-
proved estimates X(l+1). They control the lower bound of the
following E-Step. E-Step and M-Step are repeated until the
estimates converge. How the M-Step is done depends on the
application. PMHT is the application of EM to the tracking
problem. It results in estimates xs

t for each target s ∈ [1 : S]
at each time t ∈ [1 : T]. Covariance matrices Ps

t occur as a
by-product. They cannot be proven to be the error covari-
ance matrices of the point estimates xs

t , but nevertheless have
a useful role.

2.2. Calculating the posterior weights (E-Step)

The Q-Function contains all available information: the sta-
tistical models of the detection process, measurement pro-
cess, and target dynamics. A series of calculations is required
to make the information visible. We pass on deriving dynam-
ics and sensor model and proceed directly with the formula-
tion of the posterior weights. Because PMHT allows multiple
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measurements per target, the random variables ant of the as-
sociations are stochastically independent. So applying Bayes’
rule yields

p
(
A | Z,Xl

) =
T∏

t=0

∏Nt
n=0p

(
znt | xlant

t

)
p
(
ant | Nt

)

∑
at

∏Nt
n=0p

(
znt | xlant

t

)
p
(
ant | Nt

) . (3)

After some technical intermediate steps, that afford an ex-
change of product and sum in the denominator of (3), we
finally obtain posterior weights

p
(
A | Z,Xl

) =
T∏

t=1

∏Nt
n=0N

(
znt ; Hxlant

t , Rn
t

)
π
nant
t

∏Nt
n=0

∑ S
s=0N

(
znt ; Hxls

t , Rn
t

)
πns
t

=:
T∏

t=1

Nt∏

n=0

w
lnant
t ,

(4)

with πns
t = p(ant = s | Nt). Note that the notation (4) is

simplified. With respect to the special cases n = 0 and s = 0,
we point out that the Gaussians are to be understood in an
improper sense: as clutter measurements can be assumed to
be equally distributed over the FoV, the posterior weight of
the clutter target s = 0 becomes

wln0
t = σ· πn0

t

|FoV| for n > 0,

with normalization constant σ.
(5)

And the intermediate result (3) allows us to assume

w
l0a0

t
t = π

0a0
t

t
∑ S

s=0π
0s
t

= π
0a0

t
t for a0

t ∈ [0 : S], l ∈ N0. (6)

As the posterior weights in (4) are governed by the measure-
ment covariances Rn

t , which is an essential characteristic trait
of standard PMHT, they do not take the quality of the cur-
rent track estimation into account. This problem of standard
PMHT is called nonadaptivity and has already been pointed
out by Willett et al. [14]. According to [15] we exchange the
measurement covariances by covariances Slns := HPls

t HT +Rn
t

to make PMHT work adaptively [16]. Here H is the measure-
ment matrix and Pls

t is the covariance-type matrix being an
output of PMHT (see Section 2.1), which is here interpreted
as estimation error covariance of xls

t in the sense of a heuris-
tic. This leads to posterior weights

p
(
A | Z,Xl

) =
T∏

t=1

∏Nt
n=0N

(
znt ; Hxlant

t , Slnant
t

)
π
nant
t

∏Nt
n=0

∑ S
s=0N

(
znt ; Hxls

t , Slns
t

)
πns
t

=:
T∏

t=1

Nt∏

n=0

w
lnant
t .

(7)

The posterior weights comprise two kinds of measures that
evaluate the relevance of a measurement with respect to a
target estimation: a distance measure which is given by the
Gaussian N (znt ; Hxls

t , Slns) and a visibility measure denoted
as πns

t . In the case of n > 0 the latter reflects how likely it

is to hit a target, not taking concrete position data into ac-
count. The weight π0s

t simply is the probability of missing a
target and its impact is explained in Section 2.3. In standard
PMHT, πns

t = p(ant = s) is the association prior which is esti-
mated iteratively by summing up the posterior weights of the
current target and dividing this by the number of measure-
ments Nt [3]. In [7, 10] it is proposed to estimate πns

t by an
HMM smoother.

We modeled the sensor output as a pair {zt,Nt}. So we
can split the pair and treat Nt separately. This leads to pos-
teriors πns

t := p(ant = s | Nt), with respect to the number
of measurements Nt in the FoV. As already proposed in [14],
(Section II.C.: PMHT Implementation Issues, issue 3: Prior
Probabilities) and [17], theseweights can be calculated before
starting the iteration process and need not to be estimated
iteratively. The calculation method is based on a valid sta-
tistical sensor model, that is the correct value is conditioned
on the number of measurements Nt received in scan t, and
parameterized by the clutter density, by |FoV| and the prob-
ability of detection PD, which is assumed to be equal for all
targets. The idea behind this approach is the following: the
original PMHT allows more than one measurement per tar-
get in each scan (i.e., in contrast to the physical measure-
ment process), the calculation of πns

t is an attempt to make
use of the physically “correct” assignment model without de-
stroying linearity in the number of targets. We exemplarily
show the derivation via Bayes’ rule for the case of n > 0,
s > 0, Nt > 1, and a single target (S = 1). For the prior
we simply get p(ant = 1) = PD/((1 − pF(0)) + PD), whereas
the denominator results from the normalization with respect
to the targets. pF(0) denotes the probability of having no
false measurements (Poisson distributed). Now we are look-
ing for the probability of having Nt measurements. As at
most one of the measurements can be associated with the
real target, the remaining measurements must be clutter. So
we have p(Nt | ant = 1) = pF(Nt − 1) and finally come to
p(ant = s | Nt) via Bayes’ rule. Further details about the cal-
culation πns

t can be found in [16]. We also derived formulae
for the case of detecting the clutter target (πn0

t , n > 0) and
missing the real target (π01

t ).
In a scenario of multiple targets (S > 1) we use bino-

mial coefficients to calculate πns
t . Again we show the case

n > 0 and s > 0, that is we are looking for the probabil-
ity πns

t of detecting the real target. The calculation of the
prior is completely analogous to the single target scenario
S = 1. Let us consider p(Nt | ant = s). It is given in ad-
vance that a measurement n ∈ [1 : Nt] refers to a real target
s ∈ [1 : S]. Hence, at least one real target is detected. So
we have p(Nt = 0 | ant = s) = 0 because there is at least
one measurement. Nt ∈ [1 : S] measurements can be gen-
erated as follows: one measurement is given by the detection
of the real target ant = s. To generate the remaining measure-
ments we can use another sD ∈ [0 : Nt − 1] detections of
real targets. Additionally there are [Nt − 1 : 0] false measure-
ments to be produced. For the selection of a number of sD
real targets there are

( S−1
sD

)
possibilities. The set of detectable

real targets is to be reduced by the target s which is already
known as detected. S − 1 − sD real targets are not detected.
Analogously Nt > S measurements are generated as follows:
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one measurement arises from the given detection. Besides,
another sD ∈ [0 : S − 1] detections of real targets can be in-
cluded. Additionally [Nt − 1 : Nt − S] false measurements
have to be produced:

p(Nt | ant = s)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, Nt = 0,
Nt−1∑

sD=0

pF(Nt − sD − 1)

(
S− 1

sD

)

× PsD
D (1− PD)(S−1−sD), Nt ∈ [1 : S],

S−1∑

sD=0

pF(Nt − sD − 1)

(
S− 1

sD

)

× PsD
D (1− PD)(S−1−sD), Nt > S.

(8)

Note sD does not contain the target that is already known as
detected. In the case of PD = 1 there are at least S measure-
ments. Hence, we have p(Nt | ant = s) = 0 for Nt < S and
p(Nt | ant = s) = pF(Nt − S) for Nt ≥ S. The remaining for-
mulae and an extensive discussion can be found in [16]. Note
that the πns

t have to be normalized with respect to the targets.

2.3. Maximizing the Q-function (M-Step)

Because the Q-function can be rewritten as a sum

Q(X;Xl)

=
S∑

s=0

{

log p
(

xs
0

)
Initialization

+
T∑

t=1

〈
logN

(
xs
t ; Fxs

t−1, D
)

Dynamics model

+
Nt∑

n=0

log
[
N

(
znt ; Hxs

t, Rn
t

)
πns
t

]
wlns
t

�}

Sensor model
(9)

over the targets, the maximization problem decomposes into
S independent problems: one summand per target. Let us de-
note one of the summands by Qs(X;Xl). Obviously the re-
sult of the maximization is not affected by multiplying the
summand by an arbitrary constant αls > 0 leading to

Qs
(
X;Xl

)

= log p
(

xs
0

)
αls Initialization

+
T∑

t=1

〈

logN
(

xs
t ; Fxs

t−1, D
)
αls Dynamics model

+
Nt∑

n=0

log
[
N

(
znt ; Hxs

t, Rn
t

)
πns
t

]
wlns
t αls

〉

Sensor model,
(10)

αls > 0 is constant over all scans t of the current data win-
dow and all measurements n. It can be varied with respect to

the targets s and the iteration index l. After shifting the data
window new constants αls can be chosen. The sum over the
measurements

Nt∑

n=0

log
[
N

(
znt ; Hxs

t , Rn
t

)
πns
t

]
wlns
t αls

=
Nt∑

n=0

logN
(

znt ; Hxs
t, Rn

t

)
wlns
t αls + const.n

(11)

contains expressions const.n := logπns
t w

ns
t α

l
s with n ∈ [0 :

Nt]. As these expressions do not depend on Xs, they are irrel-
evant for the maximization and can be ignored. Additionally
we are allowed to apply the monotonically increasing expo-
nential function, which also has no impact on the maximiza-
tion result for Qs(X;Xl). Then for each n, the summand in
the right part of (11) becomes

exp
(

logN
(

znt ; Hxs
t, Rn

t

)
wlns
t αls

)

= N
(

znt ; Hxs
t, Rn

t

)wlns
t αls

∝ 1
√|2πRn

t |
exp

(
ν
ns
t

(
Rn
t

)−1
wlns
t αlsν

ns
t
�)

∝ N
(

znt ; Hxs
t,

Rn
t

wlns
t αls

)
,

(12)

with ν
ns
t := znt − Hxs

t , the innovation of measurement znt .
Starting with the Q-function (10), we thus obtain

Nt∑

n=0

log
[
N

(
znt ; Hxs

t, Rn
t

)
πns
t

]
wlns
t αls ∝

Nt∏

n=0

N
(

znt ; Hxs
t,

Rn
t

wlns
t αls

)

(13)

for the measurement sums (over n). Analogously, with re-
spect to the time sum (over t), we have

T∑

t=1

logN
(

xs
t ; Fxs

t−1, D
)
αls ∝

T∏

t=1

N
(

xs
t ; Fxs

t−1,
D
αls

)
. (14)

Successively applying the product formula (A.3) to expres-
sion (13), finally yields relation (15) with evolution matrix F
and process noise covariance D. z̄lst and R̄ls

t denote synthetic
measurements and corresponding error covariances, respec-
tively:

expQs(Xs
0:T ;Xls

0:T)

∝ p(xs
0)α

l
s

T∏

t=1

N
(

xs
t ; Fxs

t−1,
D
αls

)
N

(
z̄lst ; Hxs

t, R̄ls
t

)

(15)

with

z̄lst = R̄ls
t

Nt∑

n=0

wlns
t αls(Rn

t )−1znt , R̄ls
t =

( Nt∑

n=0

wlns
t αls(Rn

t )−1

)−1

.

(16)

αls has no influence on a synthetic measurement. Because it is
constant over all measurements, it can be factored out of the
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weighted sum of measurements. Hence, as it is also contained
in R̄ls

t , it can be canceled down.
Considering the standard PMHT in a Cartesian system,

that is, the case αls = 1 without taking the measurement of
the type n = 0 into account and with R constant for all mea-
surements, one obtains centroid measurements

z̄lst =
∑ Nt

n=1w
lns
t znt

∑ Nt
n=1w

lns
t

with covariances R̄ls
t =

R
∑ Nt

n=1w
lns
t

.

(17)

As already pointed out in [14], the standard PMHT suf-
fers from the so-called hospitality problem: the association
weights wlns

t are normalized with respect to the targets.
Hence, summing them up over the measurements could re-
sult in a value greater than unity, which makes the synthetic
measurement covariance smaller than R. As a consequence,
the standard PMHT welcomes multiple measurements as
only one measurement of high accuracy.

To avoid the hospitality effect, we choose αls := 1/
(
∑ NT

n=0w
lns
T ) and make use of the measurement n = 0 rep-

resenting a missing detection as follows: Because the “mea-
surement” covariance for n = 0 is infinitively great, it is

(R0
t )
−1 ≈ 0, and the corresponding summands in (16) van-

ish. So in a Cartesian system, that is, with R constant for
all measurements, we finally obtain centroid measurements
with covariances

R̄ls
t =

R

αls
∑ Nt

n=1w
lns
t

, αls

NT∑

n=1

wlns
T =

NT∑

n=1

wlns
T∑ NT

n=0w
lns
T

< 1.

(18)

This has an intuitive interpretation: at the latest scan T of the
data window, the choice of αls leads to a renormalization of
the assignment weights wlns

T . It enforces the sum in the de-
nominator of (18) to be less than unity and hence mitigates
the hospitality problem at the head of the data window. The
posterior weight wl0s

T is given by π0s
T (see Section 2.2), which

is the probability of missing the target. Note that the integra-
tion of αls only has an impact on the synthetic measurement
covariances R̄ls

t and not on the synthetic measurements z̄lst . It
must be pointed out that for elapsed scans t = 1, . . . ,T − 1,
this choice of αls does not lead to a renormalization with re-
spect to the measurements and that at these scans the hos-
pitality problem is possible and can even be increased. But
in the past hospitality effects have a good chance to be cor-
rected by the Kalman retrodiction (Rauch-Tung-Striebel re-
cursion). The most sensitive PMHT estimation is at the head
of the data window, where our approach avoids hospitality.

The above considerations make clear that the PMHT
method of estimating Xs for each target is invariant under
the replacement Rn

t→Rn
t /α

l
s and D→D/αls. The arbitrary con-

stant αls is therefore an internal degree of freedom inherent
to PMHT. The standard formulation assumes αls = 1, for all
s, l. However, any other choice is legitimate, which affords a
multitude of PMHT variants.

Now let us return to the formulation of the PMHT al-
gorithm. The expression (15) is maximized by an ordinary

Kalman smoother that processes the synthetic values. As a re-
sult we get improved state estimates that flow into the follow-
ing E-Step. So for each target, the data of the current PMHT
window is processed as follows.

(1) Expectation-step: calculation of posterior weightwlns
t

The weights are calculated for all scans of the current win-
dow position. They are based on the measurements znt and
the state estimations xls

t . Afterwards these weights are used to
calculate the synthetic measurement z̄lst and corresponding
error covariances R̄ls

t .

(2) Maximization-step: application of a Kalman smoother

Using the synthetic values of the E-Step, a Kalman filter is
applied to the data window. The following retrodiction yields

new, improved estimation x(l+1)s
0:T .

After convergence, the prediction xs
T+1|T is to be calcu-

lated for the following window position. When all targets
have been processed, the window is shifted by one scan.

3. SEQUENTIAL TRACK EXTRACTION BY PMHT

We need a technique that extracts the tracks of an unknown
number of targets in the FoV. This should happen as fast
as possible and as reliably as requested. Compared with the
state estimation in track maintenance, the required algo-
rithm works on a higher level of abstraction, that is, we are
not looking for single target states but for whole tracks. A
sequential likelihood-ratio (LR) test is a technique that ana-
lyzes the inflowing measurements with this objective.

3.1. Likelihood ratio testing

In [12] a sequential LR test has been integrated into the
Bayesian MHT of well separated targets. Thereby the extrac-
tion of a track is modeled as a decision between two com-
peting hypotheses H0 and H1. Referring to the given series of
measurements Z1:t, they have the following meanings:

H1: the series Z1:t contains data from the target and possi-
bly clutter;

H0: no target exists, hence all data in Z1:t are false.

The aim is to decide as fast as possible and as reliably as re-
quested between H1 and H0. A sequential LR test consists in
successively updating the ratio LR1(t) (19) between the two
likelihood functions p(H1 | Z1:t) and p(H0 | Z1:t):

LR1(t) = p(Z1:t | H1)
p(Z1:t | H0)

= p(zt | Z1:t−1,H1)
p(zt | Z1:t−1,H0)

·LR(t − 1).

(19)

At each scan t the value LR1(t) is compared with two thresh-
olds A and B.

(i) If LR1(t) ≤ A, hypothesis H0 is accepted to be true.
(ii) If LR1(t) ≥ B, hypothesis H1 is accepted to be true.

(iii) Otherwise the algorithm cannot come to a decision yet
and has to wait for the measurements zt+1 of the next
scan to test LR1(t + 1).
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This general scheme was first proposed by Wald [18]. The
user has to preset the reliability of the algorithm by deter-
mining the thresholds A and B. Thereto they have to set the
related statistical decision errors P1 := Prob(accept H1 | H1)
and P0 := Prob(accept H1 | H0). P1 is the probability to
rightly identify a really existing target as a target, whereas P0

is the probability to wrongly assume the existence of a target
that does not exist. The thresholds A and B depend on the
errors P1 and P0 as follows:

A ≈ 1− P1

1− P0
, B ≈ P1

P0
. (20)

The smaller the permitted error, the longer the user has to
wait for the decision. For example, if P1 is chosen near unity
and P0 is chosen near zero (corresponding to a certainty near
100%), the runtime would by infinitively long. If the deci-
sion is requested immediately, all possible combinations of
measurements will be identified as targets.

The main result of [12] is the derivation of LR1(t) as a
sum over the (not normalized) weights of all possible inter-
pretations of Z1:t . An interpretation corresponds to a path
from the root to a leaf of the hypothesis tree. This allows a
seamless transition into the phase of track maintenance.

3.2. Likelihood-ratio calculation by PMHT

As the LR test has been successfully embedded into the
framework of Bayesian MHT, we are motivated to integrate it
into PMHT in an analogous manner. Like Bayesian MHT, the
PMHT counts among the multiscan approaches and hence
complies with the requirements of such an integration. This
section shows how the LR is calculated by PMHT as a by-
product.

The following derivation relies on the assumption, that
either S targets reside in the FoV or none. Accordingly we
define hypotheses HS and H0 as follows:

HS: the series Z1:t contains data from S targets and possibly
clutter;

H0: no targets exist, hence all data in Z1:t are false.
Assumption: HS and H0 exclude each other.

As the sensor output is modeled as a pair {zt,Nt}, we can
split it and treat Nt separately. So (19) leads to the following
equation:

LRS(t) = p
(
Z1:t | HS

)

p
(
Z1:t | H0

) = p
(

zt | Nt ,Z1:t−1,HS
)

p
(

zt | Nt,Z1:t−1,H0
)

︸ ︷︷ ︸
F1

· p
(
Nt | HS

)

p
(
Nt | H0

)

︸ ︷︷ ︸
F2

· p
(
Z1:t−1 | HS

)

p
(
Z1:t−1 | H0

) .

(21)

The key idea on adopting van Keuk’s sequential LR test is a
new formulation of the hypotheses HS and H0. That is, in fac-
tor F1 of (21), HS and H0 are defined by using the detection
probability PD as follows:

HS ≡ HS ∧ (PD � 0),

H0 ≡ HS ∧ (PD ≈ 0).
(22)

The decision between S and zero targets is now completely
controlled by PD (assumed to be equal for all targets). The
probabilities in factor F2 of (21) can be easily calculated. The
numerator can be written as

p
(
Nt | HS

) =
∑

s

p
(
Nt | ant = s

)
with

n ∈ [
0 : Nt

]
arbitrary, but fixed.

(23)

The summands p(Nt | ant = s) are the visibility weights that
have been introduced and briefly explained in Section 2.2.
The denominator represents the probability of having Nt

false measurements at scan t, which can be modeled by a
Poisson distribution. We denote it as pF(Nt). So we finally
get

LRS(t) = p
(

zt | Nt,Z1:t−1,HS,PD � 0
)

p
(

zt | Nt ,Z1:t−1,HS,PD ≈ 0
)

· p
(
Nt | HS

)

pF
(
Nt

) ·LRS(t − 1).

(24)

The PMHT algorithm works on the basis of synthetic mea-
surements. Let l be the number of the current PMHT itera-
tion and s ∈ [1 : S] one of the targets. At each time step t, the
processing of multiple measurements z0

t , . . . , zNt
t is put down

to the processing of a single measurement z̄lst . Thus in the se-
quential LR calculation by PMHT, we follow that principle
and consider the ratio between the likelihood functions with
synthetic measurements

LRS(t)“ = ”
p(z̄t | Nt,Z1:t−1,HS,PD � 0)
p(z̄t | Nt ,Z1:t−1,HS,PD ≈ 0)

︸ ︷︷ ︸
F1

· p(Nt | HS)
pF(Nt)

·LRS(t − 1),

(25)

which is a plausible heuristic approximation of (24). Thereby
the vector z̄t := (z̄1

t , . . . , z̄St ) denotes the synthetic measure-
ments of all targets at scan t after the last iteration (on the
window that ends at scan t).

In the following, we consider only the numerator of F1

in (25) and continue by including the target states xt via
marginalization (26). Then assuming that target states are
stochastically independent, we come to the product:

p
(

z̄t | Nt,Z1:t−1,HS,PD � 0
)

=
∫

p
(

z̄t, xt | Nt,Z1:t−1,HS,PD � 0
)
dxt

(26)

=
S∏

s=1

∫

p
(

z̄st, xs
t | Nt ,Z1:t−1,HS,PD � 0

)
dxs

t . (27)

We proceed by considering a single factor of (27). For the
sake of simplicity we forego the notation of PD � 0. A factor
corresponds to a target s ∈ [1 : S]. Let dst be the detection
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state of the target dst ≡ detected, ¬dst ≡ not detected). After
marginalization over dst we get

∫

p
(

z̄st , xs
t | Nt ,Z1:t−1,HS

)
dxs

t

=
∫ 〈

p
(

z̄st, xs
t ,d

s
t | Nt ,Z1:t−1,HS

)

+ p
(

z̄st , xs
t ,¬dst | Nt ,Z1:t−1,HS

)〉
dxs

t

=
∫ 〈

p
(

z̄st, xs
t | dst ,Nt,Z1:t−1,HS

)

× p
(
dst | Nt,Z1:t−1,HS

)

︸ ︷︷ ︸
=:πds

t

+ p
(

z̄st , xs
t | ¬dst ,Nt,Z1:t−1,HS

)

× p
(¬dst | Nt,Z1:t−1,HS

)

︸ ︷︷ ︸
=:π¬dst

〉
dxs

t .

(28)

The terms πds
t and π¬dst represent the detection probability

of a target, given the number of measurements Nt . And they
are somewhat similar to the visibility weights πns

t = p(ant =
s | Nt) in Section 2.2. But πns

t is normalized with respect to
the targets s ∈ [0 : S]. In (28) we consider a fixed target s,
that is, one of the factors in (27) and marginalize over the
targets detection state dst . Such a marginalization requires a
normalization with respect to the measurements, that is, for
n > 0 and s > 0 we have πns

t,renorm = πns
t /(π

0s
t +Nt·πns

t ) because
πns
t = p(ant = s | Nt) are the same for all real measurements

n ∈ [1 : Nt] in scan t:

π¬dst = p
(¬dst | Nt,Z1:t−1,HS

) = π0s
t,renorm,

πds
t = p

(
dst | Nt ,Z1:t−1,HS

) = Nt·πns
t,renorm.

(29)

Furthermore, πds
t and π¬dst are independent of the integra-

tion variable xs
t . Thus

. . .

= πds
t

∫ 〈
p
(

z̄st | xs
t ,d

s
t ,Nt,Z1:t−1,HS

)

︸ ︷︷ ︸
D1

× p
(

xs
t | dst ,Nt,Z1:t−1,HS

)

︸ ︷︷ ︸
D2

〉
dxs

t

+ π¬dst

∫ 〈
p
(

z̄st | xs
t ,¬dst ,Nt,Z1:t−1,HS

)

︸ ︷︷ ︸
D3

× p
(

xs
t | ¬dst ,Nt,Z1:t−1,HS

)

︸ ︷︷ ︸
D4

〉
dxs

t .

(30)

The probabilities D1 and D2 refer to the case of detecting the
target s. D1 is the likelihood function p(z̄st | xs

t ,d
s
t ,HS) of xs

t .
It is assumed to be Gaussian: N (z̄st; Hxs

t, R̄s
t). In D2 the state

xs
t is dependent of the measurements Z1:t−1 of elapsed scans.

So for the current scan t, the whole information of measure-
ments is contained in the prediction xs

t|t−1. As for the cur-
rent scan the measuring information is not given, the vari-
ables dst and Nt have no impact. So it makes sense to model
p(xs

t | Z1:t−1,HS) as a Gaussian N (xs
t ; xs

t|t−1, Ps
t|t−1) (see (31)
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Figure 1: Movement of an aircraft along a straight line.

1st summand). The probabilities D3 and D4 refer to the case
of missing the target. If the target has not been detected, D3 is
not constant. On every unit of the area |FoV|, z̄st can be found
with equal probability p(z̄st | xs

t ,¬dst ,HS) = 1/|FoV|. D4 stays
below the integral and vanishes because of the normalization
property (31), 2nd summand).

Using the product formula (A.1), (31) can be trans-
formed into (32):

∫

p
(

z̄st, xs
t | Nt ,Z1:t−1,HS

)
dxs

t

= · · ·

= πds
t

∫
〈
N

(
z̄st ; Hxs

t, R̄s
t

)
N

(
xs
t ; xs

t|t−1, Ps
t|t−1

)〉
dxs

t

+ π¬dst
1

|FoV|
∫

p
(

xs
t | . . .

)
dxs

t

(31)

= πds
t N

(
z̄st; Hxs

t|t−1, HPs
t|t−1H� + R̄s

t

)

︸ ︷︷ ︸
=:S̄st

∫

N
(

xs
t ; . . .

)
dxs

t

+ π¬dst
1

|FoV| .
(32)

Thereby S̄s
t is the synthetic innovation covariance after the

last PMHT iteration. Inserting (32) into (27) yields the fol-
lowing expression for factor F1 of (25):

p
(

z̄t | Nt ,Z1:t−1,HS,PD � 0
)

p
(

z̄t | Nt,Z1:t−1,HS,PD ≈ 0
)

=
S∏

s=1

πds
t N

(
z̄st; Hxs

t|t−1, S̄s
t

)
+ π¬dst (1/|FoV|)

πds
t,PD≈0︸ ︷︷ ︸
≈0

N
(

z̄st; Hxs
t|t−1, S̄s

t

)
+ π¬dst,PD≈0︸ ︷︷ ︸

≈1

(1/|FoV|) .

(33)



8 EURASIP Journal on Advances in Signal Processing

7000650060005500500045004000

1000

1500

2000

2500

3000

3500

4000

4

6

5
5

4
4

t F1 · F2

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

124307.556
3436.858
4807.037

0.025

(a)

5000450040003500300025002000

2000

2500

3000

3500

4000

4500

5000

4

8 8

8
8 7

7

6

t F1 · F2

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

124307.556
3436.858
4807.037

0.025
1139.579
2997.305

(b)

Figure 2: Missing detection (t = 6), aftereffect (t = 7), clutter (t = 8).

The hypothesis H0 is expressed by HS ∧ (PD ≈ 0). In the
case of no targets we have πds

t ≈ 0 and π¬dst ≈ 1. So (33) and
(25) yield our final LR formua:

LRS(t) ∝
S∏

s=1

(
πds
t N

(
z̄st ; Hxs

t|t−1, S̄s
t

)·|FoV| + π¬dst

)

︸ ︷︷ ︸
F1

· p
(
Nt | HS

)

pF
(
Nt

)

︸ ︷︷ ︸
F2

·LRS(t − 1).

(34)

Note that all ingredients of our LR formula are provided by
PMHT. Thus the LR calculation (34) is a by-product of the
PMHT iteration process.

3.3. Extracting a target cluster by PMHT

Sequential LR testing can well be extended to the problem of
extracting target clusters with an unknown number of targets
involved [12, 19]. To this end assume that the number K of

targets involved in a cluster is limited by Kmax (not too large).
The ratio of the probability p(H1 ∨H2 · · · ∨HK | Z1:t) that
a cluster consisting of at least one and at most K targets ex-
ists, versus the probability of having false returns only, can be
written as

p
(
H1 ∨ · · · ∨HK |Z1:t

)

p
(
H0|Z1:t

) =
∑ K

n=1p
(
Hn|Z1:t

)

p
(
H0|Z1:t

)

=
K∑

n=1

p
(
Z1:t|Hn

)

p
(
Z1:t|H0

)
p
(
Hn

)

p
(
H0

) .

(35)

We thus obtain in a natural way a generalized test
function LRK (t) = (1/K)

∑ k
n=1LRn(t) with LRn(t) =

p(Z1:t|Hn)/p(Z1:t|H0) to be calculated in analogy to the case
n = 1. In practical application the finite resolution capabil-
ities of the sensors involved have to be taken into account
[20]. It seems to be reasonable to interpret the normalized
individual likelihood-ratios LRn(t)/

∑ K
n=1LRn(t) = ct(n) as a

“cardinality,” that is as a measure of the probability of hav-
ing n objects in the cluster. An estimator for the number of
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Figure 3: Missing detection (t = 9).
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Figure 4: Stable tracking (t = 11, 12) and impact of clutter (t = 13).
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Figure 5: Vanishing of the aircraft at scan t = 17.

targets within the cluster is thus given by n̄ = ∑ K
n=1nc(n).

Using the results of Section 3.2, (35) can also be evaluated
within the PMHT framework.

4. EXPERIMENTAL EXAMPLE

This section shows the values of the product F1·F2 during the
tracking. We simulated a simple scenario with one target. A
rotating radar observes an aircraft in its FoV. The total length
of observation is 25 scans. The aircraft moves along a straight
line. The movement starts at scan 1 and ends at scan 16. Since
scan 17 we generated false measurements only. The distance
Δt between two consecutive scans is 5 seconds (time of cir-
culation). False measurements are generated with a density
ρF= 10−7.2 (in events per m2). For the aircraft we assumed
a detection probability PD = 0.8. Figure 1 shows the mea-
surements of scan 3 up to scan 17. The distance labels on
the axes refer to meters. The plot shows real measurements
as green crosses +, labeled by scan numbers. False alarms are
marked as red crosses +. They are plotted only within a ra-

dius of 3000 m around the true position. At the scans t = 6
and t = 9 the aircraft was not detected.

4.1. Implementation issue

Starting with a window length of 3, we let the PMHT window
grow up to a length of 7 scans and shifted it (by one scan)
until the head reached scan 25. At each window position 7
EM iterations were processed. In the following figures, we use
black color (+) for the prediction xs

t and its error ellipsoid.
The particular synthetic measurement z̄st is noted as a blue
cross ×.

From a formalistic point of view, the parameter αls has to
be constant over all scans t of the current data window and all
measurements n. During our experiments we found out that
the results could be improved using a time-adaptive param-
eter αls(t) that varies over the scans inside the data window.
Choosing αls(t) = 1/(

∑ Nt
n=0w

lns
t ), hospitality is avoided at all

scans of the current data window. The following results have
been generated with this extension.
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Figure 6: Scan 20 and 21.
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Figure 7: Scan 23.
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4.2. Discussion of the example

From scan 3 up to 5 there are neither missing detections
nor disturbing impacts by false measurements. The synthetic
measurement z̄st coincides quite well with the measurement
that refers to the aircraft. Hence we can observe high values
of F1·F2 (Figure 2(a)).

At scan 6, the aircraft was not detected. Hence z̄st =
(5114, 5285)� is far away from xs

t|t−1 and has a large measure-
ment error: R̄s

t(1, 1) = R̄s
t(2, 2) = 8.8017·1023 and R̄s

t(2, 1) =
R̄s
t(1, 2) = −2.1156·1023. According to this, F1·F2 is small

(<1).
Because of the missing detection at scan t = 6, the pre-

diction for scan 7 is bad, which is reflected by the blown up
error ellipsoid (Figure 2(b)). As a consequence the prediction
does not coincide with the synthetic measurement z̄st as well
as it did during the preceding scans, and so the correspond-
ing value of F1·F2 is worse. At t = 8, the PMHT recovered.
But near the measurement of the aircraft, there is a false one.
The synthetic measurement is the mean of both. It is farther
away from the prediction than the measurement of the air-
craft, and represents a different direction of movement. Thus
F1·F2 is smaller, compared with the scans t = 3, 4, 5. This
can be an indication for an impending lost of the track, be-
cause the estimations iteratively evolve a tendency towards
the synthetic measurement. Therefore, the prediction at scan
9 sheers to the left (Figure 3).

At scan 9 the aircraft was again not detected and we ob-
serve the same effect as at scan 6: F1·F2 < 1. Because of this
missing detection in combination with the sheering at scan
8, the prediction for scan 10 is relatively bad. According to
this—compared with the other scans the aircraft has been
detected at—the value of F1·F2 (276.007) is perspicuously
worse.

At the scans 11and 12 the track is again stable. The val-
ues of F1·F2 approximately lie at 4500 (Figure 4(a)). And the
false measurement at scan 13 again leads to a drift of the es-
timation. Therefore, the value of F1·F2 for scan 14 amounts
only to 1126.750 (Figure 4(b)). The PMHT again recovers at
the scans 15 and 16. In each case, the synthetic measurement
coincides with the measurement of the aircraft. And the pre-
diction hits this position quite well, as the product F1·F2 re-
flects (Figure 5(a)).

At scan 17 the aircraft has not been detected. But a false
measurement is picked up, that continues the track in an ex-
pedient way. At all further scans, the aircraft is also not de-
tected. Its track ends at scan 16 (or at latest 17). According to
this, F1·F2 is relatively small (< 1) (Figures 6 and 7).

At scan 20 the synthetic measurement is (by chance) lo-
cated in the further surrounding of the prediction. The con-
sequence is a slight increase of F1·F2 to 3.361 (Figure 6).

Table 1 shows all values of F1·F2, recapitulating. Follow-
ing [12] this value has to be multiplied with the previous LR
at each scan (successive update). We see that F1·F2 can be of a
relatively high magnitude, which causes a fast increase while
successively updating the LR. A possible means to reduce the
magnitude could be the use of logarithmic values. But this
idea has to be checked quite carefully because the logarithm
becomes negative in case of values that are smaller than unity.

Table 1: LR calculation for a track of a single target.

t F1·F2 t F1·F2

3 124307.556 15 2991.504

4 3436.858 16 3647.314

5 4807.037 17 1806.277

6 0.025 18 0.019

7 1139.579 19 0.081

8 2997.305 20 3.361

9 0.020 21 0.114

10 276.007 22 0.021

11 4556.095 23 0.439

12 4497.803 24 0.116

13 2354.912 25 0.019

14 1126.750 — —

However, the proposed test function affords track extraction,
reconfirmation and deletion within a PMHT track manage-
ment framework, analogously to the traditional MHT ap-
proach [12, 19].

5. CONCLUSIONS

For PMHT, a solution to the problem of track extraction and
deletion inspired in [12] has been proposed.

We presented an LR update formula for track extraction
by PMHT. Using this formula the sequential LR test is a by-
product of the PMHT iteration process on the current win-
dow. All ingredients of the formula are calculated by PMHT.
In a simulation the new formula was quantitatively discussed
scan by scan.

The test function is applicable within a general track
management framework, as it is presented in [7]. If we de-
cide for track extraction, we can immediately switch to track
maintenance. An open question in this context is the appro-
priate choice of the bounds A and B. Finally, the computa-
tional load of our approach will be an important topic.

APPENDIX

A. PRODUCT FORMULA FOR GAUSSIANS

The product formula transforms a product of Gaussians into
another product of Gaussians. There are two versions.

(1) Version 1:

N (x; Xy, Y)N (y; z, Z) = N (x; a, A)N (y; b, B) (A.1)

with

a = Xz,

A = XZX� + Y,

b = z + W(x−Xz),

B = Z−WAW�,

W= ZX�A−1.

(A.2)
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(2) Version 2:

N (x; y, Y)N (x; z, Z) = N (x; a, A)N (z; b, B) (A.3)

with

a = A
(

Y−1y + Z−1z
)
,

A = (Y−1 + Z−1)
−1

,

b = y,

B = Y + Z.

(A.4)
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