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Delay-and-sum (DS) beamforming is a simple processing method that can estimate the direction-of-arrival from multiple signal
sources. The major advantage of DS beamforming is that it can handle wideband as well as narrowband signals. However,
DS beamforming exhibits high computational complexity. The multiangle resolution fast beamformer was proposed as a
computationally efficient approximation of DS beamforming, reducing the computational order of complexity from O(n3) to
O(n2log n). In this paper, we introduce the pruned multiangle resolution fast beamformer to further reduce the computational
complexity. The new algorithm includes an energy detector at intermediate stages of the fast beamformer to prune sectors that
do not exhibit increasing energy consistent with coherent integration. Simulations are provided to assess the performance of the
pruned fast beamformer. One use for the estimates from the pruned fast beamformer is to initialize high-resolution direction-of-
arrival (DOA) estimators such as coherent signal subspace methods.
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1. INTRODUCTION

Directional-of-arrival (DOA) estimators are essential for
target surveillance and modern communication systems.
These algorithms estimate the DOA of signal sources by
incorporating measurements from multiple sensors forming
an array. While there are many DOA estimators such as
MUSIC [1] or ESPRIT [2] for narrowband signals, there
are only a few DOA estimators for wideband signal sources.
Many narrowband DOA estimators exploit the fact that the
time-delay maps into a phase shift [3], but these algorithms
are not applicable to wideband signals where different DOAs
do not generate simple phase shifts. Delay-and-sum (DS)
beamforming is a time-domain algorithm that determines
DOAs by coherently summing the energy in beams which are
steered by time delays toward candidate angles. Therefore,
DOA estimation via DS beamforming is applicable for
both narrowband and wideband signals. Furthermore, it is
more robust to noise and sensor position errors than signal
subspace methods or Fourier-based techniques [3]. However,
the computational complexity of DS beamformer is O(n3)
for n sensors, n steering directions, and n time snapshots.

The fast beamforming algorithm [4] incorporates
a “divide-and-conquer” strategy to reduce the number
of computations to O(n2 log2 n). Fast beamforming is a
multistage algorithm in which the angular resolution of the
steered beams increases as the algorithm progresses to later
stages. At intermediate stages, the processed data represents
partially integrated beams. Each stage of the fast beamformer
splits an intermediate beam into multiple beams by steering
the beam in different directions and coherently combining
adjacent array elements. In effect, each stage decreases
the angular spacing by steering and improves the angular
resolution by partial coherent integration. In the end, the
fast beamformer provides coherently integrated beams
just like DS beamforming. For the application of DOA
estimation, there is no need to fully integrate beams that do
not contain a signal source, this paper introduces the pruned
fast beamformer. This new method incorporates a detector
that determines if there is evidence of a coherent signal
source in the intermediate beams of the fast beamformer.
The detector helps to further reduce computations by
pruning beams that are very unlikely to include a coherent
signal. In the end, fewer beams are fully formed. The energy
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Figure 1: Geometry of the uniform linear array (ULA).

in the formed beams is used to determine whether or not a
source is present at the corresponding DOA. Initial results
regarding the pruned fast beamformer appeared in [5–7].

The angular accuracy of DS beamformers is not as good
as the signal subspace methods that assume a finite number
of signal sources. However, wideband subspace methods,
such as the coherent signal subspace method (CSSM) [8],
require an initial estimate of the DOAs. The output of
the pruned fast beamformer can be used to initialize the
CSSM. Alternatively, it can be used to determine the field-of-
view (FOV) in the beamspace invariant CSSM (BI-CSSM)
[9] or TOPS [10] methods. BI-CSSM requires an FOV
since it takes advantage of the reduced spatial dimension.
TOPS does not explicitly require an FOV [10], but an FOV
can reduce computations by avoiding the calculation of
condition numbers over benign regions.

This paper is organized as follows: conventional DS
and fast DS beamforming are introduced in Sections 2 and
3, respectively. Then Section 4 introduces sector pruning.
Section 5 discusses the computational cost of fast beam-
forming with and without pruning. Simulation results are
provided in Section 6.

2. DELAY-AND-SUM BEAMFORMING

DS beamforming increases the signal-to-noise ratio (SNR)
by coherently adding the source signal associated with a
given DOA. To this end, it incorporates appropriate time
delays in the output data corresponding to each sensor
array element. Let xm(t) represent the output of the mth
sensor, where m = 0, . . . ,M − 1. In practice, the received
signal will be discrete signal which is sampled in time.
The sampling frequency should be higher than the Nyquist
rate. When the sampling rate is high enough, the analytical
expressions in the followings will be not so much different
except for the error caused by interpolation in the process
of DS beamforming. Considering fast beamforming errors
which will be analyzed in detail in Section 3, we believe that
the interpolation error does not change the performance
significantly. Therefore, we will use continuous time signal
in analysis until Section 5 where computational complexity
analysis including interpolation is provided.

Given J signal sources, the output at the mth sensor is
modeled as

xm(t) =
J∑

j=1

s j
(
t − lm,θj

)
+ nm(t), (1)

where lm,θj is the delay depending on the relative location of
the mth sensor and DOA corresponding to the jth source θj .
The nm(t) term represents the incoherent noise at the mth
sensor, which is assumed to be both spatially and temporally
White-Gaussian noise (WGN), that is,

ε
{
nm(t)np(v)

} = N0δ(t − v)δ(m− p), (2)

where N0 is the energy density of the noise and δ(·) is the
Dirac-delta function.

For a uniform linear array (ULA) with sensor spacing of
d, the delay for a signal source at DOA θj is

lm,θj =
md

c
sinθj , (3)

where c is the propagation speed through the medium (see
Figure 1). The sensor spacing d should be less than the half
of the wavelength of the highest frequency of the incoming
signals to avoid aliasing in the spatial frequency domain. For
example, when s(t) is a wideband with frequency band of
[ fL, fH], the sensor spacing d should be

d ≤ c

2 fH
. (4)

For convenience, this paper considers a ULA with M
sensors so that (3) represents the delay as a function of
the DOA. However, DS beamforming is applicable for any
arbitrary array configuration as long as the proper delays lm,θj
are used.

To coherently integrate the source signal, the DS beam-
former aligns the source signals for various steering direc-
tions, that is, hypothesized DOAs. These hypothesized
DOAs, θst,i for i = 0, . . . ,D − 1 can be viewed as ordered
samples of a modulo-2π toroid. First, the DS beamformer
forms a steered beam associated with the steering direction
θst,i by delaying the signal of each sensor in order to align
the phase centers and then summing up the signals spatially.
Formally, this beamformed signal corresponding to steering
direction θst,i is

z
(
t, θst,i

) =
M−1∑

m=0

amxm
(
t + lm,θst,i

)
, (5)

where am is a weighting factor. For this paper, am = 1.
Then the DOA estimator integrates the beamformed signal
temporally to determine the energy associated with θst,i:

Êz(θst,i) =
∫ ∣∣z

(
t, θst,i

)∣∣2
dt. (6)

If the steering direction θst,i matches the DOA of the jth
source signal s j(·), the summation is coherent and the

corresponding energy Êz(θst,i) will be large. Otherwise, the
summation is incoherent and the energy will be smaller. The
DOA estimator then selects peaks of the energy curve that
exceed a given threshold as the estimated DOAs

Θ̂ = {θst,i : Êz
(
θst,i−1

) ≤ Êz
(
θst,i
)
,

Êz
(
θst,i+1

) ≤ Êz
(
θst,i
)
, Êz
(
θst,i
)
> τ
}
.

(7)
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Figure 2: Radix-2 fast beamforming with eight sensors. At each stage, the beamforming angles are doubled and the number of sensors are
halved by downsampling.

In order to estimate the DOAs accurately, one of the steering
directions should match closely to one of the actual DOAs of
a signal source. Usually, the steering directions are sampled
uniformly in a given FOV, so the angular sample spacing
should be small for accurate estimation. For a wide FOV, the
number of steering directions D can be large, and as a result,
the computational burden is heavy.

3. FASTMULTISTAGE DS BEAMFORMING

3.1. Fast DS beamforming

The fast DS beamforming is a divide-and-conquer method
that approximates the energy curve Ez(θst,i). It divides the
angular space into small angular sectors and forms multiple
partial beams per sector by partially integrating the steered
signals. Initially, the entire plane forms one sector covering
sources from −90◦ to 90◦, and each of the M sensors
represents a single partial beam that is not steered. The
first stage of the fast beamformer divides the whole sector
into R sectors. For each sector, the M partial beams are
steered toward the phase center of the sectors, and L adjacent
beams are integrated to form M/L partial beams by filtering
and downsampling by a factor of L along the spatial (or
angular) dimension. After downsampling, the number of
array elements is reduced to M/L where each element
corresponds to R steered partial beams. The M/L elements
after downsampling, which represent the integration of L
sensors, are referred to as virtual sensors. The phase centers
for the virtual sensors are simply the centroids of the
corresponding L sensors. The separation between the virtual
sensors is now L times the sensor separation. The process of

dividing the sectors into R subsectors, steering, filtering, and
downsampling continues in an iterative fashion until each
sector contains a single fully integrated beam. When R is
larger than L, the total number of partial beams is increasing
as the iterative processing continues. If R = L, the total
number of partial beams remains constant throughout the
whole processing. Note that R should be larger than L so it
can cover the entire plane [11].

In this paper, we study a radix-2 fast beamformer,
that is, R = L = 2, assuming that the number of
sensors is M= 2S. This implies that the number of steering
directions is doubled and the number of virtual sensors and
the number of partial beams per sector is halved at each
stage. For implementation of the lowpass filter, the radix-
2 fast beamformer uses a simple uniform two-tap filter.
Longer filters can provide a better approximation to the
DS beamformer at the expense of a higher computational
cost. At stage s, the number of steering directions is 2s

and the number of steered partial beams for each direction
is M/2s= 2S−s. Note that the steering directions are not
uniformly distributed over −90◦ to 90◦ because the beam-
angle centers for the sectors are uniform in the sinusoidal
angular domain. The sector center for the rth sector at stage
s is

θ(s)
r = arcsin

(
1− 2r + 1

2s

)
(8)

= arcsin

( s−1∑

k=0

(−1)�2
k+1−sr�2−k−1

)

(9)

for r = 0, 1, . . . , 2s−1 (see Figure 3). Note that �β� represents
the largest integer that does not exceed β.
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Figure 3: Angular support of the sectors after stages 0–3, where the numbers r, sin(θ(s)
r ) to the right of the support graphics represent the

sector index and the sine of the center angle of the sector, respectively.

Let vs,m,r(t) represent the partial beam corresponding to
the mth virtual sensor steered toward the rth sector after
stage s. In the beginning, the mth partial beam is

v0,m,0(t) = xm(t) (10)

for m = 0, 1, . . . ,M − 1. At the initial stage (s = 0), each
virtual sensor represents one partial beam corresponding
to one sector covering the entire angular space. After the
first stage (s = 1), the fast beamformer has performed
some steering and partial integration so that the number of
virtual sensors is halved. Now, each virtual sensor contains
two partial beams because the number of sectors is two.
Therefore, the total number of partial beams is still M. The
partial beams corresponding to the mth virtual sensor are

v1,m,0(t)

= v0,2m,0

(
t + ηP(0)

2msinθ(1)
0

)
+ v0,2m+1,0

(
t + ηP(0)

2m+1sinθ(1)
0

)
,

v1,m,1(t)

= v0,2m,0

(
t + ηP(0)

2msinθ(1)
1

)
+ v0,2m+1,0

(
t + ηP(0)

2m+1sinθ(1)
1

)
,

(11)

where η = d/c, P(0)
m is the location of the mth virtual sensor

for stage s = 0, and θ (1)
r is the beam-angle center of the rth

sector at stage s = 1. According to (8), sin θ (1)
r = (−1)r(1/2).

Since the virtual sensors are located at the centroid of
two integrated virtual sensors from the previous stage, the
location of the virtual sensors at stage s is given by

P(s)
m = 2s

(
m +

1
2

)
− M

2
, (12)

for m = 0, 1, 2, . . . , (M/2s) − 1. In general, the partial beam
for the mth virtual sensor output at stage s for the rth sector
is computed using the partial beams from the previous stage

vs,m,r(t) = vs−1,2m,�2−1r�

(
t +

ηP(s−1)
2m (−1)r

2s

)

+ vs−1,2m+1,�2−1r�

(
t +

ηP(s−1)
2m+1(−1)r

2s

) (13)

for r = 0, 1, . . . , 2s−1 − 1. The fast beamformer iterates (13)
until s = S. Then the data represents one virtual sensor with
2S fully integrated beams whose steering angles correspond
to (8) or (9).

Figure 2 illustrates the partial beams and virtual sensors
after each stage when M = 8. Before the processing begins,
the eight sensors represent eight nonsteered partial beams.
At stage 1, the partial beams are steered toward the beam
centers of the two sectors. Then the steered partial beams
of two adjacent sensors are integrated and downsampled
by two. After downsampling, the virtual sensors are located
at the centroid of two adjacent sensors. For the next stage,
the process is repeated resulting in two virtual sensors
and four sectors. Finally, after the last stage (stage 3), the
data contains one virtual sensor with eight fully integrated
beams. Note that the partial beams corresponding to stage
s and the virtual sensor m′ are determined using only the
output from the “ancestor” sensors, that is, xm(t) for m =
�2sm′�, . . . , �2sm′� + 2s − 1.

Figure 3 shows the location of the sector support during
the first three stages of the fast beamformer. The figure also
demonstrates the relationship between the sector index r
and the corresponding sector center in sin θ space. Finally,
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Figure 4: The spatiotemporal frequency support (k-ω) of a sector: (a) before beam steering and (b) after beam steering.

the figure illustrates that the index g corresponding to the
ancestor sector at stage s− s′ of the rth sector at stage s is

g = ⌊2−s′r⌋. (14)

Figure 4 reveals why the fast beamformer works by
showing the support of the sector in the k-ω frequency
domain. For a linear array, the frequency support of the
sensed signals s j(t − lm,θ) lies in a cone whose largest spatial
frequency is k = (d/c)ωmax, where ωmax is the largest
temporal frequency component in the source signals. If the
DOA lies in the sector [0, 90◦), then the sector comprises the
upper part of the cone that is shaded gray in Figure 4(a).
After beamsteering using (11), the spatial frequency of the
sector lies within k ∈ [−(d/2c)ω, (d/2c)ω). Therefore, the
signal can be spatially downsampled by a factor of two.
The spatial filtering, that is, the addition of adjacent virtual
sensors in (11), increases the SNR by only removing noise,
and the downsampling operation adjusts the frequency
support of the sector back to the full cone between k ∈
[−(d/c)ω, (d/c)ω) in Figure 4(a). The pruned beamforming
now repeats the process with another stage of beamsteering,
filtering, and downsampling using (13). As long as the spatial
separation of the sensors is lower than the critical sampling
threshold, the stages of the fast beamformer will improve the
SNR. In Section 3.2, we characterize the processing gain by
analyzing the source signal in the space-time domain.

The energy of the rth sector at stage s is

Ês(r) = 1
2−sM

2−sM−1∑

m=0

1
T

∫ T

0

∣∣vs,m,r(t)
∣∣2
dt, (15)

and this energy corresponds to the DOA θ(s)
r given by (8) or

(9). In the end, the energy at stage s = S simplifies to

ÊS(r) = 1
T

∫ T

0

∣∣vS,0,r(t)
∣∣2
dt, (16)

and ÊS(r) ≈ Êz(θ
(S)
r ). More details of the general fast DS

beamformer are described in [4].

3.2. Propagation of alignment error

During each stage, the fast beamformer assumes that there
is enough alignment to sum adjacent virtual sensors coher-
ently. Once the virtual sensors are combined, the error
caused by the offset between the signal direction and the
sector beam-angle center becomes known. The beamforming
loss can be calculated by analyzing the difference between the
true and virtual sensor positions. Although the virtual sensor
position is changing at each stage, the real sensor position
is fixed at its position in stage zero. Therefore, the delay
required for steering toward θ0 is

lm,θ0 = ηP(s)
m sinθ0, (17)

and the steered beam should be

z
(
t, θ0

) =
M−1∑

m=0

xm
(
t + ηP(0)

m sinθ0
)
. (18)

However, the partial beams are determined by recursing
through (13) to be

vs,m,r(t)

=
2s−1∑

l=0

xl+2sm

(
t + η

s−1∑

k=0

P(k)

�(l+2sm)2−k�(−1)�2
−(s−1−k)r�2−k−1

)
,

(19)

where η = d/c and the steering direction θst is given by (9).

Assuming that the measured data contains one source
signal, that is, J = 1, whose corresponding DOA matches
the steering direction of the sector, then the partial beam
simplifies to

vs,m,r(t) =
2s−1∑

l=0

s0
(
t + el,s,m,r

)
+ ws(t), (20)
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Figure 5: Processing gain (a) versus stage index s, and (b) versus the normalized position of the DOA with respect to the sector for various
stages.

where ws(t) is WGN with energy density 2sN0, and el,s,m,r is
the alignment error:

el,s,m,r = η
s−1∑

k=1

(
P(k)

�(l+2sm)2−k� − P(0)
l+2sm

)
(−1)�2

−(s−1−k)r�2−k−1.

(21)

When the DOA of the source signal is θ0, the partial beam
can be reexpressed as

vs,m,r(t) =
2s−1∑

l=0

s0

(
t + ηP(0)

l Δu + el,s,m,r

)
+ ws(t), (22)

where Δu = sin θst − sin θ0. Both the beamforming error
el,s,m,r and the steering error Δu degrade the processing gain
for the signal.

Ideally, the fast beamformer would produce zero error. In
the absence of error, the component of the partial beam due
to the source signal is

vs,m,r = 2ss0(t), (23)

and the energy, or processing gain, of the partial beam
increases as 4s with respect to the stage index s. The noise
term, ws(t), in (22) is formed by the sum of 2s components
of zero-mean WGN with variance N0. Therefore, ws(t) is
zero-mean with variance 2sN0, and the processing gain of
the noise component of the partial beam only increases as
2s. The processing gain of a specific signal in the presence
of errors can be calculated using (22). Figure 5(a) plots the
processing gain over stages 1 through 10 for the cases of
no error, beamforming error, and the worst case steering

error, that is, Δu = 2−s for a sampled Sinc function of
bandwidth 0.8π modulated by a sinusoid of frequency 0.6π.
The impinging DOA is θ0= 20◦. The plot clearly shows
that the loss in processing gain due to the errors is fairly
small. The processing gain of the signal component when
accounting for the errors is still increasing significantly from
stage to stage; and it is rising much faster than the noise
component. Figure 5(b) illustrates the processing gain at
various stages when accounting for both the beamforming
and steering errors versus the normalized direction of the
steering angle in the sector where the sector borders are ±1.
Clearly, as the stages progress, the processing gain improves.
Again, the loss of processing gain due to steering error Δu is
relatively small.

4. SECTOR PRUNING

4.1. Algorithm

As introduced in the previous section, fast beamforming is
a multistage algorithm that refines the steered beams as it
progresses from stage to stage. If a source is not present in
one sector, it should be possible to avoid further processing
to resolve that sector. Consequently, we propose to insert
a detector between adjacent stages of the fast beamformer
to determine when to stop processing in each sector. This
section describes the detector needed for the pruned fast
beamformer. The detector is designed to stop processing if
it determines that a coherent summation has not occurred
during the earlier ancestor stages. A similar detector was
used in [12] for the quadtree synthetic aperture radar (SAR)
processor.
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Assume that the alignment error el,s,m,r is zero. When
the sector contains a target and its center matches the DOA
(Δu = 0), then the partial beam given by (22) simplifies to

vs(t) = 2ss0(t) + ws(t), (24)

where ws(t) is zero-mean WGN with variance 2sN0. Note
that the subscripts indicating the virtual sensor index m
and the sector index r has been removed because (24) does
not depend on those parameters for the case of perfect
alignment.

The average energy of the partial beams for a particular
sector at stage s is

Es = 4sS0 + 2sN0, (25)

where S0 is the average signal energy:

S0 = 1
T

∫ T

0
|s(t)|2dt. (26)

In other words, as the fast beamformer progresses, the SNR
improves. We use an estimate of the SNR processing gain
(SPG) as the detection statistics. This statistic is calculated
for each sector after each stage. When the statistic exceeds a
threshold, the sector passes the coherent signal test, and the
partial beams corresponding to that sector are passed on to
the next stage for refined beamforming.

The SPG estimate starts by computing the average partial
beam energy Ês(r) as given by (15). Then the detection
statistic t at sector r and stage s is

ts,r =
Ês(r)− 2Ês−1

(�2−1r�)

4Ê1
(�2−s+1r�)− Ê2

(�2−s+2r�)
. (27)

The numerator in (27) is proportional to the estimated
signal energy at the sth stage. Likewise, the denominator
is proportional to the estimated noise energy at the first
stage. The detection statistic is simply the estimated coherent
processing gain, and the detector is

ts,r ≶ 4sτ, (28)

where τ is a control factor. One can adjust the control factor
to balance the tradeoff between passing lower SNR sources
against the computational complexity of processing noise-
only sectors. Figure 6 shows the flowchart of the pruned
fast beamformer. Note that the detection begins after stage
3 because the first two stages are needed to compute the
denominator in (27).

4.2. Detection performancewithout alignment errors

The detector performance can be summarized by receiver
operator characteristic (ROC) curves. In this subsection,
we consider the ideal scenario, that is, no alignment error
and the steering direction matches the DOA. In practice,
these assumptions are never true. For instance, the steering
direction, that is, the sector beam center, changes from stage
to stage. Therefore, the steering error can only be zero at
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Figure 6: Flowchart of the pruned fast beamformer.

one stage, and alignment errors are inevitable as discussed in
Section 3.2. Section 4.3 discusses the detection performance
in the presence of errors.

This subsection provides insights about the detection
performance by exploiting the zero-error assumption. The
derivation of the ROC curves also ignores the fact that inter-
polation in the fast beamforming will introduce correlation
in the noise. When the ath virtual sensor at stage s is included
in the bth virtual sensor at stage s + s′, that is, the ath virtual
sensor at stage s is an ancestor of the bth virtual sensor at
stage s + s′, then

cov
{
vs,a,r

(
t1
)
, vs+s′,b,k

(
t2
)} = 2

s
N0δ

(
t1 − t2

)
(29)

for r, k = 0, 1, . . . , 2s − 1. When the ath virtual sensor at
stage s is not an ancestor of the bth virtual sensor at stage
s + s′, the covariance is zero because the sensors generating
the two virtual sensors do not overlap and the sensor noise
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is white. The covariance between energy estimates as derived
in Appendix A is

cov
{
Ês(r), Ês+s′(k)

} = 1
T

(
22s+1N2

0 + 4·23s+s′N0S0
)
. (30)

Now, the coherence detector (28) is equivalent to comparing
the statistic:

T (s) = Es(r)− 2Ês−1
(⌊

2−1r
⌋)

− 4sτ
(
4Ê1
(⌊

2−s+1r
⌋)− Ê2

(⌊
2−s+2r

⌋)) (31)

to a threshold of zero. If T (s) is larger than zero, the detector
assumes a coherent source. The expected value of T (s) is

ε{T (s)} = 4s
(

2
−1
S0 − 4τN0

)
, (32)

and Appendix B uses the covariance given by (30) to derive
the variance of T (s) to be

var{T (s)} = 4sN2
0

T

[
2s+1(1 + 2s+7τ2)ρ + 2(3·22s+4τ2 + 1

)]
,

(33)

where ρ = S0/N0 is the SNR. By approximating the pdf
of Ês(r) as Gaussian, T (s) is also Gaussian because it is
a linear combination of Gaussian random variables. (The
central limit theorem justifies the Gaussian assumption when
the temporal integration time T is large.) As a result, the
probability of detection at stage s is

Pd(s) = Prob{T (s) > 0 | S0 > 0}

= Q
( −ε{T (s)}√

var{T (s)}
)

,
(34)

where Q(x) is the error function

Q(x) = 1√
2π

∫ x

−∞
e−(1/2)x2

dx. (35)

The probability of false alarm at stage s can also be calculated
using (34) by setting S0 = 0.

4.3. Detection performancewith errors

This subsection discusses the effect of errors on the detection
performance. Section 3 derived the steering and alignment
errors at each stage of the fast beamformer. These errors lead
to a reduction of the ideal processing gain for the source
signal. As shown in Figure 5, the loss varies with respect to
the actual DOA and stage s. As a result, the ideal partial beam
energy at stage s in (25) can be reexpressed as the actual
energy via

ε
{
Ês
} = 4

s
αs(θ)S0 + 2sN0, (36)

where 0 < αs(θ) < 1 is the energy-loss factor (ELF) at stage
s, and θ is the signal’s DOA. The ELF is the normalized

energy shown in Figure 5(b). The numerator of the detection
statistic due to the signal source is

Es(r)− 2Es−1
(⌊

2−1r
⌋) = 4sαs(θ)S0 − 2·4s−1αs−1(θ)S0

= 4s
(

αs(θ)
αs−1(θ)

− 1
2

)
αs−1(θ)S0.

(37)

If αs/αs−1 is less than 1/2, the detection statistic is negative
and the detector will fail to detect the target. Figure 7
provides plots of α3/α2 and α6/α5 versus θ. The ELF
rate varies greatly as a function of DOA. Therefore, the
probability of detection depends on the signal’s DOA. In
general, the ELF rate never dips below the critical value of
1/2. Therefore, “on average” the detector is able to pass any
coherent source at any stage as long as the threshold τ is small
enough.

The ELF makes it possible to derive the expected value of
T (s). Specifically,

ε{T (s)} = 4sN0
[{
αs − 0.5αs−1 − 16τ

(
α1 − α2

)}
ρ− 4τ

]
.

(38)

Note that explicit dependence of the ELF on the DOA θ is left
out in the remainder of the paper for notational convenience.
The variance of T (s) is also affected by the steering and
alignment errors. The second term in (30) is derived from

4·23s+s′N0S0 = 4·2sN0
1
T

∫

T
ε
{
vs(t)

}
ε
{
vs+s′(t)

}
dt. (39)

Because of the alignment errors in vs(t), the integral will be
less than 22s+s′S0, and we introduce the factor βs,s+s′ such that
0 < βs,s+s′ < 1 to model the reduction in the value of the
integral. The new factor βs,s+s′ depends on the stage number
s, the stage displacement s′, the DOA θ, and the steering

direction θ̂. Note that β is different from αwhich is the energy
loss in the signal due to alignment error. Then the integral is

1
T

∫

T
ε
{
vs(t)

}
ε
{
vs+s′(t)

}
dt = 22s+s′βs,s+s′S0, (40)

and the covariance in (30) can be expressed as

cov
{
Es,Es+s′

} = 1
T

(
22s+1N2

0 + 4·23s+s′N0βs,s+s′S0

)
. (41)

Finally, the variance is

var{T (s)}

= 23sS0N0

T

{(
4βs,s + 2βs−1,s−1 − 4βs−1,s

)

+ 256·2sτ2(2β1,1 + β2,2 − 2β1,2
)

− 128τ
(
β1,s − β2,s − β1,s−1 + β2,s−1

)}

+
2·4sN2

0

T

(
1 + 48·4sτ2).

(42)

Note that (38) and (42) are the same as (32) and (33),
respectively, when the values of all α and β loss factors are



Yeo-Sun Yoon et al. 9

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

E
n

er
gy

ra
te

0 10 20 30 40 50 60 70 80 90

Angle

(a)

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

E
n

er
gy

ra
te

0 10 20 30 40 50 60 70 80 90

Angle

(b)

Figure 7: Energy-loss factor (ELF) rate at two consecutive stages: (a) α3/α2 and (b) α6/α5. The rates are fluctuating depending on the signal’s
DOA, but never become smaller than 0.5.
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Figure 8: Detector performance at stage 3 for different values of the energy-loss factor α: (a) probability of detection versus SNR for τ =
0.0001, and (b) probability of detection (Pd) versus probability of false alarm (Pf ) when SNR =−4 dB. The dashed and dotted lines represent
the ideal and lossy cases, respectively. In both plots the integration time is T = 40.

equal to one, that is, no energy losses. Now, the ROC curve
can be computed from (34) as in Section 4.2.

Figure 8 shows how the energy loss reduces the detector
performance by comparing the performance curves with the
loss-free detector. In Figure 8(a), the threshold τ = 0.0001,
and in Figure 8(b), the initial SNR is −4 dB. For both plots,
all the β’s are set to 0.8 for the lossy cases and s = 3. Since
the β parameters do not affect the detector performance as
much as the α’s, the figures show only the effect of the α’s.

For the “no loss” case, both the α’s and β’s are set to 1.0. In all
plots, the solid curve represents the ideal case, and the dotted
curves represent the lossy cases. As the energy loss increases,
that is, α decreases, the probability of detection decreases
as expected. One can see that the energy loss degrades the
performance significantly. Although the results are overly
pessimistic because the energy loss α is usually not as small
as 0.6 in the early stages at s = 3, the graph shows that the
detector would still work.
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5. COMPUTATIONAL COMPLEXITY

The DS and fast beamformers perform two types of process-
ing: (1) beamforming for a given DOA, and (2) computation
of the beam energy. These beamformers perform the energy
computation at the final stage, but the pruned fast beam-
former also performs the energy computation after every
stage. In addition, it also computes the detection statistic.
This section details the computational complexity for the
pruned and standard fast beamformers by examining the flop
count for the three types of processing. It is important to note
that, in practice, the sensor data is sampled at a rate of N/T so
that the temporal integration is implement as a summation
of N time samples.

The beamforming processing includes the timeshift,
interpolation, and sensor integration. It requires three
multiplications to compute the time-delay via (3). Because
the beamformer is processing sampled data, the beamformer
must employ interpolation, for example, bilinear interpola-
tion, to handle noninteger sample shifts. Once the timeshift
is calculated, the number of flops for processing the partial
beams via (19) over N time samples is I·N + F·N , where I is
the number of computations for the timeshift interpolation
and F is the number for filtering, that is, summing, of
adjacent beams. For a given stage, the total number of
computations for beamforming is

Dbf = {(I + F)N + 3}Bp, (43)

where Bp is the number of partial beams to process.
The beam energy computation calculates (15). For

each partial beam, it requires N multiplies to compute
the squares and N − 1 adds for the integration. Another
addition is required to accumulate the energy over the virtual
sensors. The total number of computations for the energy
computation is

Dbe = 2NBe, (44)

where Be is the number of partial beams used in the energy
computation.

To obtain the detection statistics ts,r via (27), three
floating-point operations are required: one subtraction,
one multiplication, and one division. The total number of
computations for the detection statistic is

Dds = 3Bs, (45)

where Bs is the number of sectors that are tested for potential
pruning.

The total number of computations for pruned fast
beamforming is

Dp = {(I + F)N + 3}Bp + 2NBe + 3Bs. (46)

The number of processed partial beams Bp depends on
the number of source signals, the SNR, and the threshold.
The maximum Bp is the same as that for conventional
fast beamforming. In other words, at each stage, there are
2S−s partial beams per sector and 2s sectors for a total of

2S = M partial beams. Then over the log2M stages, the fast
beamformer processes are

Bp,max =M log2 M, (47)

partial beams. For the case of one signal source, the
minimum Bp can be achieved when the fast beamformer only
continues to resolve the sector containing the source after
running the detection statistic. Since the pruning begins after
stage 3 and continues to the final stage, the minimum Bp is

Bp,min = 3M +
M

4

(
1− 0.5S−3). (48)

The number of partial beams used in the energy calculation
Be is the same as the total number of processed partial
beams Bp when considering the pruned fast beamforming.
For conventional fast beamforming, the energy calculation is
necessary only during the last stage in order to identify the
sectors containing a signal source. Therefore, Bp =M for the
conventional fast beamformer. Finally, the detection statistic
operates over the sectors, and the statistic is computed from
stage 3 to stage s− 1. As a result, Bs can be as large as

Bs,max = 8
(
2
s−3 − 1

)
, for s ≥ 4, (49)

if all sectors pass the detection, or as small as

Bs,min = 2s, for s ≥ 4, (50)

if only one sector passes the detection test at each stage. Note
that Bs = 0 for 0 ≤ s ≤ 3 because the pruning only begins
after the third stage. Clearly, the detection statistic is not used
by the standard beamformer, where Bs = 0.

Overall, the minimum number of computations for the
pruned fast beamformer is

Dp,min = (I + F)NBp,min + (2N + 3)Bp,min + 6 log2 M. (51)

On the other hand, the number of computations for the
nonpruned fast beamformer is

Df = {(I + F)N + 3}M log2 M + M(2N − 1). (52)

When all the partial beams are passed the threshold, which
is the worst case for the pruned fast beamformer, the ratio
between the total number of computations of pruned fast
beamformer and nonpruned fast beamformer is

Dp,max

Df
≈ {(I + F)N + 2N + 6}M log2 M

{(I + F)N + 3}M log2 M + M(2N − 1)
. (53)

When F = 3 and I = 1, which is simple bilinear interpolation
and radix-2 case, and N is large, the above ratio becomes

Dp,max

Df
≈ (6N + 6) log2 M

(4N + 3) log2 M + (2N − 1)
≈ 3 log2 M

2 log2 M + 1
.

(54)

As the above ratio shows, the number of computations for
pruned fast beamforming is larger than that of nonpruned
fast beamforming. However, it is the worst case in which
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the detector does not work at all. When sectors which do
not include signals are pruned, the computational saving is
significant. Figure 9 shows the minimum achievable number
of partial beams and the resulting number of computations
used by the pruned fast beamformer normalized to the
computational complexity of the standard fast beamformer
when there is single signal source. Note that when the
number of sensors is less than 16, the minimum number
of computations for the pruned fast beamformer is larger
than the number of computations for the conventional
fast beamformer. This is due to the overhead incurred by
computing the energy at each stage. As the number of sensors
increases, the pruned fast beamformer achieves considerable
computational savings as compared to the conventional fast
beamformer.

6. SIMULATION AND RESULTS

6.1. Wideband signal and arraymodel

We evaluate the utility of the pruned fast beamformer by sim-
ulating a wideband signal embedded in various realizations
of complex circular Gaussian-White noise. The signal is a
complex wideband signal whose magnitude is Sinc function
in time domain. The frequency ranges from 0.25π to 0.5π
after sampling. In other words, the bandwidth to the center
frequency ratio is 2/3 and the signal is oversampled by
a factor of two. The array is an ULA where the number
of elements is either M = 128 or M = 256, and the
sensor spacing is equal to half of the shortest wavelength so
that spatial aliasing is avoided. The number of samples for
temporal integration is N = 401. We consider single source
case. Throughout the simulation the signal’s DOA is −20◦.

6.2. Simulations

Figure 10 illustrates the steered response of the fast beam-
former at each stage with and without pruning; from left
to right, stages 3 to 6 are shown. At stage 3 (left column)
all sectors have been completely processed even when using
pruning because the detection begins at that point. Once
the detection begins between stages 3 and 4, the pruned fast
beamformer is able to eliminate many sectors. By pruning
sectors, the pruned beamformer processes only 8 partial
beams at stage 5, and 4 partial beams at stage 6. On the
other hand, the standard fast beamformer processes all 128
partial beams during all stages. The computational savings
of pruning relative to full processing improves as the number
of required stages, that is, log2M, increases.

The performance of the pruned fast beamformer can
be evaluated by plotting the probability of detection Pd
against the computational complexity. The threshold param-
eter τ controls the operating condition of the detector. A
low value of τ translates to a high probability that the
sector containing the source signal will be fully processed.
However, the low value also means that sectors containing
noise have a greater probability of surviving through the
processing chain. A higher threshold reduces the number
of computations used to process noise-only sectors, but the
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Figure 9: Computational savings of the pruned fast beamformer
when single signal source is present, N = 401,F = 3, and I = 1.
(a) The minimum number of processed beams for the pruned fast
beamformer versus the number of processed beams for the fast
beamformer, and (b) the minimum number of computations for
the pruned fast beamformer normalized against the computation
count for the fast beamformer.

probability of resolving a sector containing an actual source
signal reduces. Therefore, the key ROC curve describing
the performance of the pruned fast beamformer compares
Pd against computational complexity under various SNR
conditions.

Figure 11 shows the ROC curves for M = 128 and
M = 256 by plotting Pd versus normalized computational
complexity, that is, complexity of the pruned beamformer
divided by that of the unpruned one. The ROC curves
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Figure 10: Steered response at each stage when the DOA is −20◦. The columns from left to right represent from stage 3 to 6. The upper
panels represent regular fast beamforming, while the lower panels show pruned fast beamforming.
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Figure 11: ROC curves. (a) M = 128, (b) M = 256.

represent SNR levels ranging from −7 dB to −11 dB, and
each point on the curves was generated via 200 Monte-
Carlo simulations. The computational complexity accounts
for linear interpolation during beam steering and the imple-
mentation of a two-tap lowpass filter during the integration,
that is, summation, of adjacent partial beams in (13).

The figure shows that the pruning detector is able to
provide a high detection rate even when the computational
complexity reaches its minimum value as discussed in
Section 5. In fact, the minimum number of computations
is achieved for a Pd close to one when the SNR is higher

than −7 dB. The performance starts to drop off around
−10 dB. It can be observed that the fall off in performance
is consistent for the cases of M = 128 and M = 256
sensors. The only difference is that the larger array can lead
to better normalized computational savings. We suspect that
the consistency is due to the fact that the pruning begins
after stage s = 3. At that stage, the SNR, after accounting
for the processing gain, increases by about 9 dB independent
of the value of M. It appears that as long as the signal
energy is comparable to the noise energy at stage s = 3,
the signal can easily be detected at a low false alarm rate.
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Also the ability to detect the signal at that stage has major
implications for the effectiveness of the pruning. As a result,
as long as the initial SNR is greater than −9 dB, the pruning
will be effective.

When the SNR is below −10 dB, the pruned beamformer
must allow many sectors to pass the detector in order to avoid
pruning the actual source signal. However, reducing the
threshold τ to a value of zero does not assure that all sectors
pass the detection criteria. The detection statistic given by
(27) can fall below zero when the SNR is low. When this
occurs, sectors containing source signals can still be pruned
despite τ = 0. Therefore, we conclude that the performance
of the pruned fast beamformer is not very effective when the
SNR is extremely low.

7. CONCLUSIONS

This paper introduces a pruning detector to the fast beam-
former in order to further improve its performance. The
paper also provides an error analysis of the fast beamformer
and provides simulations to assess the actual performance
gains of the new approach. Although the fast beamformer
suffers from reduction in the processing gain achieved by
the DS beamformer due to misalignment errors, the pruning
detector is still effective. Specifically, the pruning is able to
reduce the computational complexity while maintaining a
high probability that the sector containing the source signal is
fully resolved. When the number of elements of the antenna
array is large so that the number of pruned sector is large,
the proposed method can greatly reduce the computational
burden although the pruned fast beamformer requires some
computations for the detector. Another advantage of the
beamformer is that it requires no initial estimate of the
DOAs or the field of view (FOV). Therefore, it can be
used to find initial DOAs for a number of wideband DOA
estimators.

This paper focused on the radix-2 form of the pruned fast
beamformer. Future work could analyze the performance of
the pruned fast beamformer for various radices and sectors
to find the best values (R and L) by analysis of the alignment
errors. Investigation on the performance for multiple (closely
spaced) sources and general array configurations is another
future work to be done.

APPENDICES

A. STATISTICS FOR BEAM ENERGY

This appendix derives the statistics of the partial beam energy
when assuming no steering errors. For the errorless case, the
partial beam at stage s is

vs(t) = 2ss(t) + ws(t), (A.1)

where s(t) is the signal source and ws(t) is zero-mean WGN
with variance 2sN0. Given that s(t) and ws(t) are real-valued,

the energy at stage s is

Es = 1
T

∫

T

∣∣vs(t)
∣∣2
dt

= 1
T

∫

T

{
2ss(t) + ws(t)

}2
dt

= 22s

T

∫

T
s2(t)dt +

2s+1

T

∫

T
s(t)ws(t)dt +

1
T

∫

T
w2
s (t)dt.

(A.2)

If we define the signal energy S0 as

S0 = 1
T

∫

T
s2(t)dt, (A.3)

then the expected value of Es is

ε
{
Es
} = 4sS0 +

2s+1

T

∫

T
s(t)ε

{
ws(t)

}
dt +

1
T

∫

T
ε
{
w2
s (t)

}
dt

= 4sS0 + 2sN0.
(A.4)

The covariance between energies at two different stages
is nonzero when the steered beam at the earlier stage is the
ancestor of a beam at the later stage. The covariance between
Es and Es+s′ for s′ > 0 is

cov
{
Es,Es+s′

} = cov
{

1
T

∫

T
v2
s (t)dt,

1
T

∫

T
v2
s+s′(t

′)dt′
}

= 1
T2

∫∫

T
cov
{
v2
s (t), v2

s+s′(t
′)
}
dt dt′.

(A.5)

The covariance of the partial beams squared can be simplified
by exploiting the fact that

cov
{
x2, y2} = 2 cov2{x, y} + 4 cov{x, y}ε{x}ε{y}. (A.6)

Because the partial beams at stage s and stage s + s′ are
correlated by common sensor noise, it is easy to show that

cov
{
vs(t), vs+s′

(
t′
)} = 2

s
N0δ

(
t − t′

)
. (A.7)

Then the energy covariance in (A.5) simplifies to

cov
{
Es,Es+s ′

}

= 1
T2

∫

T

{
2
(

2sN0

)2
+ 4·2sN0ε

{
vs(t)

}
ε
{
vs+s′(t)

}}
dt

= 1
T

(
22s+1N2

0 + 4·23s+s ′N0 S0

)
.

(A.8)

The energy variance, which corresponds to the case s ′ = 0,
further simplifies to

var
{
Es
} = cov

{
Es,Es+0

} = 1
T

(
22s+1N2

0 + 23s+2S0N0

)
.

(A.9)
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B. STATISTICS FOR DETECTOR

This appendix derives the statistics used to derive the ROC
performance of the pruning detector. First, we define two
values:

S(s) = Es − 2Es−1, N (s) = 4E1 − E2, (B.10)

which form the numerator and denominator of the detection
statistic, respectively. In addition, we define

T (s) = S(s)− 4sτN (s). (B.11)

When T (s) is larger than zero, the detector declares a
target to be present; otherwise, further processing resolve the
target ends. Now, one can derive the first- and second-order
statistics of T (s) from the mean and variance of S(s) and
N (s):

ε{S(s)} = ε
{
Es
}− 2ε

{
Es−1

}

= 4sS0 + 2sN0 − 2
(

4s−1S0 + 2s−1N0

)
= 1

2
·4sS0,

ε{N (s)} = 4ε
{
E1
}− ε

{
E2
}

= 4(4S0 + 2N0
)−

(
42S0 + 22N0

)
= 4N0,

var{S(s)} = var
{
Es − 2Es−1

}

= var
{
Es
}

+ 4var
{
Es−1

}− 4 cov
{
Es,Es−1

}

= 1
T

(
23s+1N0S0 + 22s+1N2

0

)
,

var{N (s)} = var
{

4E1 − E2
}

= 16 var
{
E1
}

+ var
{
E2
}− 8 cov

{
E1,E2

}
.

= 1
T

(
256N0S0 + 96N2

0

)
.

(B.12)

Furthermore, the covariance between S(s) and N (s) is

cov{S(s)N (s)} = cov
{(
Es − 2Es−1

)
,
(
4E1 − E2

)}

= 4 cov
{
Es,E1

}− cov
{
Es,E2

}

− 8 cov
{
Es−1,E1

}
+ 2 cov

{
Es−1,E2

} = 0.
(B.13)

Therefore, the expected value of T (s) is

ε{T (s)} = 1
2
·4sS0 − 4sτ4N0 = 4s

(
1
2
S0 − 4τN0

)
, (B.14)

and the variance is

var{T (s)}
=var

{
S(s)− 4sτN (s)

}

=var{S(s)} + 42sτ2var{N (s)} − 2·4sτ cov{S(s),N (s)}

= 1
T

(
4sN2

0

[
2s+1(1 + 2s+7τ2)ρ + 2

(
3·22s+4τ2 + 1

)])
,

(B.15)

where ρ = S0/N0 is the SNR.

NOTATION

θ: Direction-of-arrival
M : Number of sensors
N : Number of snapshots
S: Number of stages
J : Number of signal sources
L: Number of subsectors (or beams) per sector
xm(t): Output signal at the mth sensor
s j(t): Signal radiated from the jth source
nm(t): Additive White-Gaussian noise at the mth sensor
ws(t): Additive noise at stage s
z(t, θ): Beamformed signal corresponding to steering

direction θ
lm,θj : Time-delay depending on the relative location of

the mth sensor and the DOA of the jth signal
θst,i : The ith steering direction

P(s)
m : The location of the mth virtual sensor at stage s

el,s,m,r : The alignment error of the mth virtual sensor at
stage s steered toward the rth sectorfor the lth
REAL sensor

N0: Expected energy, or variance, of the additive noise
nm(t)

S0: Signal energy
d: Sensor separation
c: Propagation speed of the radiated signals
ω: Temporal frequency
k: Spatial frequency
ε{·}: Expectation operator
Êz(θ): Energy in the beamformed signal toward steering

direction θ

Ês(r): Energy in the beamformed signal of the rth sector
at stage s

Δu: sin θ0 − sin θst, where θ0 is the signal’s DOA and
θst is the steering direction

αs(θ): Energy-loss factor at stage s caused by
beamforming error when the signal’s DOA is θ

βs,s+s′ : Loss in the covariance between beamformed
signals at stage s and stage s + s′

Es : Partially integrated beam energy at stage s when
there is no beamforming error

vs,m,r(t): Partially integrated beam corresponding to the
mth virtual sensor steered toward the rth sector at
stage s.
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