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1. INTRODUCTION

Traditionally, analog-to-digital converters (ADCs) and
digital-to-analog converters (DACs) based on ΣΔ-modula-
tion have been used primarily for low bandwidth and high-
resolution applications such as audio application. The re-
quirements make the architecture perfectly suited for this
purpose. However, in later years, advancements in VLSI tech-
nology have allowed greatly increased clock frequencies, and
ΣΔ-ADCs with bandwidths of tens of MHz have been re-
ported [1, 2]. This makes it possible to use ΣΔ-ADCs in
a wider context, for example, in wireless communications.
One of the most attractive features of ΣΔ-ADCs is their re-
laxed requirements on the analog circuitry, which is espe-
cially important in wireless communications where integra-
tion in analog-hostile deep submicron CMOS is favorable.
However, the high-operating frequencies used for the realiza-
tion of such wideband converters result in devices with high
analog power consumption.

One way to reduce the operating frequency is to use sev-
eral modulators in parallel, where a part of the input signal is
converted in each channel. Several flavors of such ΣΔ-ADCs
have been proposed, and these can essentially be divided into

four categories: time-interleaved modulators (TIMs) [3, 4],
Hadamard modulators (HMs) [4–8], frequency-band de-
composed modulators (FBDMs) [4, 9, 10] and multirate
modulators based on block-digital filtering [11–14]. In the
TIM, samples are interleaved in time between the channels.
Each modulator is running at the input sampling rate, with
its input grounded between consecutive samples. This is a
simple scheme, but as interleaving causes aliasing of the spec-
trum, the channels have to be carefully matched in order to
cancel aliasing in the deinterleaving at the output. In an HM,
the signal is modulated by a sequence constructed from the
rows of a Hadamard matrix. One advantage over the TIM is
an inherent coding gain, which increases the dynamic range
of the ADC [4], whereas a disadvantage is that the number
of channels is restricted to a number for which there exists
a known Hadamard matrix. Another advantage, as will be
shown in this paper, is the reduced sensitivity to mismatches
in the analog circuitry. The third category of parallel mod-
ulators is the FBDM, in which the signal is decomposed in
frequency rather than time. This scheme is insensitive to ana-
log mismatches, but has increased hardware complexity be-
cause it requires the use of bandpass modulators. The idea of
the multirate modulators is different, based on a polyphase
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decomposition of the integrator in one channel. Thus the ar-
chitecture is not directly comparable to the systems described
in this paper.

The parallel systems have been analyzed both in the time-
domain and the frequency-domain [3, 4, 6–8, 12, 15–17],
and in [18] an attempt was made to formulate a general
model covering the TIM, HM, and FBDM systems. The for-
mulation in this paper is slightly different from the one in
[18] due to differences in the usage of causal and noncausal
delays. The overall ADC was formulated in terms of circu-
lant and pseudocirculant matrices, and the formulation is
derived from multirate filter bank theory. The formulation
is refined in this paper, and extended with a more compre-
hensive sensitivity analysis. Using the formulation, the be-
havior of a practical ADC with channel gain and modulation
sequence level mismatches present can be analyzed, and it is
apparent why some schemes are sensitive to mismatches be-
tween channels whereas others are not. Also, it is found that
some schemes (in particular the HM systems) suffer from
sensitivity in a limited set of channels such that “full calibra-
tion” between the channels is not needed. Whereas the new
formulation is in fact not constrained to parallel ΣΔ-ADCs
but applicable to general parallel systems that use modula-
tion sequences, it is described in that context in this paper as
this application is considered to be particularly interesting.
Further, the usefulness of the new formulation is not only
limited to the analysis of existing schemes, but also for the
derivation of new ones, which is demonstrated in the paper.

The organization of the paper is as follows. In Section 2,
the multirate formulation of a parallel system is derived, and
the signal input-to-output relation of the system is analyzed.
Conditions for the system to be free from nonlinear distor-
tion (i.e., free from aliasing) are stated. In Section 3, the sen-
sitivity to channel mismatches for a system is analyzed in the
context of the multirate formulation. In Section 4, the for-
mulation is used to analyze the behavior of some representa-
tive systems, and also the derivation of a new scheme that is
insensitive to some mismatches is presented. In Section 5, the
quantization noise properties of a parallel system is analyzed.
Finally, Section 6 concludes the paper.

2. LINEAR SYSTEMMODEL

We consider the scheme depicted in Figure 1. In this scheme,
the input signal x(n) is first divided into N channels. In each
channel k, k = 0, 1, . . . ,N − 1, the signal is first modulated
by the M-periodic sequence ak(n) = ak(n + M). The result-
ing sequence is then fed into a ΣΔ-modulator ΣΔk, followed
by a digital filter Gk(z). The output of the filter is modulated
by the M-periodic sequence bk(n) = bk(n + M) which pro-
duces the channel output sequence yk(n). Finally, the overall
output sequence y(n) is obtained by summing all channel
output sequences. The ΣΔ-modulator in each channel works
in the same way as an ordinary ΣΔ-modulator. By increasing
the channel oversampling, and reducing the passband width
of the channel filter accordingly, most of the shaped noise
is removed, and the resolution is increased. By using sev-
eral channels in parallel, wider signal bands can be handled
without increasing the input sampling rate to unreasonable
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Figure 1: ADC system using parallel ΣΔ-modulators and modula-
tion sequences.

values. In other words, instead of using one single ΣΔ-ADC
with a very high input sampling rate, a number of ΣΔ-ADCs
in parallel provide essentially the same resolution but with a
reasonable input sampling rate.

The overall output y(n) is determined by the input x(n),
the signal transfer function of the system, and the quanti-
zation noise generated in the ΣΔ-modulators. Using a linear
model for analysis, the signal input-to-output relation and
noise input-to-output relation can be analyzed separately.
The signal transfer function from x(n) to y(n) should be
equal to (or at least approximate) a delay in the signal fre-
quency band of interest. The main problem in practice is
that the overall scheme is subject to channel gain, offset, and
modulation sequence level mismatches [4, 15, 16]. This is
where the new general formulation becomes very useful as
it gives a relation between the input and output from which
one can easily deduce a particular scheme’s sensitivity to mis-
match errors. The noise contribution, on the other hand, is
essentially unaffected by channel mismatches. Therefore, the
noise analysis can be handled in the traditional way, as in
Section 5.

2.1. Signal transfer function

From the signal input-to-output point of view, we have the
system depicted in Figure 2(a) for channel k. Here, each
Hk(z) represents a cascade of the corresponding signal trans-
fer function of the ΣΔ-modulator and the digital filter Gk(z).
To derive a useful input-output relation in the z-domain, we
make use of multirate filter bank theory [19]. As ak(n) and
bk(n) are M-periodic sequences, each multiplication can be
modelled as M branches with constant multiplications and
the samples interleaved between the branches. This is shown
in the structure in Figure 2(b), where

ak,n =
⎧
⎨

⎩

ak(0) for n = 0,

ak(M − 1) for n = 1, 2, . . . ,M − 1,

bk,n = bk(M − 1− n) for n = 0, 1, . . . ,M − 1.

(1)

Now, consider the system shown in Figure 3, representing
the path from xq(m) to yk,r(m) in Figure 2(b). Denoting

H̃k(z) = zM−1Hk(z), (2)
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(c) Multirate formulation of a channel

Figure 2: Equivalent signal transfer models of a channel of the parallel system in Figure 1.

the transfer function from xq(m) to yk,r(m) is given by the
first polyphase component in the polyphase decomposition
of zqH̃k(z)z−r , scaled by ak,qbk,r . For p = q−r = 0, 1, . . . ,M−
1, the polyphase decomposition of zpH̃k(z) can be written

zpH̃k(z) =
M−1∑

i=0

zp−iH̃k,i
(
zM
)
, (3)

and the first polyphase component is H̃k,p(z), that is, the pth

polyphase component of H̃k(z) as specified by the Type 1
polyphase representation in [19]. For p = −M + 1, . . . ,−1,

zpH̃k(z) =
M−1∑

i=0

zp−i+Mz−MH̃k,i
(
zM
)

(4)

and the first polyphase component is z−1H̃k,p+M(z). Return-
ing to the system in Figure 2(b), the transfer functions P

r,q
k (z)

from xq(m) to yk,r(m) can now be written

P
r,q
k (z) =

⎧
⎨

⎩

bk,rH̃k,q−r(z)ak,q for q ≥ r,

bk,rz−1H̃k,q−r+M(z)ak,q for q < r.
(5)

The relations can be written in matrix form as Pk(z) in

Pk(z) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1 A5 A9 · · · A13

A2 A6 A10 · · · A14

A3 A7 A11 · · · A15

...
...

...
. . .

...

A4 A8 A12 · · · A16

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (6)

where

A1 = ak,0bk,0H̃k,0(z), A2 = ak,0bk,1z
−1H̃k,M−1(z),

A3 = ak,0bk,2z
−1H̃k,M−2(z), A4 = ak,0bk,M−1z

−1H̃k,1(z),

A5 = ak,1bk,0H̃k,1(z), A6 = ak,1bk,1H̃k,0(z),

A7 = ak,1bk,2z
−1H̃k,M−1(z), A8 = ak,1bk,M−1z

−1H̃k,2(z),

A9 = ak,2bk,0H̃k,2(z), A10 = ak,2bk,1H̃k,1(z),

A11 = ak,2bk,2H̃k,0(z), A12 = ak,2bk,M−1z
−1H̃k,3(z),

A13 = ak,M−1bk,0H̃k,M−1(z), A14 = ak,M−1bk,1H̃k,M−2(z),

A15 = ak,M−1bk,2H̃k,M−3(z), A16 = ak,M−1bk,M−1H̃k,0(z),
(7)

and it is thus obvious that one channel of the system can be
represented by the structure in Figure 2(c). In the whole sys-
tem (Figure 1) a number of such channels are summed at the
output, and the parallel system of N channels can be repre-
sented by the structure in Figure 4, where the matrix P(z) is
given by

P(z) =
N−1∑

k=0

Pk(z). (8)

For convenience, we write (6) as

Pk(z) = Sk·H̃k(z), (9)
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xq(m)
ak,q

↑M Hk(z)zq zM−1 z−r ↓M
bk,r

yk,r (m)

Figure 3: Path from xq(m) to yk,r(m) in channel k as depicted in
Figure 2(b).

where “·” denotes elementwise multiplication and where
H̃k(z) and Sk are given by

H̃k(z) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

H̃k,0(z) H̃k,1(z) · · · H̃k,M−1(z)

z−1H̃k,M−1(z) H̃k,0(z) · · · H̃k,M−2(z)

z−1H̃k,M−2(z) z−1H̃k,M−1(z) · · · H̃k,M−3(z)

...
...

. . .
...

z−1H̃k,1(z) z−1H̃k,2(z) · · · H̃k,0(z)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(10)

Sk =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ak,0bk,0 ak,1bk,0 · · · ak,M−1bk,0

ak,0bk,1 ak,1bk,1 · · · ak,M−1bk,1

ak,0bk,2 ak,1bk,2 · · · ak,M−1bk,2
...

...
. . .

...
ak,0bk,M−1 ak,1bk,M−1 · · · ak,M−1bk,M−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(11)

Equation (11) can equivalently be written as

Sk = bTk ak, (12)

where

ak =
[
ak,0 ak,1 · · · ak,M−1

]
,

bk =
[
bk,0 bk,1 · · · bk,M−1

]
,

(13)

and T stands for transpose. Examples of the Sk-matrices and
of the ak- and bk-vectors are provided for the TIM system in
(26) and (25) in Example 1 in Section 4. Examples are also
provided for the HM and FBDM systems in Examples 2 and
3, respectively.

2.1.1. Alias-free system

With the system represented as above, it is known that it is
alias-free, and thus time-invariant if and only if the matrix
P(z) is pseudocirculant [19]. Under this condition, the out-
put z-transform becomes

Y(z) = HA(z)X(z), (14)

where

HA(z) = z−M+1
N−1∑

k=0

M−1∑

i=0

s0,i
k z−iH̃k,i

(
zM
)

=
N−1∑

k=0

M−1∑

i=0

s0,i
k z−iHk,i

(
zM
)
,

(15)

with s0,i
k denoting the elements on the first row of Sk. This

case corresponds to a Nyquist sampled ADC of which two
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x(n)

↓M

↓M
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z−1

+ y(n)

...

+

z−1

Figure 4: Equivalent representation of the system in Figure 1 based
on the equivalences in Figure 2. P(z) is given by (8).

special cases are the TIM ADC [3, 12] and HM ADC in [6].
These systems are also described in the context of the multi-
rate formulation in Examples 1 and 2 in Section 4.

Regarding H̃k(z), it is seen in (10) that it is pseudocir-
culant for an arbitrary H̃k(z). It would thus be sufficient
to make Sk circulant for each channel k in order to make
each Pk(z) pseudocirculant and end up with a pseudocircu-
lant P(z). Unfortunately, the set of circulant real-valued Sk
achievable by the construction in (12) is seriously limited,
because the rank of Sk is one. However, for purposes of er-
ror cancellation between channels it is beneficial to group the
channels in sets where the matrices within each set sum to a
circular matrix. The channel set {0, 1, . . . ,N − 1} is thus par-
titioned into the sets C0, . . . ,CI−1, where each sum

∑

k∈Ci

Sk (16)

is a circulant matrix. It is assumed that the modulators and
filters are identical for channels belonging to the same par-
tition, Hk(z) = Hl(z) whenever k, l ∈ Ci, and thus H̃k(z) =
H̃l(z). The matrix for partition i is denoted H̃0,i(z). Sensitiv-
ity to channel mismatches are discussed further in Section 3.

2.1.2. L-decimated alias-free system

We say that a system is an L-decimated alias-free system if it
is alias-free before decimation by a factor of L. A channel of
such a system is shown in Figure 5(a). Obviously, the deci-
mation can be performed before the modulation, as shown
in Figure 5(b), if the index of the modulation sequence is
scaled by a factor of L. Considering the equivalent system in
Figure 5(c), it is apparent that the downsampling by L can be
moved to after the scalings by bk,l if the delay elements z−1

are replaced by L-fold delay elements z−L. The system may
then be described as in Figure 5(d), where Pk(z) is defined
by (5). However, the outputs are taken from every Lth row of
Pk(z), such that the first output yk,L−1 modM(m) is taken from
row L, the second output yk,2L−1 modM(m) is taken from row
(2L − 1 modM) + 1, and so on. It is thus apparent that only
rows gcd(L,M)·i, i = 0, 1, 2, . . . , are used.

The L-decimated system corresponds to an oversampled
ADC. The main observation that should be made is that the
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Figure 5: Channel model of L-decimated system.

L-decimated system may be described in the same way as
the critically sampled system, but that relaxations may be
allowed on the requirements of the modulation sequences.
As only a subset of the rows of P(z) are used, the matrix
needs only to be pseudocirculant on these rows. As in the
critically sampled (nonoversampled) case, the channel set
{0, 1, . . . ,N − 1} is partitioned into sets C0, . . . ,CI−1 where
the matrix

∑
k∈Ci

Sk is circulant on the rows gcd(L,M)·i,
i = 0, 1, 2, . . . , and H̃k(z) = H̃l(z) = H̃0,i(z) when k, l ∈ Ci.
The oversampled Hadamard-modulated system in [7] be-
longs to this category of the formulation, and another exam-
ple of a decimated system is given in Example 4 in Section 4.

3. SENSITIVITY TO CHANNELMISMATCHES

In this section, the channel model used for the sensitivity
analysis is explained. In the system shown in Figure 6, several
nonidealities resulting from imperfect analog circuits have
been included. Difficulties in realizing the exact values of the
analog modulation sequence are modelled by an additive er-
ror term εk(n). The error is assumed to be static, that is, it
depends only on the value of ak(n), and is therefore a peri-
odic sequence with the same periodicity as ak(n). The time-
varying error εk(n) may be a major concern when the mod-
ulation sequences contain nontrivial elements, that is, ele-
ments that are not −1, 0, or 1. The trivial elements may be
realized without a multiplier by exchanging, grounding, or
passing through the inputs to the modulator, and are for this
reason particularly attractive on the analog side.

A channel-specific gain γk is included in the sensitiv-
ity analysis, and analog imperfections in the modulator are
modelled as the transfer function ΔHk(z). The modulator
nonidealities including channel gain and modulation se-
quence errors are analyzed separately in the context of the
multirate formulation. In practice, there is also a channel off-

set δk which is not suitable for analysis in this context, as
it is signal independent. Channel offsets are commented in
Section 3.3 below.

3.1. Modulator nonidealities

Assume that the ideal system is alias-free, that is, the ma-
trix P(z) = ∑

Pk(z) is pseudocirculant. Due to analog cir-
cuit errors the transfer function of channel k deviates from
the ideal Hk(z) to γk(Hk(z) + ΔHk(z)), and H̃k(z) is replaced

by Ĥk(z) = γk(Hk(z) +ΔHk(z))zM−1. The transfer matrix for
channel k thus becomes P̂k(z) with elements

P̂
j,i
k (z) =

⎧
⎨

⎩

bk, j Ĥk,i− j(z)ak,i for i ≥ j,

bk, j z−1Ĥk,i− j+M(z)ak,i for i < j,
(17)

where Ĥk,p(z) are the polyphase components of Ĥk(z). It is

apparent that P̂k(z) is pseudocirculant whenever Pk(z) is.
Thus a system where all the Sk matrices are circulant is com-
pletely insensitive to modulator mismatches.

In the general case, unfortunately, all Sk are not circulant
and

∑
P̂k(z) = ∑

Sk·Ĥk(z) does not sum up to a pseudo-
circulant matrix as the matrices Ĥk(z) are different between
the channels. Partitioning the channel set into the sets Ci,
as described in Section 2, and matching the modulators of
channels belonging to the same partition Ci, that is, defining
γk = γl and ΔHk(z) = ΔHl(z) when k, l ∈ Ci, allows P̂(z) to
be written

P̂(z) =
N−1∑

k=0

Sk·Ĥk(z) =
I−1∑

i=0

Ĥ0,i(z)·
∑

k∈Ci

Sk, (18)
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and it is apparent that each term in the outer sum is pseu-
docirculant, and thus that also P(z) is. Thus the system is
alias-free and non-linear distortion is eliminated.

3.2. Modulation sequence errors

It is assumed that the ideal system is alias-free, that is, P(z) =
∑
Pk(z) is pseudocirculant. Due to difficulties in realizing

the analog modulation sequence, the signal is modulated in
channel k by the sequence âk = ak + εk rather than the ideal
sequence ak. We consider here different choices of the mod-
ulation sequences.

3.2.1. Bilevel sequence for an insensitive channel

Assume that an analog modulation sequence with two lev-
els is used for an insensitive channel, that is, Sk = bTk ak is
a circular matrix. Examples of this type of channel include
the first two channels of an HM system. Assuming that the
sequence errors εk depend only on ak, that is, εk,n1 = εk,n2

when a(k,n1) = a(k,n2), the modulation vector can be written
âk = αkak+[βk βk · · · βk] for some values of the scaling fac-
tor αk and offset term βk. The channel matrix P̂k(z) for the
channel modulated with the sequence âk then becomes

P̂k(z) = bTk
(
αkak +

[
βk βk · · · βk

])·H̃k(z)

= αkSk·H̃k(z) + βkBkH̃k(z),
(19)

where Bk is a diagonal matrix consisting of the elements of
bk. The first term is pseudocirculant, and thus the system is
insensitive to modulation sequence scaling factors in channel
k. The impact of the offset term βk, that is, the second term,
is explained under Section 3.2.4 below.

3.2.2. Bilevel sequence for sensitive channels

Consider one of the subsets Ci in the partition of the channel
set. The sum of the Sk-matrices corresponding to the chan-
nels in the set,

∑
k∈Ci

Sk, is a circulant matrix, whereas the
constituent matrices are not. Examples of this type of chan-
nels are the TIM systems and the HM systems with more than
two channels. As in the insensitive case, the modulation vec-
tors are written âk = αkak + [βk βk · · · βk], and the sum of
the channel matrices for the channel subset becomes
∑

k∈Ci

P̂k(z) =
∑

k∈Ci

bTk
(

αkak +
[

βk βk · · · βk
] )

·H̃k(z)

=
(

H̃0,i(z)·
∑

k∈Ci

αkSk

)

+
∑

k∈Ci

βkBkH̃k(z),

(20)

where Bk is a diagonal matrix consisting of the elements of
bk. The first sum is generally not a pseudocirculant matrix,
and the channels are thus sensitive to sequence gain errors. If
the gains are matched, denote α0,i = αk = αl when k, l ∈ Ci,
the channel matrix sum may be written

∑

k∈Ci

P̂k(z) =
(

α0,iH̃0,i(z)·
∑

k∈Ci

Sk

)

+
∑

k∈Ci

βkBkH̃k(z), (21)

x(n)

εk(n)

×

+

× +

ak(n)

γk δk

Hk(z)

ΔHk(z)

×+

bk(n)

yk(n)

Figure 6: Channel model with nonideal analog circuits.

z−1

...

x(n) βk

↓M

↓M

Hk(z)

↑M

↑M

z z−1

+

...
...

↓M

↓M

Bk

↑M

↑M

z

+
yk(n)

...

Figure 7: Model of errors in a parallel system pertaining to se-
quence offsets.

and it is seen that the first term is a pseudocirculant matrix,
and the channel set is alias-free. Again, the impact of the off-
set term βk is explained under Section 3.2.4 below.

3.2.3. Multilevel sequences

If an insensitive channel is modulated with a multilevel se-
quence âk = ak + εk, the channel matrix becomes

P̂k(z) = bTk
(
ak + εk

)·H̃k(z)

= Sk·H̃k(z) + bTk εk·H̃k(z),
(22)

which is pseudocirculant only if bTk εk is a circulant matrix.
Systems with multilevel analog modulation sequences are
thus sensitive to level errors.

3.2.4. Modulation sequence offset errors

Consider here the modulation sequence offset errors intro-
duced above under Sections 3.2.1 and 3.2.2. The channel ma-
trix for a channel with a modulation sequence containing an
offset error can be written as (19). Thus the error pertaining
to the sequence offset is additive, and can be modelled as in
Figure 7. The signal is thus first filtered through Hk(z) and
then aliased by the system Bk, as Bk is not pseudocirculant
unless the elements in the digital modulation sequence bk are
identical. However, as the signal is first filtered, only signal
components in the passband of Hk(z) will cause aliasing. If
the signal contains no information in this band, aliasing will
be completely suppressed. Typically the signal has a guard
band either at the low-frequency or high-frequency region to
allow transition bands of the filters, and the modulator can
then be suitably chosen as either a lowpass type or highpass
type, respectively. Errors pertaining to sequence offsets are
demonstrated in Example 1 in Section 4.
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(a) Simulation using ideal system
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(b) Simulation with 2% gain mismatch in one channel
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(c) Simulation with 1% offset error in one modulation sequence
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(d) Simulation with 1% offset error in one modulation sequence using
highpass modulators instead of lowpass modulators

Figure 8: Sensitivity of TIM ADC in Example 1.

3.3. Channel offset errors

Channel offsets must be removed for each channel in order
not to overload the ΣΔ-modulator. Offsets affect the system
in a nonlinear way and may not be analyzed using the multi-
rate formulation. However, the problem has been well inves-
tigated and numerous solutions exist [12, 16, 20].

4. EXAMPLES

In this section, examples of how the formulation can be used
to analyze a system’s sensitivity to channel mismatch errors
are presented. Examples are provided for the TIM, HM, and
FBDM ADCs. Also, an example is provided of how the for-
mulation can be used to derive a new architecture that is in-
sensitive to channel matching errors.

Example 1 (TIM ADC). Consider a TIM ADC [3, 4] with
four channels. The samples are interleaved between the
channels, each encompassing identical second-order lowpass
modulators and decimation filters. Ideally, their z-domain
transforms may be written

Hk(z) = H(z) =
⎧
⎨

⎩

z−1, −π

4
≤ ωT ≤ π

4
,

0, otherwise.
(23)

All modulators are running at the input sampling rate, with
their inputs grounded between consecutive samples. Thus
the modulation sequences are

a0(n) = b0(n) = 1, 0, 0, 0, . . . ,

a1(n) = b1(n) = 0, 1, 0, 0, . . . ,

a2(n) = b2(n) = 0, 0, 1, 0, . . . ,

a3(n) = b3(n) = 0, 0, 0, 1, . . . ,

(24)

all periodic with period M = 4. The vectors ak and bk are as
defined by (13):

a0 = b3 =
[

1 0 0 0
]

a1 = b0 =
[

0 0 0 1
]

a2 = b1 =
[

0 0 1 0
]

a3 = b2 =
[

0 1 0 0
]

(25)

The matrices Sk, defined by (12), then become

S0 = bT0 a0 =

⎡

⎢
⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

⎤

⎥
⎥
⎥
⎦

,

S1 = bT1 a1 =

⎡

⎢
⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤

⎥
⎥
⎥
⎦

,

S2 = bT2 a2 =

⎡

⎢
⎢
⎢
⎣

0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎥
⎦

,

S3 = bT3 a3 =

⎡

⎢
⎢
⎢
⎣

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎥
⎦
.

(26)

Because the sum of all Sk-matrices is a circulant ma-
trix, the system is alias-free and the transfer function for the
system is given by (15) as HA(z) = z−1s0,1

3 H3,1(z4) = z−1

where H3,1(z) = 1 is the second polyphase component in the
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polyphase decomposition of H(z). The transfer function is
thus a simple delay, and the system will digitize the complete
spectrum.

As none of the Sk-matrices are circulant, and a circu-
lant matrix can be formed only by summing all the matrices,
the TIM ADC requires matching of all channels in order to
eliminate aliasing. Thus we define C0 = {0, 1, 2, 3}, accord-
ing to the description in Section 2.1.1. The system has been
simulated with modulator nonidealities and errors of bilevel
sequences for sensitive channels, as described in Section 3.
Figure 8(a) shows the output spectrum for the ideal case with
no mismatches between channels (γk = 1 for all k). Apply-
ing 2% gain mismatch for one of the channels (γ0 = 0.98,
γ1 = γ2 = γ3 = 1), the spectrum in Figure 8(b) results, where
the aliasing components can be clearly seen. In Figure 8(c),
the channel gains are set to one, and a 1% offset error has
been added to the first modulation sequence (β0 = 0.01,
β1 = β2 = β3 = 0), which results in aliasing. In Figure 8(d),
high-pass modulators have been used instead, and the distor-
tions disappear, as predicted by the analysis in Section 3.2.4.

Example 2 (HM ADC). Consider a nonoversampling HM
ADC [6] with eight channels. In this case, every channel fil-
ter is an 8th-band filter (Hk(z) = H(z), k = 0, . . . , 7) and the
modulation sequences ak(n) and bk(n) are

a0(n) = b0(n) = 1, 1, 1, 1, 1, 1, 1, 1, . . . ,

a1(n) = b1(n) = 1,−1, 1,−1, 1,−1, 1,−1, . . . ,

a2(n) = b2(n) = 1, 1,−1,−1, 1, 1,−1,−1, . . . ,

a3(n) = b3(n) = 1,−1,−1, 1, 1,−1,−1, 1, . . . ,

a4(n) = b4(n) = 1, 1, 1, 1,−1,−1,−1,−1, . . . ,

a5(n) = b5(n) = 1,−1, 1,−1,−1, 1,−1, 1, . . . ,

a6(n) = b6(n) = 1, 1,−1,−1,−1,−1, 1, 1, . . . ,

a7(n) = b7(n) = 1,−1,−1, 1,−1, 1, 1,−1, . . . .

(27)

The vectors ak and bk become

a0 = b0 =
[
1 1 1 1 1 1 1 1

]

a1 = −b1 =
[
1 −1 1 −1 1 −1 1 −1

]

a2 = b3 =
[
1 −1 −1 1 1 −1 −1 1

]

a3 = −b2 =
[
1 1 −1 −1 1 1 −1 −1

]

a4 =
[
1 −1 −1 −1 −1 1 1 1

]

b4 =
[−1 −1 −1 −1 1 1 1 1

]

a5 =
[
1 1 −1 1 −1 −1 1 −1

]

b5 =
[
1 −1 1 −1 −1 1 −1 1

]

a6 =
[
1 1 1 −1 −1 −1 −1 1

]

b6 =
[
1 1 −1 −1 −1 −1 1 1

]

a7 =
[
1 −1 1 1 −1 1 −1 −1

]

b7 =
[−1 1 1 −1 1 −1 −1 1

]
.

(28)

With Sk = bTk ak, the following matrices can be computed:

S0 = 1,

S1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 1 −1 1 −1 1 −1 1
1 −1 1 −1 1 −1 1 −1
−1 1 −1 1 −1 1 −1 1
1 −1 1 −1 1 −1 1 −1
−1 1 −1 1 −1 1 −1 1
1 −1 1 −1 1 −1 1 −1
−1 1 −1 1 −1 1 −1 1
1 −1 1 −1 1 −1 1 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

S2 + S3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 2 0 −2 0 2 0 −2
−2 0 2 0 −2 0 2 0
0 −2 0 2 0 −2 0 2
2 0 −2 0 2 0 −2 0
0 2 0 −2 0 2 0 −2
−2 0 2 0 −2 0 2 0
0 −2 0 2 0 −2 0 2
2 0 −2 0 2 0 −2 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

S4 + S5 + S6 + S7 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 4 0 0 0 −4 0 0
0 0 4 0 0 0 −4 0
0 0 0 4 0 0 0 −4
−4 0 0 0 4 0 0 0
0 −4 0 0 0 4 0 0
0 0 −4 0 0 0 4 0
0 0 0 −4 0 0 0 4
4 0 0 0 −4 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(29)

It is seen that S0 and S1 are circulant matrices. Also, S2+S3

is circulant. Further, the remaining matrices sum to a circu-
lant matrix S4 + S5 + S6 + S7, whereas no smaller subset does.
Thus, in order to eliminate aliasing, the channels are parti-
tioned into the sets C0 = {0}, C1 = {1}, C2 = {2, 3}, and
C3 = {4, 5, 6, 7}. The HM ADC thus contains both insensi-
tive channels 0 and 1, and sensitive channels 2, . . . , 7.

Using the model of the ideal system, the spectrum of the
output signal is as shown in Figure 9(a). Figure 9(b) shows
the output spectrum for the system with 1% random gain
mismatch (γk ∈ [0.99, 1.01]), where the aliasing distortions
are readily seen. Matching the gains of the C2-channels to
each other (setting γ2 = γ3) and the gains of the C3-channels
to each other (setting γ4 = γ5 = γ6 = γ7), the spectrum in
Figure 9(c) results, and the distortions disappear. Although
the HM ADC is less sensitive than the TIM ADC, the match-
ing requirements for eight-channel systems and above are
still severe. Another limitation is that the reduced sensitiv-
ity seemingly requires a number of channels that are a power
of two. For Hadamard matrices of other orders, extensive
searches by the authors have not yielded solutions with sim-
plified matching requirements.

Example 3 (FBDM ADC). For the FBDM ADC, the input
signal is applied unmodulated to N modulators converting
different frequency bands. Consider as an example a four-
channel system consisting of a lowpass channel, a highpass
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(a) Simulation using ideal model
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(b) Simulation using 1% channel gain mismatch
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(c) Simulation using gain matching of sensitive channels

Figure 9: Sensitivity of TIM ADC in Example 2.
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Figure 10: Sensitivity of new scheme in Example 4. Simulation us-
ing 10% channel gain mismatch.

channel, and two bandpass channels centered at 3π/8 and
5π/8.

As the signal is not modulated,

ak = bk = [1 1 1 1] (30)

(31)

for all k, and

Sk =

⎡

⎢
⎢
⎢
⎣

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤

⎥
⎥
⎥
⎦

(32)

for all k. As each Sk-matrix is circulant, the system is insen-
sitive to channel mismatches. Further, modulation sequence
errors are irrelevant in this case, as the signal is not modu-
lated. The FBDM ADC is thus highly resistant to mismatches.
Its obvious drawback, however, is the need to use bandpass
modulators which are more expensive in hardware.

Example 4 (generation of new scheme). This example dem-
onstrates that the formulation can also be used to devise
new schemes, although a general method is not presented.
A three-channel parallel system using lowpass modulators is
designed. The signal is assumed to be in the frequency band
−π/4 < ωT < π/4, and the ADC is thus an oversampled sys-
tem and is described according to Section 2.1.2 with L = 4
and M = 8.

Using complex modulation sequences, three bands of
width π/4 centered at −π/4, 0, and π/4 can be translated to
baseband and converted with a lowpass ADC. These modu-
lation sequences are a0(n) = 1, a1(n) = exp( jπn/4), a2(n) =
exp(− jπn/4), and bk(n) = a∗k (n). Summing the resultant Sk-
matrices yields

∑
Sk

=1+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

√
2 2

√
2 0 −√2 −2 −√2 0

0
√

2 2
√

2 0 −√2 −2 −√2
−√2 0

√
2 2

√
2 0 −√2 −2

−2 −√2 0
√

2 2
√

2 0 −√2
−√2 −2 −√2 0

√
2 2

√
2 0

0 −√2 −2 −√2 0
√

2 2
√

2√
2 0 −√2 −2 −√2 0

√
2 2

2
√

2 0 −√2 −2 −√2 0
√

2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(33)

Unfortunately, using complex modulation sequences is not
practical. However, as the modulators and filters are identi-
cal for all channels (Hk(z) = H(z) for all k), any other choice
of modulation sequences resulting in the same matrix will
perform the same function. Moreover, for a decimated sys-
tem, relaxations may be allowed on the new modulation se-
quences. In this case, with decimation by four, it is sufficient
to find replacing modulation sequences a′k and b′k such
that the sum of the resulting S′k-matrices equals

∑
Sk on rows

4 and 8, as gcd(L,M) = 4. One such choice of modulation se-
quences is

a′0 =
[
1 1 1 1 1 1 1 1

]
,

a′1 =
[
1 1 0 −1 −1 −1 0 1

]
,

a′2 =
[
1 0 0 0 −1 0 0 0

]
,

b′0 =
[
0 0 0 1 0 0 0 1

]
,

(34)

b′1 =
[
0 0 0 −√2 0 0 0

√
2
]
, (35)

b′2 =
[
0 0 0 (

√
2− 2) 0 0 0 (2−√2)

]
. (36)

The analog modulation sequences a′k can easily be im-
plemented by switching or grounding the inputs to the
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modulators, whereas the nontrivial multiplications in b′k
can be implemented with high precision digitally. Note that

∑
b′Tk a′k

= 1 +

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−2 −√2 0

√
2 2

√
2 0 −√2

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
2

√
2 0 −√2 −2 −√2 0

√
2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
(37)

which is equal to
∑
Sk in (33) on rows 4 and 8. Note also that

the S′k-matrices, given on rows 4 and 8 by
[
b′0,3

b′0,7

]

a′0 =
[

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

]

,

[
b′1,3

b′1,7

]

a′1=
[−√2 −√2 0

√
2

√
2

√
2 0 −√2√

2
√

2 0 −√2 −√2 −√2 0
√

2

]

,

[
b′2,3

b′2,7

]

a′2 =
[

(
√

2− 2) 0 0 0 (2−√2) 0 0 0

(2−√2) 0 0 0 (
√

2− 2) 0 0 0

]

,

(38)

are circulant on these rows, and thus the system is insensitive
to channel mismatches. This is demonstrated in Figure 10,
where the channel gain mismatch is 10% and no aliasing re-
sults. However, as three levels are used in the analog modu-
lation sequences a′1 and a′2 , the system is sensitive to mis-
matches in the modulation sequences of these channels, as
described in Section 3.

5. NOISEMODEL OF SYSTEM

The primary purpose of this paper is to investigate the signal
transfer characteristics of the parallel ΣΔ-system. However,
the system’s noise properties are also affected by the choice of
modulation sequences, and therefore a simple noise analysis
is included.

A noise model of the parallel ΣΔ-system can be depicted
as in Figure 11. The quantization noise qk(n) of channel k
is filtered through the noise transfer function NTFk(z) and
filter Gk(z). The filtered noise is then modulated by the se-
quence bk(n). The channels are summed to form the output
y(n).

In order to determine the statistical properties of the out-
put y(n), channel k is modeled as in Figure 12. Denoting the
spectral density of the quantization noise of channel k by
RQk (e jω), the spectral densities of the polyphase components
yk,m of the channel output can be written

Ryk,m

(
e jω
) = b2

k,m

M−1∑

l=0

∣
∣Gk,l

(
e jω
)∣
∣2
RQk

(
e jω
)
, (39)

where Gk,l(z) are the polyphase components of the cascaded
system NTFk(z)Gk(z). It is seen that the noise power is scaled

q0(n)

q1(n)

qN−1(n)

NTF0(z)

NTF1(z)

NTFN−1(z)

...

G0(z)

G1(z)

GN−1(z)

...

×

×

×

+

b0(n)

b1(n)

bN−1(n)

y(n)

Figure 11: Noise model of parallel system.
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↙

yk,1(m)
↙
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↙

bk,0
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+

...

...

+

z

z

yk(n)

Figure 12: Noise model of chann k.

by the factor b2
k,m, and it is thus of interest to keep the ampli-

tudes of the modulation sequences low on the digital side.
For example, in Example 4, alternative choices of a1 and b2

would have been

a1 = [0 1 0 −1 0 −1 0 1],

b2 = [0 0 0 −2 0 0 0 2].
(40)

However, in this case the noise power is larger. This shows
that the smaller magnitudes of the digital modulation se-
quences, as in (36), is preferable from a noise perspective.

6. CONCLUSION

In this paper, a new general formulation of analog-to-digital
converters using parallel ΣΔ-modulators was introduced.
The TIM-, HM-, and FBDM ADCs have been described
as special cases of this formulation, and it was shown how
the model can be used to analyze the sensitivity to channel
matching errors for a parallel system. Both Nyquist-rate and
oversampled systems have been considered, and it was shown
that an oversampled system may have a reduced sensitivity
to mismatches, which may be determined using the formu-
lation. The usefulness of the formulation is not limited to
analysis of existing schemes, but also for the derivation of
new ones, which was exemplified.
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