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To achieve an effective and safe operation on the machine system where the human interacts with the machine mutually, there is
a need for the machine to understand the human state, especially cognitive state, when the human’s operation task demands an
intensive cognitive activity. Due to a well-known fact with the human being, a highly uncertain cognitive state and behavior as
well as expressions or cues, the recent trend to infer the human state is to consider multimodality features of the human operator.
In this paper, we present a method for multimodality inferring of human cognitive states by integrating neuro-fuzzy network
and information fusion techniques. To demonstrate the effectiveness of this method, we take the driver fatigue detection as an
example. The proposed method has, in particular, the following new features. First, human expressions are classified into four
categories: (i) casual or contextual feature, (ii) contact feature, (iii) contactless feature, and (iv) performance feature. Second, the
fuzzy neural network technique, in particular Takagi-Sugeno-Kang (TSK) model, is employed to cope with uncertain behaviors.
Third, the sensor fusion technique, in particular ordered weighted aggregation (OWA), is integrated with the TSK model in such
a way that cues are taken as inputs to the TSK model, and then the outputs of the TSK are fused by the OWA which gives outputs
corresponding to particular cognitive states under interest (e.g., fatigue). We call this method TSK-OWA. Validation of the TSK-
OWA, performed in the Northeastern University vehicle drive simulator, has shown that the proposed method is promising to be
a general tool for human cognitive state inferring and a special tool for the driver fatigue detection.

Copyright © 2008 G. Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Broadly speaking, any machine system involves human-
machine interaction, for example, the vehicle system where
the driver interacts with the vehicle in driving. In order to
maintain an effective and save operation of the machine sys-
tem, there is a need for the machine to understand the hu-
man state, especially cognitive state, when the human’s oper-
ation task demands an intensive cognitive activity. To achieve
this need is a complex task, warranting research. This is be-
cause the human being behaves in an extremely uncertain
manner in terms of the correspondence between expressions
and inferred cognitive states. For example, a person’s smiling
facial expression may not necessarily imply that the person is
happy. Therefore, a new paradigm for techniques to under-

stand and measure the human cognitive state is to consider
multimodality features of the human operator with a partic-
ular idea that both a feature and its context needs to be in-
tegrated in any inferring method. In this paper, we present
a method for multimodality inferring of human cognitive
states by integrating neuro-fuzzy network and information
fusion techniques. To demonstrate the effectiveness of this
method, we take the driver fatigue detection as an example
due to its important social significance.

It is well known that the driver fatigue is responsible for
a relatively high proportion of road traffic accidents. The
United States National Highway Traffic Safety Administra-
tion (NHTSA) estimates that there are about 100 000 crashes
every year caused by the fatigue that have led to more than
1 500 fatalities and 71 000 injuries [1]. Some other statistics
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reported that drowsiness (a kind of fatigue) accounts for 16%
of all kinds of crashes and over 20% of motorway crashes [2].
The driver fatigue has been notoriously called as the “Silent
Killer” on the roads. Existing techniques for the driver fatigue
detection can be classified into several categories according to
literature [3], such as (1) causal/contextual feature, (2) phys-
iological feature, (3) performance feature, and (4) combina-
tion of the above categories.

1.1. Casual/contextual features only

These features include (i) individual physical states such as
sleep quality (SQ), and circadian rhythm; (ii) working condi-
tions such as noises, and driving hours (DH); and (iii) envi-
ronment conditions such as monotony of road (MR), and the
number of lanes (NL). The inferring of fatigue based on these
features is developed by first collecting feature data through
questionnaire and then performing classifications. A ques-
tionnaire, including the required hours of sleep, difficulties
in falling asleep at night, waking up tiredness, and waking
up occasionally during the night, was designed for military
truck drivers with the objective of finding a relation between
fatigue and SQ [4]. This research concluded that the better
SQ will lead to the less fatigue. In another study, twenty-six
features in accident records were selected, and a neural net-
work model was proposed by taking these features as inputs,
and fatigue and nonfatigue as outputs [5]. A multistage eval-
uation method was applied in [6] using fuzzy set theory, in
which fatigue was described as three states, namely, no fa-
tigue, a bit fatigue, and complete fatigue. These studies [5, 6]
need to be extended by including more levels of the fatigue.

1.2. Physiological features only

The physiological features are further grouped into the con-
tact and contact-less features. The contact features mainly
includes the brain activity, heart rate variability, and skin
conductance which can be detected by electroencephalo-
gram (EEG), electrocardiograph (ECG), and electromyo-
gram (EMG). The contact-less features mainly include the
eye movement (EM), head movement, and facial expressions
which can be obtained from the dynamic images provided
by the CCD camera. It is noted that the classification of the
EM under the physiological features may be controversial;
however, our interpretation of physiology here seems to be
broader such that physiological features are those governed
by the brain on a continuously updating basis. Nevertheless,
this classification does not affect the main result of this re-
search.

The classification of these two groups leads to two gen-
eral methods: contact-feature-based method (CFBM) and
contact-less-feature-based method (CLFBM), respectively.
In the case of CFBM, an algorithm based on changes in all
major EEG bands (delta, theta, alpha, and beta bands) during
fatigue was developed in [7, 8]. Further, a combination of the
EEG power spectrum estimation, principal component anal-
ysis, and fuzzy neural network model was used to predict the
driver’s drowsiness in [8]. The associated wavelet representa-
tion of EEG at different scales was applied as system inputs

to detect the starting time the driver begins to feel fatigue in
[9].

Besides EEG, the heart rate variability also contains
abundant information about fatigue. Several ECG features
such as low frequency (LF), very low frequency (VLF), high
frequency (HF), and the LF/HF ratio were applied in [4] to
classify sleep into wake, rapid eye movement (REM), and
non-REM stages. By taking Hermite polynomial coefficients
of ECG as input [10] of a neuro-fuzzy network, an approach
[11] was proposed to classify the heart rate variation. Se-
lecting the means, the standard deviations, the first differ-
ences, and the second difference of EMG, blood volume pulse
(BVP), galvonic skin response (GSR), and respiration from
the chest expansion as the physiological features, an algo-
rithm was proposed which combines the sequential floating
forward search and the fisher projection approaches [12, 13].
Although EEG and ECG have been thought to be accurate
and objective to measure fatigue, it is very difficult to apply
these two physiological signals in the real driving situation
because electrodes and wires are used to contact a driver ob-
trusively in order to obtain EEG and ECG signals. It is noted
that there have been some efforts in developing nonobtrusive
EEG and ECG technologies, but they are not on the market
yet.

In the case of CLFBM, the visual cues were almost ex-
clusively employed. These visual cues mainly include mouth
shape, head position, and eye movements (e.g., changes in
the eye gaze direction, eyelid activity, and blinking rate, etc.)
which can be extracted from a series of dynamic images pro-
vided by a CCD camera [14]. A driver fatigue detection al-
gorithm has been proposed based on the eye tracking and
dynamic template matching [15]. The detection of the gaze
direction using the time-varying image processing has been
studied in [16] where the facial direction and the gaze direc-
tion were detected separately, and then they were integrated
into a final gaze direction. Taking the openness of mouth and
eye, respectively, and the vertical distance between eyebrows
and eyes as inputs, a fuzzy neural network model was con-
structed for detecting fatigue [17]. Percent eye closure (PER-
CLOS) methodology is a reliable technique for the determi-
nation of a driver’s alertness level. Grace et al. in Carnegie
Mellon Research Institute developed a video-based system
that measures PERCLOS [18]. Optalert patented technology,
using the reflectance of invisible light to monitor the move-
ments of eye and eyelids, is also a reliable technique for the
determination of a driver’s alertness level [19].

1.3. Performance features only

There is an emerging consensus that fatigue will contribute to
deterioration in performance, which may lead to errors and
increase the risk of accidents [20]. This is true for driving. It
is due to such a viewpoint that the method in this category
is defined as being able to infer the fatigue onset by observ-
ing driver’s performance, mainly including the operational
reaction time, lane position deviation, and hand movement
of controlling the steering wheel. A method was proposed in
[21–23] to model the driver’s motion behavior when control-
ling the steering wheel by using the fuzzy theory.
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1.4. Combination of 1.1∼1.3 using themultiple
feature fusion technique

Each of methods in (1), (2), and (3) categories only focuses
on certain aspects. While they may succeed in their own
“perfect” conditions, unfortunately, these “perfect” condi-
tions may not be practical, which therefore challenges the
measurement reliability. For example, inferring driver’s fa-
tigue from facial expression is not always reliable because of
the two limitations. One is that current techniques of image
processing cannot always ensure the recognition precision,
the other is that an introverted person might have tendency
of controlling his/her display of emotions, especially in the
presence of people he/she is not well-acquainted with [24].
The performance-based measurement technique can easily
be challenged because deterioration in driving performance
may also be related to such factors as driver’s age, overtaking,
or giving way to other cars.

The fundamental principle for solutions to these chal-
lenges is to “fuse” multiple kinds of signals of information
about persons’ contexts, situations, goals, and preferences
[12]. Along this line of thinking, a few studies have been re-
ported. considering the contextual information and visual
cues at a single time instant, a static Bayesian net (SBN)
has been constructed [1] to infer and predict the fatigue
of human operators. Though their method does enhance
measurement reliability, it was unable to model fatigue dy-
namically [25, 26]. The dynamic Bayesian network (DBN)
has been developed to overcome this limitation. Consider-
ing the evidence and beliefs of contextual information and
visual cues from multiple time slices, a probabilistic frame-
work based on DBN has been introduced in [25]. However,
it remains to see how the contact features affect the accuracy
of measurement. There is a further general difficulty with the
BN or DBN in determining the prior probability and con-
ditional probability which are the important parameters in
these models.

From the above analysis, a conclusion is perhaps made
that the inferring of human cognitive states based on the fu-
sion of multiple features is an effective way, especially for get-
ting reliable fatigue estimation. In line with this conclusion, a
method based on neuro-fuzzy network and information fu-
sion techniques for inferring human mental states with a par-
ticular attention to the driver fatigue was proposed in a study
to be presented in this paper. There are three salient features
with the proposed method. First, the neuro-fuzzy network
technique is employed for two reasons: (1) the behavior as-
sociated with fatigue is often vaguely described, for example,
very tired, very sleepy, and so forth, to which the fuzzy logic
is extremely suitable; (2) the neural network brings the low-
level learning and computational power to a decision system
for capturing the nonlinearity in the system behavior [27].
Second, the information fusion technique is employed in
such a way that the cues are taken as inputs to the TSK model
which gives outputs, and then they are fused by a particular
fusing method which gives outputs corresponding to partic-
ular cognitive states under interest (e.g., fatigue). There are
fruitful methods [28–36] available for aggregation of multi-
ple features. Ordered weighted aggregation (OWA) method

[36] was selected in this study because of the following rea-
son. There are many features related to fatigue; some have
more contribution to the fatigue, while others have less con-
tribution to the fatigue. In information fusion, it is natural
that the feature with more contribution to the fatigue should
have higher weight, and vice versa. OWA method does work
well for this situation because the basic idea of the OWA is
that the weights of aggregating variables are not fixed by the
absolute values of the variables but by their relations. Third,
the three categories of cues are employed, namely, (i) con-
textual category, (ii) contact category, and (iii) contact-less
category. The proposed method is called TSK-OWA.

In addition to the new feature with the proposed method,
that is, a combination of neuro-fuzzy network and infor-
mation fusion techniques, another major difference of the
proposed method other than other methods commented be-
fore is that none of them has considered the three cate-
gories together. In a closely related work [8], the neuro-fuzzy
TSK model was employed for measuring fatigue; however,
that work only considered the EEG signal. Further in that
work, the final aggregation of several channels of informa-
tion sources into one state has not considered the contribu-
tion variation of individual channels of information to that
state.

The remainder of this paper is organized as follows.
Section 2 will present a general architecture of the proposed
method by taking the driver fatigue diction as an example.
Section 3 presents the model based on the neuro-fuzzy the-
ory with the features (SQ, DH, EEG, ECG, EM). In Section 4,
the method for aggregating the outputs from the neural-
fuzzy model is presented. Section 5 presents an experiment
validation to the proposed method. Section 6 concludes the
paper and discusses future work.

2. THE ARCHITECTURE OF THE PROPOSEDMETHOD

We take the driver fatigue diction as an example. As men-
tioned previously, there are many features related to fatigue.
Some features may have more contribution to fatigue, while
others may have less. In this study, we proposed that each
category at least comes up with one feature that contributes
to fatigue most. Having this idea in mind, in the following
we discuss the section of features in relation to the degree of
their relevance with fatigue.

2.1. SQ analysis

SQ is an important contextual feature that has an immediate
relation with fatigue [4]. The driver’s SQ is further associ-
ated with such quantities as required sleep hours, difficulties
in falling asleep at night, waking up tiredness, waking up oc-
casionally during the night, waking up too early in the morn-
ing without being able to fall asleep again [4], and other so-
cial factors such as the economic burden of a family. Among
them, the required sleep hour is taken as a key contributor to
SQ because of its relatively high relevance to the degree of fa-
tigue. It is known that an average human being requires 6 to 8
hours sleep per day for his or her normal operation. Another
important reason to select the sleep hour as an indicator of
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SQ is that the sleep hour is a crisp value and thus easy to ob-
tain in a precise manner.

The hour of sleep is denoted as z1 and normalized to the
range of [0,1] (i.e., z1 ∈ [0, 1]) which is derived from the
time interval [0, 8] hours. Further, the SQ in this case is de-
fined as a probabilistic variable, denoted as y1 ∈ [0, 1] corre-
sponding to z1. In particular, y1 = 0 means that the proba-
bility that a driver is fatigue is 0; that is to say that the driver
is not fatigue at all. While y1 = 1 means that a driver is com-
pletely or absolutely fatigue; in other words, the probability
that the driver is fatigue is 1. The definition of the variable y
applies, hereafter, to subsequent discussions in this paper.

2.2. DH analysis

As studies demonstrated, many factors such as long hours,
time of day, sleep-related problems, the characteristics of
road structure and roadside environment had impacts on
driver’s state when performing a driving task. However, not
all variables can be controlled or examined in any single
study [37]. Furthermore, the relevance of DH to the driver
fatigue leading to traffic accidents has been already demon-
strated by many studies (e.g., [6]). For example, it was
pointed out that DH is not only one of the major contrib-
utors to fatigue but also one of the potential sources of infer-
ring fatigue in a recent study [38]. Therefore, DH is adopted
as a feature to describe fatigue in this paper without consid-
ering other factors such as the road structure and roadside
environment (e.g., the road monotony). Just the same as the
SQ analysis, denote the continuous driving hour z2 normal-
ized to [0,1] (i.e., z2 ∈ [0, 1] derived from the time interval
[0, 12] hours). Denote y2 as the probabilistic variable corre-
sponding to z2.

2.3. EEG analysis

EEG is an important feature that has an immediate relation
with fatigue; but EEG signals have to be preprocessed because
of some artifacts and noises in the raw signals. In this study,
the EEG signals first was smoothed by use of a simple low-
pass filter with a cutoff frequency of 50 Hz to remove the line
noise and other high-frequency noise mainly caused by mus-
cle activity, and then the independent component analysis
was employed to remove the artifacts such as EOG mainly
created by the eye movement [8]. Finally, the smoothed sig-
nals are transformed into the frequency domain by use of
the Fast Fourier Transform (FFT) algorithm [9]. The fre-
quency domain includes delta band (0.5–4 Hz) correspond-
ing to sleep activity, theta band (4–7 Hz) related with drowsi-
ness, alpha band (8–13 Hz) corresponding to relaxation and
creativity, and beta band (13–25 Hz) corresponding to activ-
ity and alertness [7, 8, 20, 39, 40]. Note that among these
bands only the theta and alpha bands have strong associa-
tions with fatigue. Further, it is the decrease in the alpha and
theta rhythms that shows a driver is at the fatigue state. The
EEG contains signals from different channels.

In this study, two of these channels (i.e., two different
EEG sites on the brain) were chosen [20]. Under a vigor-
ous stage, the driver’s average magnitudes of the signal within

the alpha and theta bands are taken as the standard baselines
symbolized with z3 and z4, respectively. In the fatigue situa-
tion, obvious changes of the alpha and theta signals around
the standard baseline always take place. In this study, the dif-
ferences denoted as z3 (for the alpha band) and z4 (for the
theta band) between the baselines and the current magni-
tudes of the alpha and theta signals are taken as the features
to describe fatigue. Given that there are P participants, and
their magnitudes within the alpha and theta bands under the
vigorous stage are z3

i j and z4
i j (i = 1, 2, j = 1, 2 . . . ,P), respec-

tively; the standard baselines are calculated with the follow-
ing equations:

z3 = 1
2

2∑

i=1

1
P

P∑

j=1

z3
i j ,

z4 = 1
2

2∑

i=1

1
P

P∑

j=1

z4
i j .

(1)

The differences z3 and z4 are calculated with the following
equations:

z3 = 1
2

2∑

i=1

ẑ3
i − z3,

z4 = 1
2

2∑

i=1

ẑ4
i − z4,

(2)

where items ẑ3
i and ẑ4

i represent the alpha and the theta cur-
rent magnitudes of the ith channel, respectively. Denote y3

as the probabilistic variable corresponding to z3 and z4.

2.4. ECG analysis

Heart rate variability (HRV) differs significantly for the same
individual in different states such as alertness and fatigue.
This is the primary reason why HRV is often used to detect
driver’s states. HRV spectrum shows 3 main components: LF,
VLF, and HF. Among them is the LF/HF ratio which has
a strong relation to driver’s fatigue. It was pointed out in
[41] that LF/HF ratio will decrease progressively when pass-
ing from the awake state to the fatigue state. To calculate the
LF/HF ratio, it is necessary to detect the R-wave (the first pos-
itive (upward) deflection of the QRS complex in the electro-
cardiogram) peaks of the driver’s ECG signal. In this study,
we adopted wavelet transform (WT) to analyze the ECG sig-
nal because WT can provide a description of the signal both
in the time and frequency domains. Especially, WT can char-
acterize the local regularity of the ECG signal, which is useful
to distinguish real signals from noises, artifacts, and drifts
produced by vibration and muscle movements in realtime
measurement. To apply WT, specifically, first, the quadratic
spline wavelet function with WT was performed on the dig-
ital ECG signal. The QRS complex (the deflections in the
tracing of the electrocardiogram, comprising the Q, R, and S
waves, that represent the ventricular activity of the heart) of
the digital ECG signal produces two modulus maxima with
opposite signs among WT coefficients, which leads to a zero
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Figure 1: Structure of the proposed neuro-fuzzy fatigue recogni-
tion model.

crossing point between the two modulus maxima at each
scale [42–44]. Consequently, the zero crossing point at the
scale 24 is taken as the R-wave peak point [42–44], which re-
sults in HRV. Then, WT with a Haar wavelet function was
performed on HRV, and the result is such that the sum of
wavelet decomposition coefficients at 1 and 2 levels corre-
sponds to LF, and the sum of wavelet decomposition coeffi-
cients at 3 and 4 levels corresponds to HF [45]. Therefore we
can get the LF/HF ratio.

Under a normal condition, the LF/HF ratio is calculated
as the standard baseline, and the differences between the
baseline and the current LF/HF ratio is calculated, symbol-
ized as z5. Denote y4 as the driver’s probabilistic state corre-
sponding to z5.

2.5. EM analysis

Eye activity which can be characterized by the percentage of
eye closure over a given time is one of the visual behaviors
that reflect a driver’s fatigue level. This can be demonstrated
by the previous studies [1, 46] that the driver maybe is in fa-
tigue as the eyes are at least 80 percent closed in a given time,
and that PERCLOS has been found to be the most valid ocu-
lar parameter for monitoring fatigue. Therefore, the running
average of PERCLOS instead of PERCLOS (to ensure the ro-
bustness of the PERCLOS measurement) is accepted as a fea-
ture to describe fatigue in this study. We use the normalized
variable z6 ∈ [0, 1] to denote the running average of PER-
CLOS, and make the probabilistic variable y5 correspond to
z6.

To obtain z6, a CCD camera is fixed on the dashboard
of the Northeastern University’s virtual environments driver
simulator to focus on the driver’s face for detecting the mul-
tiple visual behaviors. The program continuously tracks the
driver’s pupil shape at each 2 seconds sampling time instance
to determine the eye state (openness/closure) (for details,

please refer to [1]). In a given time (e.g., 30 sec), if the driver’s
eyes are closed continuously for p (p = 0, 1, . . . , 15) sam-
pling time instances, and then z6 = 2∗p/30.

2.6. Summary of the proposed structure

In the above analysis, the SQ and DH fall into the contextual
category, the EEG and ECG fall into the contact category, and
the EM falls into the contact-less category. As such, there are
five pair relations, namely, (zi, yi) (i = 1, 2, 3, 4, 5), and they
are gathered into the architecture of the neuro-fuzzy TSK
(Takagi-Sugeno-Kang) model [47] proposed in this study;
see Figure 1. Each output yi only partially reflects driver’s fa-
tigue from a certain aspect, which is not reliable to the fatigue
measurement. OWA method is chose in this study to fuse the
five fuzzy output variables in order to make the final fatigue
measurement y ∈ [0, 1] more reliable.

3. THE NEURO-FUZZY TSK NETWORKMODEL

3.1. Neuro-fuzzy TSK structure

Figure 1 shows that there are 5 neuro-fuzzy TSK subnetworks
(named from TSK1 to TSK5) with different parameters but
the same structure. Each of them is viewed as a multi-input
and single output (MISO) fuzzy system (if a system has only
one input and one output, the system is viewed as a special
case of the MISO fuzzy system). Let us take one of the five
MISO fuzzy systems as an example to explain the structure
of the neuro-fuzzy TSK system.

Denote

y = yi,

x = zi = [x1, x2, . . . , xN ]T ,

i = 1, 2, 3, 4, 5

(3)

as the output value and input vector, respectively, where N is
the number of the inputs, and i denotes the ith TSK model;
i = 1, 2, 3, 4, 5 in this case. Suppose that M inference rules
are available for the system. The general form of the kth (k =
1, 2, . . . ,M) TSK inference rule can be stated as follows [27,
48–50],

Rule k : If x is Ak then y = fk(x), (4)

where fk(x1, . . . , xN ) is a crisp output function, and Ak is
a fuzzy set labeled by a linguistic description (e.g., small,
medium, or large).

The first question regarding (4) is how to specify the
fuzzy set Ak. Generally speaking, the clustering techniques
such as the fuzzy c-means (FCM) algorithm [50], the moun-
tain method [51], and the hybrid clustering and gradient de-
scent (HCGD) approach [52] are effective methods to get Ak

from the input-output data available. In this study, HCGD
with some modifications is taken because it can automati-
cally generate a number of clusters and classify all input data
points into different clusters without requiring any assump-
tions about the data points. The modified HCGD method
works as follows.
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Suppose that there are Q samples. Denote the ith input-
output pair of samples as si = (x1(i), x2(i), . . . , xN (i), y(i))T

(i = 1, 2, . . . ,Q). We have the following steps.

Step 1. Define Q number of vectors vi (i = 1, 2, . . . ,Q), and
let vi = si (i.e., si is the initial value of vi).

Step 2. Compute the potential function hi j(vi , v j) between vi
and v j with the following equation:

hi j(vi , v j) = exp

(
−
∥∥vi − v j

∥∥2

2α2

)
,

i = 1, 2, . . . ,Q, j = 1, 2, . . . ,Q,
(5)

where ‖vi − v j‖2 represents the Euclidean distance between
vi and v j , and α is the width of the Gaussian function which
is fixed by experiments.

Step 3. Calculate v̂i (i = 1, 2, . . . ,Q) with the following equa-
tion:

v̂i =
∑ Q

j=1hi jv j
∑ Q

j=1hi j
, (6)

and check whether v̂i is close enough to vi for i = 1, 2, . . . ,Q,
that is,

|vi − v̂i| ≤ ε, i = 1, 2, . . . ,Q , (7)

where ε is a very small positive number which has strong re-
lations with the number of fuzzy sets and the computation
load. Generally speaking, the number of fuzzy sets and the
computation load increase with the decrease of ε. In most
applications, ε is chosen empirically or experimentally. If (7)
is satisfied, then go to the next step; otherwise, let vi = v̂i and
go to Step 2.

Step 4. The original data with the same convergent vector is
clustered into a cluster, and the number of convergent vectors
is equal to the number of clusters. The convergent vector is
the cluster center and expressed as

ck =
[
ck1, ck2, . . . , ckN

]T
, k = 1, 2, . . . ,M. (8)

Compared to the original HCGD [52], the modified HCGD
as presented above has the following unique features.

(1) In the whole iterative process, all of the potential func-
tion hi j is taken into account in (6) and (7) no matter
how big or small it is. In this way we could avoid the sit-
uation where contribution of particular hi j to the con-
vergent vector is excluded when hi j is very small.

(2) A somewhat “hard” stop criterion is imposed (see (7))
so that any dead-loop in the algorithm can be avoided.

Given that each cluster is associated with one indepen-
dent inference rule, the centroid of each cluster is automat-
ically assigned to the center of the premise of the rule. Af-
ter the number of clusters is determined, one needs to spec-
ify the membership degree to which variable x belongs to

L1 = layer1
L2 = layer2

L3 = layer3
L4 = layer4

x1 x2 xN

· · · · · · · · ·

· · ·

· · ·

· · ·

· · ·

x x
x

y

L1

L2

L3

L4

Figure 2: One-order neuro-fuzzy TSK network.

the fuzzy set Ak. There are many types of membership func-
tions such as triangle-shape, trapezoidal-shape, bell-shape,
and Gaussian membership functions. In this study, the Gaus-
sian membership function was chosen because of its univer-
sal approximation and simple multidimensional decomposi-
tion [27, 49]. Thus, the premise (if x is Ak) is described as

μkn(xn) = exp

[
−
(
xn − ckn

)2

2σ2
kn

]
, n = 1, 2, . . . ,N , (9)

where σkn is the width of the Gaussian membership function,
which is further determined by the following equation [52]:

σkn =

√√√√−
∑ N

m=1
(x∗m − ckm)2

2 ln (u)
, n = 1, 2, . . . ,N , (10)

where x∗ is the farthest data point from the cluster cen-
ter ck, and u ∈ [0.1, 0.3] [52]. The procedure as described
above was implemented by the fuzzification corresponding
to the first layer of the neuro-fuzzy subnetwork, as shown in
Figure 2.

The second question regarding (4) is to determine the fir-
ing strength of the corresponding fuzzy rule. Let one node
represent one fuzzy logic rule in the second layer and the out-
put of the node represent the firing strength corresponding
to the fuzzy rule. In this study, the AND operator [27] is cho-
sen to determine the firing strength ηi(x), that is,

ηk(x) =
N∏

n=1

μkn(xn) = exp [−(Dk(x − ck))T(D(x− ck))],

(11)

where Dk = diag (1/σk1, 1/σk2, . . . , 1/σkN ), and ck = (ck1, ck2,
. . . , ckN ). The procedure as described above was implemented
by the second layer of the neuro-fuzzy subnetwork, as shown
in Figure 2.
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The first-order TSK crisp output function is often em-
ployed to get the result of fk(x1, . . . , xN ), which has the fol-
lowing form [49]:

fk(x1, . . . , xN ) = pk0 +
N∑

n=1

pknxn, (12)

where pk0, pk1, . . . pkN , are crisp numbers adjusted at the
learning process. After having generated TSK functions fk,
the next step is to calculate the summation of fk with a nor-
malization procedure to produce the output y of TSK; see the
following equations below [27, 49],

y(x) =
M∑

k=1

ωk fk(x)

=
M∑

k=1

ωk

[
pk0 +

N∑

n=1

pknxn

]
,

ωk =
ηk(x)

∑M

m=1
ηm(x)

.

(13)

The procedure as described above was implemented by the
third and fourth layers of the neuro-fuzzy subnetwork, as
shown in Figure 2.

3.2. Parameter identification of
the neuro-fuzzy TSK network

After the structure of the neuro-fuzzy network model as de-
scribed above is generated from the given input-output data
pattern, the network parameters (i.e., the parameters in the
TSK functions and the parameters in the Gaussian function)
from the same input-output data pattern need to be deter-
mined. At this point, both feed-forward network and recur-
rent neural network can be used to achieve this purpose.
The recurrent neural network is more suitable for the prob-
lems with highly non-linear dynamics, but it is computa-
tionally overhead. The feed-forward network (e.g., the back-
propagation network) has extensively been used in the field
of function approximation, pattern recognition, and pattern
classification because of its computational efficiency, but it
may have more chances to get a local minimum. The lo-
cal minimum problem can usually be resolved by carefully
selecting the initial weights of the neural network. Given
that the nature of our application, discussed in this paper, is
largely about the clustering and pattern recognition and the
application demands a fast response, the back-propagation
method is employed for learning in this study. In the fol-
lowing, several key steps of back-propagation algorithm for
learning are presented.

Denote yd(t) and y(t) as the desired and current outputs
of the network at time t, respectively. In order to obtain the
network parameters through learning, define a goal function
E as follows:

E = 1
2

[yd(t)− y(t)]
2
. (14)

For the convenience of description, denote hζξ as the output
of the ξ th node in the ζ th layer of the neuro-fuzzy network.
In the last layer (the fourth layer), denote h4

1 = y(t) because
there is only one node in this layer. According to the back-
propagation method, the minimum of E corresponds to the
determination of the network parameters, which is done it-
eratively with the following equations [27]:

pkn(t + 1) = pkn(t) + α[h4
1(t)− yd(t)]h2

k(t)xn,

pk0(t + 1) = pk0(t) + α[h4
1(t)− yd(t)]h2

k(t),

ckn(t + 1) = ckn(t)− α
∂E

∂h4
1

∂h4
1

∂h3
k

∂h3
k

∂h2
k

∂h2
k

∂h1
k

∂h1
k

∂ckn
,

σkn(t + 1)= σkn(t)− α
∂E

∂h4
1

∂h4
1

∂h3
k

∂h3
k

∂h2
k

∂h2
k

∂h1
k

∂h1
k

∂σkn
,

(15)

where α is the learning rate.

4. SENSOR FUSION TECHNIQUE

4.1. Features available

As shown in Figure 1, SQ, DH, EEG, ECG, and EM are
fed into neuro-fuzzy networks of TSK1, TSK2, TSK3, TSK4,
and TSK5, respectively, resulting in the network outputs
yi (i = 1, 2, . . . , 5), denoted as o = [y1, y2, y3, y4, y5]T . Let
w = [w1,w2,w3,w4,w5]T denote the associated weight vec-
tor. Construct b = [b1, b2, b3, b4, b5]T such that bi (i =
1, 2, . . . , 5) is the ith largest element of the collection of
y1, y2, y3, y4, and y5. According to the OWA method [33], y
can be calculated by

y = wTb =
5∑

i=1

wibi,

0 ≤ wi ≤ 1, i = 1, 2, . . . , 5,
5∑

i=1

wi = 1.

(16)

A number of techniques [28, 50, 53–55] are available to de-
termine the weight vector w of (16). In this study, we take a
combined technique from the literature [53, 55].

Let ŵ = {ŵi(i = 1, 2, . . . , 5)} be the estimation of w, and
specify [53]

ŵi = eλi
∑ 5

j=1
eλj

, i = 1, 2, . . . , 5. (17)

In order to ensure the constraints of 0 ≤ ŵi ≤ 1 (i =
1, 2, . . . , 5) and

∑
ŵi = 1, λi is taken as the unknown pa-

rameter to be determined in the learning process. There
are k outputs of the neuro-fuzzy TSK network, denoted by
ok = [yk1, yk2, yk3, yk4, yk5]T (k = 1, 2, . . . ,K). According to
OWA [33], we will reorder ok to bk = [bk1, bk2, bk3, bk4, bk5]T ,
where bki is the ith largest element of the collection
of yk1, yk2, yk3, yk4, yk5. Let ŷkd be the current estimated
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aggregatedvalues corresponding to bk and ŵ. Then, ŷkd can
be calculated by

ŷkd = ŵTbk =
5∑

i=1

ŵibki

= bk1eλ1

∑ 5
j=1e

λj
+

bk2eλ2

∑ 5
j=1e

λj
+ · · · +

bk5eλ5

∑ 5
j=1e

λj
.

(18)

Let ykd be the expected aggregated values corresponding to ok,
then the error ek between ykd and ŷkd can be calculated by

ek = 1
2

(
ŷkd − yk

d

)2

= 1
2

( 5∑

i=1

ŵibki − yk
d

)2

.
(19)

Using the steepest gradient descent method [53], the param-
eters λi (i = 1, 2, . . . , 5) are updated with the following equa-
tion:

λi(k + 1) = λi(k)− 2β wi(bki − ŷkd)ek, (20)

where β is the learning rate. Consequently, parameters wi are
calculated at each iteration step for the current values of pa-
rameters λi(k) (i = 1, 2, . . . , 5).

4.2. Features unavailable

We consider two situations where some features are not avail-
able: (1) one feature is not available, and (2) two features are
not available. In Situation (1), suppose that a particular fea-
ture τ(1 ≤ τ ≤ 5) is not available. Then, (18) can be rewritten
as

ŷkd = (ŵ′)Tb′k =
5∑

i=1,i �=τ
ŵ′i b

′
ki, (21)

where ŵ′ = {ŵ′i (i = 1, 2, . . . , 5, and i�=τ)} which should
be obtained through retraining, b′k = {b′ki (i = 1, 2, . . . , 5,
and i�=τ)}T ; and at last, the final estimated output ỹkd of the
system can be calculated by

ỹkd = ykd∗(1− ŵτ), (22)

where ŵτ ∈ {ŵi (i = 1, 2, . . . , 5)}, and (1− ŵτ) stands for the
belief function in the case that one feature is not available.

In Situation (2), suppose that two features τ and ξ(1 ≤
τ, σ ≤ 5, and τ �=σ) are not available. Then, (18) can be rewrit-
ten as

ŷkd = (ŵ′′)Tb′′k =
5∑

i=1,i �=τ,i �=σ

ŵ′′i b
′′
ki, (23)

where ŵ′′ = {ŵ′′i (i = 1, 2, . . . , 5, and i�=τ, i�=σ)} which
should be obtained through retraining, b′′k = {b′′ki (i = 1, 2,
. . . , 5, and i�=τ, i�=σ)}T ; and at last, the final estimated output
ỹkd of the system can be calculated by

ỹkd = ykd∗(1− ŵτ − ŵσ), (24)

where ŵτ , ŵσ ∈ {ŵi(i = 1, 2, . . . , 5)}, and (1−ŵτ−ŵσ) stands
for the belief function in the case that two features are not
available. Note that if more than two features are not avail-
able, the same procedure can be designed.

5. THE SIMULATION-BASED EXPERIMENT

In order to demonstrate the validity of the TSK-OWA
method, we first perform training on a set of data obtained
from the subjects who participated in an experiment to de-
termine both the structure and parameters of the TSK-OWA.
Then, another set of data obtained from the subjects under
different simulation situations is obtained and performed on
the TSK-OWA with the trained structure and parameters to
illustrate the effectiveness of the TSK-OWA approach.

5.1. Experiment setup

Referring to the experimental conditions for producing the
contact-feature datasets of ECG and EEG [7, 8, 20, 39–
45, 54], and the contact-less-feature dataset of EM [1, 56], we
designed an experiment environment to acquire necessary
data based on Northeastern’s virtual environments driver
simulator. The simulator is equipped with the instruments
such as CCD camera, eye gaze tracking, and one for acquir-
ing EEG and ECG signals.

5.2. Data acquisition

To get the dataset of SQ, we designed a questionnaire ac-
cording to the experimental conditions for producing the ca-
sual dataset of SQ [4, 6, 38], mainly concerning the effec-
tive required sleep hours. The questionnaires are distributed
among the 9 driver participants and query them to answer
the question of how many effective hours they sleep at night
before participating the experiment.

To get the datasets of EEG, ECG, and EM, the 9 driver
participants are asked to participate in the experiment. Each
of them sat in front of the monitor with his hands on the
steering wheel to control the car running at the speed of 80
kilometer/hour and staying in the center of the simulated
freeway. At the same time, EEG and ECG signals of each
participant are measured at the sampling rate of 250 HZ,
and his/her dynamical facial image is obtained at the sam-
pling rate of 2 seconds. EEG and ECG signals and a series of
dynamical facial image are processed with the method pre-
sented in Section 2. As a result, nice datasets of EEG, ECG,
EM, and DH are obtained and normalized. Seven drivers
were randomly selected from the nine participants, along
with their datasets, are used for training, and the remaining
two drivers are for the algorithm evaluation.

5.3. Implementation of the neuro-fuzzy
TSK networkmodel

In this study, 7 datasets are taken as the inputs of TSK1,
TSK2, TSK3, TSK4, and TSK5, and α2 and ε are set to be 0.08
and 0.01, respectively. Under these conditions, each input
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Figure 3: SQ input space partition for TSK1.
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Figure 4: DH input space partition for TSK2.

space for TSK1, TSK2, TSK3, TSK4, and TSK5 is partitioned,
as shown in Figures 3–7.

From Figure 3, it can be seen that the SQ input space
is automatically partitioned into three fuzzy sets. Thus, the
neuro-fuzzy TSK1 network has three fuzzy inference rules
corresponding to the three fuzzy sets. The premise and con-
sequent parameters of the inference, denoted as c1

i (i =
1, 2, 3) and, p1

i j (i = 1, 2, 3, j = 0, 1), respectively, are de-
termined by training with the same given training samples,
and they are listed in Table 1.

From Figure 4, it can be seen that the DH input space
is automatically partitioned into three fuzzy sets. Thus, the
neuro-fuzzy TSK2 network has three fuzzy inference rules
corresponding to the three fuzzy sets. The premise and con-
sequent parameters of the inference, denoted as c2

i (i =
1, 2, 3) and p2

i j (i = 1, 2, 3, j = 0, 1), respectively, are de-
termined by training with the same given training samples,
as shown in Table 2.
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Figure 5: EEG input space partition for TSK3.
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Figure 6: ECG input space partition for TSK4.
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Figure 7: EM input space partition for TSK5.
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Table 1: Parameters for TSK1.

c1
1 c1

2 c1
3

0.9046 0.5007 0.0970

p1
10 p1

20 p1
30

1.0036 0.9504 0.9947

p1
11 p1

21 p1
31

−1.0028 −0.8934 −0.9915

Table 2: Parameters for TSK2.

c2
1 c2

2 c2
3

0.2035 0.5907 0.9217

p2
10 p2

20 p2
30

0.0498 −0.0481 −0.1812

p2
11 p2

21 p2
31

0.9216 1.1005 1.1814

Table 3: Parameters for TSK3.

c3
11 c3

12 c3
21 c3

22 c3
31 c3

32

0.202 0.182 0.492 0.482 0.846 0.852

P10 P11 P12

0.01 0 0

P20 P21 P22

0.3443 0.0957 0.2087

P30 P31 P32

0.8476 0.0324 0.0364

From Figure 5, it can be seen that the EEG input space
is automatically partitioned into three fuzzy sets. Thus the
neuro-fuzzy TSK3 network has three fuzzy inference rules
corresponding to the three fuzzy sets. The premise and con-
sequent parameters of the inference, denoted as c3

ik (i =
1, 2, 3, k = 1, 2) and p3

i j (i, j = 1, 2, 3, j = 0, 1, 2), respec-
tively, are determined by training with the same given train-
ing samples, as shown in Table 3.

From Figure 6, it can be seen that the ECG input space
is automatically partitioned into three fuzzy sets. Thus, the
neuro-fuzzy TSK4 network has three fuzzy inference rules
corresponding to the three fuzzy sets. The premise and con-
sequent parameters of the inference, denoted as c4

i (i =
1, 2, 3) and p4

i j (i = 1, 2, 3, j = 0, 1), respectively, are deter-
mined by training with the same given training samples, as
shown in Table 4.

From Figure 7, it can be seen that the EM input space
is automatically partitioned into three fuzzy sets. Thus, the
neuro-fuzzy TSK5 network has three fuzzy inference rules
corresponding to the three fuzzy sets. The premise and con-
sequent parameters of the inference, denoted as c5

i (i =
1, 2, 3) and p5

i j (i = 1, 2, 3, j = 0, 1), respectively, are deter-
mined by training with the same given training samples, as
shown in Table 5.

Table 4: Parameters for TSK4.

c4
1 c4

2 c4
3

0.2305 0.5634 0.8925

p4
10 p4

20 p4
30

0.0233 −0.1656 0.8339

p4
11 p4

21 p4
31

0.06737 1.2597 0.092

Table 5: Parameters for TSK5.

c5
1 c5

2 c5
3

0.179 0.5204 0.9209

p5
10 p5

20 p5
30

0.0435 −0.0617 0.6533

p5
11 p5

21 p5
31

0.2834 0.4755 0.2767

Table 6: Training samples for OWA.

y1 y2 y3 y4 y5 yd

0.1 0.2 0.2 0.3 0.1 0.18

0.3 0.5 0.45 0.5 0.2 0.39

0.2 0.3 0.2 0.1 0.4 0.24

0.92 0.85 0.8 0.9 0.95 0.884

0.8 0.7 0.65 0.73 0.9 0.756

0.92 0.96 0.94 0.9 0.91 0.926

· · · · · · · · · · · · · · · · · ·

Table 7: Parameters for OWA.

w1 w2 w3 w4 w5

0.1769 0.1955 0.2161 0.2161 0.1955

5.4. Implementation of the OWAmethod

When Outputs of TSK1, TSK2, TSK3, TSK4, and TSK5
(yi, i = 1, 2, . . . , 5) are available, they are taken as the in-
puts of OWA and fed into OWA to be fused into the final
decision (i.e., fatigue estimation). In this study, training data
were selected to have a large coverage of possible cases. Some
training data pairs (i.e., yi and the expected aggregated value
yd) are shown in Table 6.

The parameters of OWA are obtained through training
with the data as shown in Table 6. The training results are
listed in Table 7.

When some outputs of TSK1, TSK2, TSK3, TSK4, and
TSK5 (yi, i = 1, 2, . . . , 5) are not available, the structure and
parameters of OWA should be adjusted through retraining
with the dataset of the features not available. Some training
data pairs with features not available are shown in Tables 8,
9, and 10, and the training results are listed in Tables 11, 12,
and 13.
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Table 8: Training samples for OWA with SQ not available.

y2 y3 y4 y5 yd

0.96 0.94 0.9 0.91 0.9272

0.5 0.45 0.5 0.2 0.3625

0.2 0.2 0.3 0.1 0.2

0.85 0.8 0.9 0.95 0.875

0.3 0.2 0.1 0.4 0.25

0.7 0.65 0.73 0.9 0.745

0.2 0.2 0.3 0.5 0.3

· · · · · · · · · · · · · · ·

Table 9: Training samples for OWA with EM not available.

y1 y2 y3 y4 yd

0.2 0.3 0.2 0.4 0.275

0.92 0.85 0.8 0.9 0.8675

0.3 0.5 0.45 0.5 0.4375

0.1 0.2 0.2 0.3 0.2

0.8 0.7 0.65 0.73 0.756

0.65 0.51 0.32 0.78 0565

0.92 0.96 0.94 0.9 0.93

0.25 0.4 0.87 0.65 0.5425

· · · · · · · · · · · · · · ·

Table 10: Training samples for OWA with SQ and EM not available.

y2 y3 y4 yd

0.7 0.65 0.73 0.693

0.3 0.2 0.1 0.20

0.5 0.45 0.5 0.483

0.85 0.8 0.9 0.85

0.96 0.94 0.9 0.90

0.2 0.2 0.3 0.233

0.65 0.78 0.63 0.687

0.55 0.69 0.34 0.527

· · · · · · · · · · · ·

Table 11: Parameters for OWA with SQ not available.

w2 w3 w4 w5

0.2375 0.2625 0.2625 0.2375

5.5. Results and discussions

In order to test the structure and parameters of the pro-
posed TSK-OWA method, the remaining two drivers of the 9
participants did experiments under different conditions. For
the first driver, he had an insufficient sleep (e.g., 2 hours)
prior to driving and was asked to drive along a straight and
flat freeway in the simulated driving experiment for 2 hours
without stop. For the second driver, he had a sufficient sleep
(e.g., 7 hours) prior to driving, and was asked to drive along
a straight and flat freeway in the simulated driving experi-
ment for 2 hours without stop. At last, the first driver was in
fatigue state, while the second driver was in no-fatigue state

Table 12: Parameters for OWA with EM not available.

w1 w2 w3 w4

0.2199 0.2430 0.2686 0.2686

Table 13: Parameters for OWA with SQ and EM not available.

w2 w3 w4

0.3115 0.3443 0.3442

Table 14: Features and simulation results for the first driver.

Input features
SQ DH ECG EEG EM

0.25 0.5 0.83 0.81 0.85 0.82

TSK output
y1 y2 y3 y4 y5

0.9046 0.5907 0.8925 0.849 0.89

OWA fused result 0.8258

Final fused result 0.8258

Table 15: Features and simulation results for the second driver.

Input features
SQ DH ECG EEG EM

0.875 0.167 0.33 0.38 0.41 0.43

TSK output
y1 y2 y3 y4 y5

0.075 0.21 0.29 0.33 0.41

OWA fused result 0.2598

Final fused result 0.2598

after finishing the driving experiment. In the whole driving
experiment, EEG and ECG signals, and a series of dynamical
facial image of the two drivers were recorded and processed
with the method presented in Section 2 to obtain datasets of
EEG, ECG, EM, and DH.

All datasets are fed into TSK1, TSK2, TSK3, TSK4, and
TSK5, and the outputs (yi, i = 1, 2, . . . , 5) of the 5 TSK net-
works can be calculated by use of the parameters shown in
Tables 1–5.

The outputs (yi, i = 1, 2, . . . , 5) are fused into the fi-
nal output of the system by use of the parameters shown as
Table 7. All simulated experiment results including the inter-
mediate and final computing are shown in the Table 14 (for
the first driver) and Table 15 (for the second driver).

When SQ feature is not available, outputs of TSK2, TSK3,
TSK4, and TSK5 (yi, i = 2, . . . , 5) are fused into the output
of the system by use of the parameters shown in Table 11, and
then the final output of the system is calculated with (22).
All experiment results, including the intermediate and final
computing for the first driver, are shown in the Table 16.

When EM feature is not available, Outputs of TSK1,
TSK2, TSK3, and TSK4 (yi, i = 1, 2, . . . , 4) are fused into
the output of the system by use of the parameters shown in
Table 12, and then the final output of the system is calculated
with (22). All experiment results, including the intermedi-
ate and final computing for the first driver, are shown in the
Table 17.

When SQ and EM features are not available, Outputs
of TSK2, TSK3, and TSK4 (yi, i = 2, . . . , 4) are fused into
the output of the system by use of the parameters shown in
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Table 16: Features and simulation result for the first driver when
SQ is not available.

Input features
SQ DH ECG EEG EM

— 0.5 0.83 0.81 0.82 0.82

TSK output
y1 y2 y3 y4 y5

— 0.5907 0.8925 0.859 0.89

OWA fused result 0.8113

Final fused result 0.6677

Table 17: Features and simulation result for the first driver when
EM is not available.

Input features
SQ DH ECG EEG EM

0.25 0.5 0.83 0.81 0.85 —

TSK output
y1 y2 y3 y4 y5

0.9046 0.5907 0.8925 0.859 —

OWA fused result 0.8052

Final fused result 0.6478

Table 18: Features and simulation result for the first driver when
SQ and EM are not available.

Input features
SQ DH ECG EEG EM

— 0.5 0.83 0.81 0.85 —

TSK output
y1 y2 y3 y4 y5

— 0.5907 0.8925 0.859 —

OWA fused result 0.7771

Final fused result 0.4877

Table 12, and then the final output of the system is calculated
with (24). All experiment results including the intermediate
and final computing for the first driver are shown in Table 18.

From Table 14, it can be obviously seen that the final
output of the system is 0.8258, which means the probability
of the driver who is in the fatigue state is 82.58%. In other
words, it is obvious that the driver is in the most fatigue
state. This is consistent with the fact that the first driver is
in complete fatigue state after finishing the driving experi-
ment. From Table 15, it can be obviously seen that the final
output of the system is 0.2598, which means the probability
of the driver who is in the fatigue state is 25.98%. In other
words, it is obvious that the driver is in the nonfatigue state.
This is consistent with the fact that the second driver is in
nonfatigue state after finishing the driving experiment. The
results obtained as above demonstrate the effectiveness of the
TSK-OWA method.

From Tables 16–18, it can be also seen that the proba-
bility of the driver fatigue state for the same driver in the
same situation decreases with the decrease in the number of
features, which means that the recognition reliability of the
driver fatigue state decreases with the decrease in the number
of features. This implies that it is necessary to fuse multiple
features as many as possible in order to make fatigue recog-
nition more reliable when dealing with the driver’s fatigue
recognition problem.

6. CONCLUSIONS

This paper proposed a new method for inferring human cog-
nitive states based on multimodality cues. The method is
based on the integration of the neuro-fuzzy TSK network
and the multifeature fusion OWA. This new method is called
TSK-OWA. We presented an experimental validation in a vir-
tual driving simulator. The study can conclude.

(1) The classification of features into three different cat-
egories, namely, (1) contextual, (2) contact, and (3)
contact-less, adds value to the accuracy of inferring the
driver fatigue.

(2) A high coverage of features over these three categories
tends to improve the reliability of the measurement for
the driver fatigue.

(3) More cues appear to be more accurate in inferring the
drive fatigue.

One limitation with this work is that all the experimental
data were drawn from the simulator in the laboratory envi-
ronment instead from the real driving environment. There-
fore, a further experiment in a real driving environment is
one interesting future work. Another limitation is that still
only a few features are considered; more features need to
be studied in order to have a complete picture of the driver
fatigue state—which is an interesting future work. Further-
more, there is a need to perform sensitivity analysis with
regard to adding or dropping features. Finally, although it
seems feasible to generalize the conclusions drawn for infer-
ring the driver fatigue to any other cognitive state, including
emotion and mental workload, a future study seems to be
necessary for applying the proposed method to infer some
other cognitive and emotion states.
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