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1. INTRODUCTION

There are a wide variety of methods reported in the
literature for interest point and corner detection in grey-
level images. Current detection methods can be categorized
into three types: contour-based, parametric model-based,
and intensity-based methods. Contour-based methods first
extract contours and then search for maximal curvature or
inflexion points along the contour chains, or carry out some
polygonal approximation and then search for intersection
points. Contour-based methods have existed for some time
[1-6]. This work proposes a contour-based technique that is
inspired by the fact that there is a correspondence between
the wavelet decomposition and the EMD of a given signal,
for example, the wavelet decomposition of a signal gives
higher energy where the signal contains information, while
the intrinsic mode function (IMF) of the EMD shows higher
frequency content at the same locations. Corner detection
schemes using the wavelet transform (WT) are popular due
to the fact that the WT is able to decompose an input signal
into smooth and detailed parts by low-pass and high-pass
filters at multiresolution levels [7]. In this manner, local
deviations are easily captured at various detailed decompo-

sition levels. Several wavelet-based approaches are reported
in [8-15].

Parametric model methods fit a parametric intensity
model to the signal. They often provide subpixel accuracy,
but are limited to specific types of interest points, for
example, L-corners. A parametric model is used in [16-19].
Intensity-based methods compute a measure that indicates
the presence of an interest point directly from the grey values.
This type of detector does not depend on edge detection or
mathematical models [20-30].

This paper presents a novel contour-based interest point
detector, which is largely affine transformation invariant.
The main contribution of this work is the introduction of
the 1D EMD [31] for extracting feature points from edges.
In addition, a new scheme for edge thinning is proposed.
Specifically, edge detection is performed using morpholog-
ical gradient operator [32], followed by edge thinning based
on edge thickness in the horizontal and vertical directions.
To detect true corner points from the circular arcs, the 2D
boundaries of an object are represented by the 1D tangent
angles of the boundary point coordinates. Then eigenvectors
of the covariance matrix of the coordinates are calculated
over a small boundary segment [15, 33]. Based on the fact
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that true corners result in stronger tangent variations, the
1D EMD is utilized to decompose the 1D tangent angles and
capture the irregular angle variations. Finally, the locations of
the true feature points are identified by comparing the local
frequency content of the first intrinsic mode function (IMF)
of the 1D decomposed signal with a predefined threshold.

A requirement for good feature point detection is that
the detector be invariant to image transformations and
yields the same detected points for different viewpoints.
The proposed method is largely invariant to significant
affine transformations including large rotations and scale
changes. Such transformations introduce significant changes
in point locations as well as in the scale and the shape of the
neighborhoods of interest points. Our approach addresses
these problems simultaneously and offers invariance to
geometric transformation. Thus, the points detected in the
original image and points detected after the transformation
of the image commute. Such points have often been called
invariant feature points in the literature, though in principle
they change covariantly with the transformation. Thus, even
though the regions themselves are covariant, the normalized
image pattern they cover and the feature descriptors derived
from them are typically invariant.

In this paper, we evaluate the proposed method utilizing
the “repeatability” [34] criteria, which directly measures the
quality of the detected feature points for tasks such as image
matching, object recognition, and 3D reconstruction. It is
complementary to localization accuracy, which is relevant
for tasks such as camera calibration and 3D reconstruction
of specific scene points. Repeatability and localization are
conflicting criteria; smoothing improves repeatability but
degrades localization [35]. Repeatability explicitly compares
the geometrical stability of the detected interest points
between different images of a given scene taken under
varying viewing conditions. An interest point is “repeated”
if the 3D scene point detected in the first image is also
accurately detected in the transformed image. The proposed
detector is compared to five existing methods that have
been shown to yield good results. Utilizing repeatability, the
proposed method is shown to yield comparable to improved
results.

The remainder of the paper is organized as follows:
the proposed corner detection algorithm is described in
Section 2. Experimental results along with the compari-
son to five other existing methods are demonstrated in
Section 3. Concluding remarks and recommendations for
future improvement are given in Section 4.

2. PROPOSED ALGORITHM
2.1. Motivation

It is reported that the wavelet transform is a robust scheme
for feature points detection due to its ability to decompose
an input signal into smooth and detailed components. This
fact motivates the consideration of the EMD for interest. The
EMD technique was developed recently to analyze the time-
frequency distribution of nonlinear and nonstationary data.
The EMD is an adaptive decomposition through which any
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FIGURE 1: Block diagram of the proposed algorithm.
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signal can be decomposed into its IMFs that provide well-
defined instantaneous frequency information of the signal.

Unlike Fourier or wavelet techniques, the EMD does not
assume the form of the underlying oscillatory modes or basis
functions. For a given signal, the wavelet decomposition is
less compact and physically meaningful than the EMD results
[36]. The EMD decomposition method is adaptive and
highly efficient. Since the decomposition is based on the local
characteristic of the data, it is applicable to nonlinear and
nonstationary processes. Experimental results presented here
show that, for feature point selection, the EMD is also robust
and gives better performance than wavelet approaches.

In the proposed approach, we select the feature points
from the edges and, to make the selection process robust, we
use morphological edge detection along with edge thinning.
The methodology of the proposed method is to use an
eigenvector of the covariance matrix for a boundary point
over a small region of support (ROS) on a small boundary
segment as a curvature function for feature point detection.
Thus, we perform the EMD on small edge fragment after
edge detection and thinning operations. The derived edge
detection and thinning method is used in lieu of traditional
method, such as Canny edge detection [35], because it
returns edge segments rather than contiguous edge lines,
which is beneficial in feature point detection.

2.2. The EMD-based feature point determination

A block diagram of the proposed algorithm is shown in
Figure 1, and the algorithm steps are summarized as follows.

After acquiring the image, edge detection is performed
based on mathematical morphology [32] applied to the
intensity image. The intensity image is first blurred by



Jesmin Farzana Khan et al.

open-close and close-open filters [37]. Next, a morphological
gradient operator is applied to the blurred image, which
gives symmetric edges between foreground and background
regions, and the resulting image is converted to binary
edge map by a global nonhistogram-based thresholding
technique [38]. A new edge thinning algorithm is applied
to this binary image to obtain fine, narrow, and well-
defined object boundaries. Next, a novel technique for
selecting feature points from object boundaries based on
the EMD is employed. In this work, we represent edges
as a set of straight or curved line fragments that are used
to extract local curvature by analyzing the eigenvectors of
covariance matrices using the 1D EMD. Specifically, each
small 2D boundary segment is transformed to a 1D 0 —
P representation (where 6 is the tangent angle variations
of the arc length, P, along the object’s boundary) that is
decomposed using the 1D EMD. At the true feature points,
the first IMF signal of the EMD shows distinctly higher
frequency contents than at the points which carry less, or no,
information. Thus, points where the frequency measure of
the first IMF signal is greater than a predefined threshold are
set as interest points. The following subsections discuss each
step of the algorithm in detail.

2.2.1.  Morphological edge detection

Most classical edge detectors such as Laplacian of Gaussian
(LoG) [39] and Canny [35] are based on differential opera-
tions and hence are primarily effective in detecting step edge.
In contrast to classical techniques, morphological operations
[37] are highly effective in detecting different types of
features. In this paper, a morphological scanning edge
detector (MSED) [32] is applied. The operator is insensitive
to skew and orientation, free from artifacts introduced by
both global and fixed size block-based local thresholding,
and robust to noise. It has been reported that edge features
[40] can better handle lighting and scale variations in natural
scene images than texture features [41, 42]; therefore, we
choose to use an edge-based approach in this study.

An efficient morphological edge detection scheme is
applied to the the intensity image, I, as follows [32].
The image I is first blurred (to reduce false edges and
oversegmentation) using open-close and close-open filters
[37]. The final blurred image, I, is the average of the outputs
of these two filters,

B (BID)C+B (BIC)O

I = )
b 2

(1)
where B is the 3 X 3 eight-connected structuring element,
and I, and pl. denote the opening and closing of I by the
structuring element B, respectively. Next, the morphological
gradient operator [43] is applied to the blurred image I,
resulting in an image,

I = 63 (Ib) - eB (Ib)’ (2)

where 02 and e and are the dilation and erosion operators,
respectively, utilizing the 3 X 3 eight-connected structuring
element B. The morphological gradient is an edge-strength

extraction operator that gives symmetric edges between the
foreground and background regions. The resulting image,
I, is then thresholded to obtain a binary edge mask. A global
nonhistogram-based thresholding technique is incorporated
rather than local (adaptive) thresholding [38]. The threshold
level, y, is set as,

_ Z (Ies'c)
Y= Z c > (3)
where denotes pixel-wise multiplication and ¢ =
max(|gi# Ll g% * L) also g1 = [~101]; & = [~101]",

and x* denotes 2D linear convolution. The binary edge
image I, is then given by,

1 ifls >y,

c {O otherwise. )
To thin the edges, the morphological edge map is scanned
along the horizontal and vertical directions to reduce the
width of the edges to a single pixel by through erosion.
During horizontal scanning, all the nonzero neighborhood
pixels of a nonzero edge pixel in a horizontal window 1 X wy,
are set to 0. The resulting image is I,

if I, (xia )/]) #0,
Ine (xis y5) = L(xi, yj)

then
LoWwh W
Ine (i, yk) = 05 forkekﬁ-{] - 7’“, j+ 7*’}
(5)
Similar operations in the vertical direction yield
if I (xi, yj) #0,
Ine (xi> yj) = L(xi, yj)
then
LoWwh W
Ine (xi, yk) = 05 forkekﬁ-{J - 7’“, j+ 7*’}
(6)

The maximum of I, and L is set as the thinned binary edge
image, i, resulting from the edge thinning operation, I =
max(Ihe, Ive). The image I, may still contain isolated noisy
spurious edges. To remove these edge, segments of length
less than N are deleted. Let n sequential points describe an
edge segment P in I such that P = {p; = (x5 yi);i =
1,2,3- - -n}. Then

Lie(xi, ;) =0 for (x;, y:) € P, n < N. (7)

The resulting final binary edge image, If., contains 1pixel
width boundaries in the image.

As an example, the intensity image, the morphological
edge strength extracted image, gradient image after global
thresholding, and the final edge image after thinning and
elimination spurious edges are shown in Figures 2(a), 2(b),
2(c), and 2(d), respectively.
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Ficure 2: (a) Intensity image, (b) morphological edge strength
image, (c) morphological edge after thresholding, (d) final edge
image after thinning, (e) Canny edge image for a low threshold and
(f) Canny edge image for a high threshold.

The reason for not using an existing edge detection
method, for example, Canny edge detection method [35], is
that Canny’s method yields extraneous boundaries as shown
in Figure 2(e). Though for a higher threshold Canny method
gives fewer boundaries. In using this approach, however, the
threshold needs to be determined by hand for each image.
Moreover, even by setting a different threshold it does not
return edge segments but rather long continuous edges and
connected edges between two objects. The methodology of
the proposed algorithm is to use the covariance matrix for a
boundary point over a small region of support (ROS), on a
small boundary segment, as a curvature function for feature
point detection. It has been found that the morphological
framework and edge thinning scheme yields edge segments,
which facilitates the extraction of feature points.

2.2.2. Empirical mode decomposition

The EMD decomposes a signal into a finite number of (zero
mean) frequency and amplitude modulated signals called
IMFs. The first IMF contains the highest local frequencies
of oscillation while the final IMEF, or the residue, contains a
single extremum, a monotonic trend, or simply a constant.

The basic idea embodied in the EMD analysis, as introduced
by Huang et al. [31], is to allow for an adaptive and
unsupervised representation of the intrinsic components of
linear and nonlinear signals, based purely on the properties
observed in the data without appealing to the concept of
stationarity. Although the EMD is a relatively new data
analysis technique, its power and simplicity have encouraged
its application in a myriad of fields, including almost all areas
of signal processing, image processing, computer vision, and
medical analysis [44—48].

2.2.3. Feature points extraction

After obtaining the binary edge image, Ife, the feature
points along the boundaries of objects must be determined.
If the boundary of an object involves both straight lines
and circular arcs, spurious corners may be detected at
circular arcs by boundary-based approaches. To overcome
this shortcoming, Tsai et al. [33] introduced the eigenvalues
of a covariance matrix for a boundary point, over a small
region of support (ROS) on a small boundary segment, as a
curvature function for feature point detection. We adopt this
approach in order to retain the robust merits of covariance
matrix in feature point detection. However, instead of using
multiple eigenvalues, the principal eigenvector is used in this
work, because the dominant orientation of any pixel in the
local neighborhood can be either denoted as the argument
of the principal eigenvector or by using the ratio between
two eigenvalues. This technique is applied to each segment
of the 2D boundaries of the edge image and feature points
are extracted from each segment. As this approach considers
a small boundary segment as a new curvature function for
feature detection, image noise and quantization effect are
readily eliminated.

The 1D wavelet transform has been utilized as a robust
scheme in feature point detection due to its excellent
local deviations capturing capability. In this work, the 2D
boundaries of an object are initially transformed toa 1D 6—P
representation. Then, 1D 6 — P signal is used as input for
the 1D EMD to detect the local deviations as measured by
the number of zero crossing points of the first IMF. In the
following, we present the procedure of finding the tangent
angle of the boundary point.

2.2.4. 1D 6 — prepresentation of boundary segment

From the binary edge image, It the x-y coordinates of each
point of a boundary segment of an object are first extracted
into an array. Let a boundary P of an object be described by n
sequential digital points, P = {p; = (x;, y;); i = 1,2,3 - - - n},
where piy; is adjacent to p; on P. Let N(p;) denote a small
boundary segment of P with point p; is at the center of
N;(pi) over the ROS between points p;_; and pjs for some
integer s. That is, Ny(p;) = {pj : j € {i —s,i+s}}. Therefore,
the covariance matrix M(p;) for point p; is estimated by the
boundary points coordinates within Ny(p;) [49];

M(pi) = [’” ’”} (8)

map1 my;
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respectively. Therefore, the tangent angle of point p;, denoted
by 0(p;), is simply defined as follows:

tan@(pl) _ ()Ll _mll)
/\mlzm (10)
) = AT
0(p:) arctan( o )

In general, the magnitude of 0(p;) is between —7m/2
and /2. However, in order to avoid the large variation for
two adjacent boundary points due to quantization effects
[8, 10], O(p;) is defined as between 0 and 7/2. That is,
0(p;) = |arctan((A; — my1)/m2)|. However, if m, equals to
0, then 0(p;) is set to 71/2 to avoid divided by zero situations.
Therefore, the angle of a boundary point p; can be calculated
by the eigenvector E; of M(p;) and the above expression for

0(pi).

2.2.5. Detection procedure

Consider an n;-point digital boundary, P = {p; = (x;, y:);
i = 1,2,3---m}, traversing points (x1, ¥1), (X2, ¥2)5...»
(Xn,> ¥n,)> and circumventing the boundary in the counter-
clockwise direction.For each p; sequence, there corresponds
a 1D 0 — P signal, 0(p;), 1D wavelet signal, Y(p;), and a 1D
first IMF signal of the EMD, X (p;).

As an example, we have chosen a binary image with one
object. Figure 3(a) shows a binary image of an artificial “h”-
shape object. Figure 3(b) presents the edge image of that
object with one boundary involving n; = 273 boundary
points. The character “+” in Figure 3(b) denotes the starting
boundary point (x;, y;) and the arrow indicates the direction
of boundary following. The corresponding 1D 6 — P
representation of the object boundary, 0(p;) is shown at the
top of Figure 3(c), which is used as an input signal to both the

(c)

Final points from

wavelet decomposition Final points from EMD
20 20
40 40
60 60
80 80
100 Lo ) 117 S ——
10 30 50 70 90 10 30 50 70 90

(d) (e)

FIGURE 3: (a) Binary image of letter “h”; (b) starting boundary point
and direction of boundary following; (c) the 1D 6—P representation
of the “h”-shape object (top), haar wavelet decomposition at first
decomposition level (middle), and the first IMF of the EMD
(bottom); (d) feature points obtained from the location of distinct
wavelet coefficients; and (e) feature points obtained from the
frequency content of the first IMF of the EMD.

1D wavelet decomposition utilizing the “harr” basis function
and the 1D empirical mode decomposition. The middle plot
of Figure 3(c) shows 1D wavelet coefficients at the finest
(first) detailed decomposition level, Y(p;). The bottom plot
of Figure 3(c) is the first IMF X (p;) obtained from 6(p;). The
correspondence between the wavelet decomposition and the
first IMF of the EMD for the 1D input signal can clearly be
observed from Figure 3(c). Both the wavelet coefficients and
the frequency of the first IMF are distinctly higher at the same
points of that original 1D signal. The finest scale wavelet
energies are distinctly higher at the true feature points than at
the smooth regions. Feature points extracted from the binary
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image of letter “h” based on the 1D wavelet decomposition
method are shown in Figure 3(d).

In the EMD case, the first IMF shows distinctly higher
frequency content at true feature points than at straight lines.
The algorithm for finding true interest points makes four
passes through the IMF signal. First, points are selected if
they exceed a minimum number of zero crossings around
them. Second, if two selected points are adjacent then one
is deleted based on the concentration of zero crossings.
During the third pass, the selected points that are not
locally maximum in the original intensity image in its 3 X 3
neighborhood are deleted. In the final pass, the subset of
pixels are kept such that the minimum distance between any
pair of points is larger than a given threshold.

Let Z(p;) be the set of zero-crossing points of the IMF
around p;:

Z(pi) = {pj : X (pj-1)X(pjs1) < 0};

for'e{i—% i+%} (1D
J 2T

where W, defines window centered at p;. If for a point,
the number of zero crossings is greater than a predefined
threshold, th, (in our work, the threshold is 1/3 of the
maximum number of zero crossings in the IMF signal), that
point is likely a feature point. This is the first selection of the
feature points from the object boundary, which forms the set
F, C P:

Fi = {pi: Z(p;) > th;}

. (12)
= {Pl = (xiﬁyi); 1= 1>2>3) s, iy < 1’11},
where n; is the number of all the boundary points and n,
is the number of selected points after discarding redundant
points.

To discard redundant points, we check whether several
neighboring points have the same number of zero-crossing
points over a Wy = 1 x 11 size window, and we keep the
points among those that have the most concentrated zero-
crossing points. Hence for each point over the window W,
we calculate the sum of the distances from all the zero-
crossing points to the point under consideration, p;,

=it WL/2

Z lpi — pjl. (13)

j=i-W./2

S(pi) =

If ;, C F; is the set of featge points after discarding
redundant points from F, then F, N F; is the set of discarded
points:

FynFi = {pj: Z(p;) = Z(pi) and S(p;)#min{S(p;)}}

w w.
forj € {'——5,'+—5},
or j 1 2 1 2
F2 = {p1: (xi))/i)§i: 172)3)' T )n3:n3<n2<7’l1},
(14)

where n3 is the number of selected points after discarding
redundant points from Fj.

FIGURE 4: A synthetic image.

Finally, from the points in F,, we retain those points that
are locally maximum in their W,,, = 3 X 3 neighborhood
with the restriction that the distance between any two feature
points is larger than a given threshold (this is set to 5 pixels
in our experiment). Thus, F3 C F; is the set of feature points
that are locally maximum in the edge image, I, and Fy C F3
is the final set of feature points after discarding those closely
spaced points:

F3 = {pi=(xi, yi) : Ine(xi, i) = max Iie(xj5 y) 1,

(FEEWo/ 2,4 W/2}

Fs=1{pi=(x,yi);i=1,23---ng:ns<ns<m<mj,
(15)

where n4 is the number of selected points after discarding
redundant points from F;:

Fp={pi: |pi—pi-1| >5pixels, and | p;— pis1 | > 5 pixels},
Fp={pi=(xi,yi); i=1,2,3- - - ns i ns<ny<nz<my<m},
(16)

where ns is the number of selected points after discarding
redundant points from Fs.

Following the above procedure, the extracted final feature
points, Fy for the artificial “h”-shape object are shown in
Figure 3(e). By comparing the final feature point extraction
results shown in Figures 3(d) and 3(e), it can be said that
the IMF is richer in containing useful information about
the original signal than the wavelet decomposition. That
is, the EMD determined feature points are found at all the
curvatures of the object whereas the wavelet decomposition
approach misses some curvatures.

For an image with more than one object and objects
with complicated shape, we perform the EMD on each
edge fragment to extract local curvature following the above
procedure. Thus, we find feature points for each fragment
of edge independently and the final feature points are the
accumulation of all the points obtained from all the edge
boundary segments.

3. EXPERIMENTAL RESULTS

Results of experiments conducted to test the efficacy of
the proposed corner detection algorithm are provided. In
order to test the immunity of the proposed algorithm to
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FIGURe 5: Feature points detected in the synthetic image by
(a) Harris method (b) Lowe’s method, (c) Tomasi’s method,
(d) Loupias’s technique, (e) Yeh’s algorithm, and (f) proposed
technique.

transformations, the original images are scaled, rotated, and
sheared. Stability to image noise is also tested. Additionally,
the repeatability rates of five interest point detectors are
compared with the presented method under different image
rotation and scale changes. Finally, analysis is performed on
parameter sensitivity of the algorithm.

For comparison, we have chosen five detectors that
are reported to offer good performance. Among the five
chosen detectors, Harris’s [24], Lowe’s [30], and Tomasi’s
methods [25] are intensity-based methods.These are chosen
because Harris’s method has been reported to be better
than any other detector, Lowe’s algorithm also known as
SIFT (scale invariant feature transform) is the best scale
invariant detector, and Tomasi’s detector is the best for
tracking applications. The other two detectors [13, 15]
are chosen because (1) they are contour-based methods
like the proposed method and (2) they use the wavelet
decomposition.

The above mentioned methods and the proposed algo-
rithm are first applied to a synthetic image consisting of
horizontal, vertical, and slanted lines; and different types
of corners. As shown in Figure 4, this synthetic image
contains both prominent and faint edges. The feature
points detected by Harris’s, Lowe’s, Tomasi’s, Loupias’s, and

FIGURE 6: Feature points detected by (a) Harris method (b) Lowe’s
method, (c) Tomasi’s method, (d) Loupias’s technique, (e) Yeh’s
algorithm, and (f) proposed technique.

Yeh’s methods are shown in Figures 5(a), 5(b), 5(c), 5(d),
and 5(e), respectively. The interest points extracted by the
presented algorithm are given in Figure 5(f). Even though the
proposed method identifies fewer number of feature points
than some of the presented approaches, it is interesting to
observe that these feature points are distributed along all
edges, boundaries, and corners of interest.This is true for
prominent boundaries and edges, as well as subtle interior
edges. Many object corners and boundaries are missed by the
other methods, especially the faint interior edges. Thus, the
proposed method has produced the most judicious feature
points, placing them logically along the structures of interest.

Simulation results for the five methods on a real image
are presented in Figure 6. For the reference image shown in
Figure 2(a), feature points extracted by Harris’s approach,
Lowe’s procedure, Tomasi’s method, Loupias’s technique,
and Yeh’s algorithm are shown in Figures 6(a), 6(b), 6(c),
6(d), and 6(e), respectively. The points detected by the
presented method are given in Figure 6(f). From this figure,
it can be seen that points selected by the proposed method
cover all the curvatures of object boundaries and yields the
most true corner points.

To evaluate detector rotation invariance, Figures 7 and
8 show the detection results for two rotated versions of
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FIGURE 7: Feature points detected in 40° rotated image by (a) Harris
method (b) Lowe’s method, (c¢) Tomasi’s method, (d) Loupias’s
technique, (e) Yeh’s algorithm, and (f) proposed technique.

the reference image. Figures 7(f) and 8(f) give the results
of the proposed method, where the rotation angle for the
images are 40° and 110° for the images in Figures 7 and 8,
respectively. The performance of Harris’s, Lowe’s, Tomasi’s,
Loupias’s, and Yeh’s methods are given in Figures 7(a), 7(b),
7(c), 7(d), and 7(e), respectively, for 40° rotation and in
Figures 8(a), 8(b), 8(c), 8(d), and 8(e), for 110° rotation.
From the figures, it is observed that Harris’s, Lowe’s, and the
proposed method give the best result for both rotations. The
performance of Tomasi’s technique is better than Loupias’s
and Yeh’s methods.

The effect of image scale change on detection result is
tested and demonstrated in Figures 9 and 10. The points
detected by the proposed technique are shown in Figures
9(f) and 10(f), where the scale changes are 1.5 and 3.4,
respectively. Points detected by Harris’s, Lowe’s, Tomasi’s,
Loupias’s, and Yeh’s methods are presented in Figures 9(a),
9(b), 9(c), 9(d), and 9(e), respectively for the scale change
1.5 and in Figures 10(a), 10(b), 10(c), 10(d), and 10(e),
respectively for the scale change 3.4. It can be seen from the
figures that all the methods are scale invariant.

To evaluate the functioning of all five detectors as affine
invariant systems, nonuniform scaling is applied in some
directions to have shearing in the reference image shown in

FiGUure 8: Feature points detected in 110° rotated image by
(a) Harris method (b) Lowe’s method, (¢) Tomasi’s method,
(d) Loupias’s technique, (e) Yeh’s algorithm, and (f) proposed
technique.

Figure 2(a). Figure 11(f) displays the feature points detected
in the sheared image by the proposed method. The results of
detection by Harris’s, Lowe’s, Tomasi’s, Loupias’s, and Yeh’s
methods are presented in Figures 11(a), 11(b), 11(c), 11(d),
and 11(e), respectively. By examining the figure, it can be
said that the proposed method performs satisfactorily for
detecting interest points from the sheared image as well.

To check the performance with noise, we have added
Gaussian noise to the original image. For a noisy image with
a SNR of 25 dB, Figure 12(f) presents the points detected by
the proposed method. The performance of Harris’s, Lowe’s,
Tomasi’s, Loupias’s, and Yeh’s methods are given in Figures
12(a), 12(b), 12(c), 12(d), and 12(e), respectively, for the
same level of noise. The results demonstrate that except for
Tomasi’s technique, the other five methods work well in the
presence of noise.

From the figures, it can be concluded that the proposed
method can be used as an affine and scale invariant detector.
To complement the subjective evaluations, we present a
quantitative performance comparison of the proposed affine
and scale invariant detector and other detectors. The stability
and accuracy of the detectors are evaluated using the
repeatability criterion [34]. The repeatability score for a
given pair of images is the percentage of corresponding
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FIGURE 9: Feature points detected in 1.5 times scaled image by
(a) Harris method (b) Lowe’s method, (c) Tomasi’s method,
(d) Loupias’s technique, (e) Yeh’s algorithm, and (f) proposed
technique.

points detected in those images under different geometric
and photometric transformations. We take into account only
the points located in the part of the scene present in both
images. Measuring the repeatability rate within 1.5 pixels or
less, the probability that two points are accidentally within
the error distance is negligible.

We first compare the detectors for image rotation
followed by scale change and additive noise. The repeatability
rate as a function of the angle of image rotation is displayed
in Figure 13(a). The rotation angles vary between 0° and
180°. Under repeatability, Harris’s and Lowe’s methods give
the best results for all rotations, where these algorithms
obtain a repeatability rate of about 82% and 77%, respec-
tively. From the observation of the plot of the repeatability
rate with image rotation, the proposed technique does not
outperform Harris method or SIFT algorithm, but it yields
a repeatability rate of about 70% for all rotations. Notably,
it offers better performance than Tomasi’s, Loupious’s, and
Yeh'’s techniques, where these approaches offer a repeatability
rate of about 60%, 50%, and 40%, respectively.

Figure 13(b) shows the repeatability rate as a function
of scale changes. The results show that all the detectors
are scale sensitive except Lowe’s method. As the name
implies, the SIFT algorithm proposed by Lowe offers the
best performance with scale change. This method is the least

FiGURe 10: Feature points detected in 3.4 times scaled image
by (a) Harris method (b) Lowe’s method, (c) Tomasi’s method,
(d) Loupias’s technique, (e) Yeh’s algorithm, and (f) proposed
technique.

dependent on the change in scale. The Harris’s, Tomasi’s,
and the proposed detectors give reasonable results, with the
repeatability rate as a decreasing function of scale change.
Laopious’s and Yeh’s methods are very sensitive to scale
change and the results of these methods are hardly usable.

To study repeatability in the presence of image noise,
the repeatability rate is displayed as a function of SNR. For
performance evaluation with noise, the SNR is varied from
35dB to 21 dB and the results are displayed in Figure 13(c).
All the detectors give reasonable results in the additive noise
cases, with the exception of Tomasi’s method. Harris’s and
Laopious’s methods give the best results followed by the
proposed and then by Lowe’s, Yeh’s, and Tomasi’s techniques.
The proposed method obtains a repeatability rate of nearly
70% for all levels of noise considered.

For the evaluation of detection performance, the feature
points extracted by the proposed method and the five other
algorithms are presented for two more images in Figures 14
and 15, where the detected points are superimposed on the
original image to evaluate the interest points location. From
those figures, it is observed that the proposed method extract
points where variations occur in the image, that is, where the
image information is supposed to be the most important.
Additionally, the set of detected interest points are not
cluttered in a few regions rather spread out at different parts
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FiGURre 11: Feature points detected in sheared image by (a) Harris
method (b) Lowe’s method, (c) Tomasi’s method, (d) Loupias’s
technique, (e) Yeh’s algorithm, and (f) proposed technique.

of the image. Most importantly, the proposed method covers
all the curvatures of object boundaries and yields at the true
features, that is, the edges, ridges, and corners. Accordingly,
the extracted points detect the structure of the scene and lead
to a complete image representation.

Analysis is done on the sensitivity to algorithm param-
eters. Most existing interest point detectors depend on the
choice of some parameters. The threshold in Harris’s method
is chosen by trial and error depending on the problem at
hand. The number of points detected by the SIFT algorithm
varies significantly with the change in image intensity. For
example, for the image used in the paper, the number of
detected feature points by SIFT is 862, if the input image
is not normalized and it is 363 if the same input image is
normalized.

In the proposed method there is one threshold, th, which
determines the set of the first selection of the interest points
such that any point will be selected if it exceeds a minimum
number of zero crossings around it. This threshold is not
a function of image intensity, rather it is the function of
number of zero-crossing points of an IMF and thus, it is
different for each edge segment of an image. In the paper, this
threshold has been set as the 1/3 of the maximum number
of zero crossings present in an IMF signal and this choice

FIGURE 12: (a) Feature points detected in noisy image with SNR
= 25dB by (a) Harris method (b) Lowe’s method, (c) Tomasi’s
method, (d) Loupias’s technique, (e) Yeh’s algorithm, and (f)
proposed technique.

is independent of the image. As this threshold selects the
preliminary set of the feature points, any value which is equal
to or smaller than the value yields the same result. Choosing
the value for this threshold is not stringent and has minor
effect on the final set of extracted feature points. Because
the preliminary feature points selected by this threshold
go through three more passes for the redundant points
to be discarded. The two more thresholds in those passes
define the size of the local neighborhood of a pixel. Thus,
those thresholds are not a function of image intensity, but
rather image size. The value of those two thresholds chosen
in the paper work well for most of the images we come
across in practice. We have tested Harris method and the
proposed algorithm for different values of the threshold,
th,. Table 1 gives the number of detected points for Harris
and the proposed method as a function of the threshold
(th, = Threshold X (1/3) of the maximum number of zero
crossings).

After the examination of the overall detection results, it
can be claimed that the proposed method compares favor-
ably against other well-known methods. Based on the plot
for the repeatability rate, the performance of the proposed
technique is the least dependent on transformations and
noise, which is a desirable and attractive characteristic for
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FiGure 13: Plot for the repeatability rate as a function of (a) rotation angle, (b) change in scale, and (c) noise level.

FIGURE 14: Feature points detected in the second image by
(a) Harris method (b) Lowe’s method, (c) Tomasi’s method,
(d) Loupias’s technique, (e) Yeh’s algorithm, and (f) proposed
technique.

any feature point detector. Though the proposed technique
does not outperform Harris method or SIFT algorithm, it
yields better results than Tomasi’s, Loupious’s, and Yeh’s
techniques. Notably, it offers better performance than the

()

FIGURE 15: Feature points detected in the third image by (a) Harris
method (b) Lowe’s method, (c) Tomasi’s method, (d) Loupias’s
technique, (e) Yel’s algorithm, and (f) proposed technique.

other two contour-based methods: Loupious’s and Yeh’s
approaches. Therefore, the proposed algorithm can be
expected to perform well for applications where true inter-
est points must correspond to image contours or object
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FIGURE 16: Interest points detected from the binary image of letter
“h” by (a) the SIFT algorithm and (b) the proposed algorithm.

TasLe 1: Effect of threshold on the number of detected points.

Threshold 1 09 08 07 06 05 04 03 02 0.1

Harris 303 308 314 322 326 334 346 362 377 391
method
Proposed 303 353 303 303 303 303 303 303 303 303
method

boundaries for further processing. As an example, for a
binary image, interest points should not be found in the
uniform region of constant intensity, that is, either in the
background or foreground. Rather interest points must lie
only on the edges. As shown in Figure 16, for the binary
image of the letter “h” the SIFT algorithm detects feature
points in the uniform region. But the proposed method,
as a contour-based technique, extracts interest points only
from the edges, which signifies the performance variation of
different algorithms depending on the types of image and/or
applications.

4. CONCLUSION

This research presents a robust, rotation invariant, and scale-
invariant corner detection scheme for images based on the
morphological edge detection, the eigenvectors of covariance
matrices for boundary segment points, and the 1D EMD.
We modify an existing morphological edge detection scheme
to yield thin edges and eliminat spurious edges resulting
from the background. The main contribution of this work
is the utilization of the first IMF of EMD of the 1D 6 — P
signal of the edge to localize true corner points on boundary
contours. Under appropriate image resolution and region of
support, the proposed approach precisely captures the true
corner points and is free from false alarms on circular arcs
for both simple and complicated objects in varying rotation,
scale conditions, and noise contaminations.

The interesting attribute of this technique is that it does
not detect feature points globally. Rather it detects feature
points locally, based on the neighboring characteristics of a
small edge segment. This results in the presented method
being more independent of image transformation than
the other five methods considered for comparison. Thus,
interest points detected by the proposed method are largely
independent of the imaging conditions; that is, detected
points are geometrically stable.

Additionally, for the proposed technique we do not need
either to implement the computational extensive 2D EMD or
to calculate all the IMFs of 1D EMD. Only the first IMF of 1D
EMD is required. Experimental results also suggest that the
proposed 1D EMD-based corner detection approach is stable
and efficient. The proposed method is a generic concept and
can find its application in many matching and recognition
problems.
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