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It has previously been shown that a least-mean-square (LMS) decision-feedback filter can mitigate the effect of narrowband inter-
ference (L.-M. Li and L. Milstein, 1983). An adaptive implementation of the filter was shown to converge relatively quickly for mild
interference. It is shown here, however, that in the case of severe narrowband interference, the LMS decision-feedback equalizer
(DFE) requires a very large number of training symbols for convergence, making it unsuitable for some types of communication
systems. This paper investigates the introduction of an LMS prediction-error filter (PEF) as a prefilter to the equalizer and demon-
strates that it reduces the convergence time of the two-stage system by as much as two orders of magnitude. It is also shown that the
steady-state bit-error rate (BER) performance of the proposed system is still approximately equal to that attained in steady-state
by the LMS DFE-only. Finally, it is shown that the two-stage system can be implemented without the use of training symbols. This
two-stage structure lowers the complexity of the overall system by reducing the number of filter taps that need to be adapted, while
incurring a slight loss in the steady-state BER.
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1. INTRODUCTION

Maintaining reliable wireless communication performance is
a challenging problem because of channel impairments such
as fading, intersymbol interference (ISI), narrowband inter-
ference, and noise. Therefore, there is a need for innovative
receivers which can mitigate these impairments rapidly, es-
pecially when the information is being transferred in small
packets or short bursts.

There has been a considerable amount of work on mit-
igating the effects of ISI (see [1] and references therein)
and fading channels (see [2] and references therein). The
focus of this paper is on techniques that can quickly miti-
gate strong narrowband interference. Narrowband interfer-
ence typically occurs because of nonlinearities in the mixer or
by other communication systems radiating in the same fre-
quency band (as occurs in many of the unlicensed bands, e.g.,
Bluetooth is a narrowband interferer for WLAN systems). A

strong interferer can make recovering the transmitted infor-
mation quite challenging.

Several methods for suppressing narrowband interfer-
ence have been discussed in the literature. A linear equalizer
(LE) and a decision-feedback equalizer (DFE) were studied
in [3]. It was shown that the performance of the DFE is better
than that of the LE. The LE seen in both systems removes the
interference, while the additional feedback taps of the DFE
enable the cancellation of the post-cursor ISI that is induced
by the LE. Linear prediction [4, 5] is another common tech-
nique that has been used in direct-sequence CDMA systems
[6–8] when the processing gain does not provide enough
immunity to the interference. When the signal of interest
is wideband compared to the bandwidth of the interferer,
linear prediction predicts the current value of the interfer-
ence from past samples. When the structure is implemented
as a prediction-error filter, the estimate of the interference
is removed at the cost of some signal distortion. A further
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review of interference suppression techniques can be found
in [9, 10].

When the statistics of the interference are known, the
weights of these systems are found by minimizing the mean-
squared error [11] (or equivalently by solving the Wiener-
Hopf equation). In practice, however, this type of a priori
information is not available. Thus, these systems are best
implemented adaptively. Of the many algorithms available,
we focus on a low-complexity method, specifically the least-
mean square (LMS) algorithm [11]. The LMS algorithm is
also noted for its robustness and improved tracking perfor-
mance [11, 12]. The drawback of this particular algorithm
is its slow convergence when there is a large disparity in
the eigenvalues of the input signal [11]. Slow convergence
leads to the need for a large number of training symbols.
These symbols do not transmit any new information, re-
ducing the overall throughput of the system. Conventional
analyses of adaptive algorithms use the mean-squared er-
ror (MSE) as the metric when investigating the convergence.
However, since BER is a more definitive performance met-
ric for analyzing communication systems, the convergence is
viewed in terms of the BER with the aid of a sliding window.
Convergence is defined as the number of symbols needed to
attain a certain BER.

Although it has been shown that alternate adaptive algo-
rithms, such as the recursive least squares (RLS) algorithm
[11], provide improved convergence relative to the LMS al-
gorithm in cases of high eigenvalue disparity, there are many
reasons why LMS is chosen for practical communications
system applications. Hassibi discusses [12] some of the fun-
damental differences in the performance of gradient-based
estimators such as the LMS algorithm and time-averaged re-
cursive estimators such as the RLS algorithm in the cases of
modeling errors and incomplete statistical information con-
cerning the input signal, interference, and noise parameters.
Hassibi [12] examines the conditions for which LMS can
be shown to be more robust to variations and uncertainties
in the signaling environment than RLS. LMS has also been
shown to track more accurately than RLS because it is able
to base the filter updates on the instantaneous error rather
than the time-averaged error [13–16]. The improved track-
ing performance of LMS over RLS for a linear chirp input is
well established [11, 16]. In [17] it is shown that an extended
RLS filter that estimates the chirp rate of the input signal can
minimize the tracking errors associated with the RLS algo-
rithm and provides performance that exceeds that of LMS. It
should be noted, however, that the improved tracking perfor-
mance requires a significant increase in computational com-
plexity and knowledge that the underlying variations in the
input signal can be accurately modeled by a linear FM chirp.
For cases where the input is not accurately represented by
the linear chirp model, performance can be expected to be
significantly worse than simply using an LMS estimator, for
the reasons discussed in [12]. The computational complexity
of RLS, in particular for high-order systems, favors the use
of LMS. The latter is also more robust in fixed-point imple-
mentations. In addition, the LMS estimator has been shown
to provide nonlinear, time-varying weight dynamics that al-
low the LMS filter to perform significantly better than the

time-invariant Wiener filter in several cases of practical in-
terest [18, 19]. It is further shown that the improved perfor-
mance associated with these non-Wiener effects is difficult to
realize for RLS estimators due to the time averaging that is
inherent in the estimation process [20].

In this paper, we first demonstrate that the LMS DFE
possesses an extended convergence time (greater than 10,000
symbols for the cases investigated here) when severe narrow-
band interference (SIR < −20 dB) is present, due to the fact
that the equalizer does not have a true reference for the inter-
ference. To reduce the convergence time and the number of
training symbols needed, we propose a two-stage system that
uses an LMS prediction-error filter (PEF) as a prefilter to the
LMS DFE-only. For strong interference the PEF generates a
direct reference for the interference from past samples and
mitigates it prior to equalization.

A two-stage system employing a linear predictor has been
previously investigated [21, 22] in combination with the con-
stant modulus algorithm (CMA). The prediction filter is em-
ployed to mitigate the interference and ensure that the CMA
locks on to the signal of interest. The prediction filter is
not used specifically for its convergence properties. The two-
stage structure in this paper uses a supervised algorithm for
the adaptation of the second structure and is developed with
the goal of improving the convergence of the overall system.

The second contribution of this paper is to show that the
two-stage system reduces the number of training symbols re-
quired to reach a BER of 10−2 by two orders of magnitude
without substantially degrading the steady-state BER perfor-
mance as compared to the LMS DFE-only case. All compar-
isons will be made under the condition that the LMS DFE-
only and the two-stage structure have the same total number
of taps. The two-stage system’s adaptive implementation is
superior due to the fact that the prediction-error filter uti-
lizes the narrowband nature of the interference to obtain a
beneficial initialization point. On the other hand, the LMS
DFE-only employs only the training symbols which have no
knowledge of the statistical characteristics of the interference.

Finally, the two-stage system may be implemented in
a manner that does not require any training symbols. The
PEF is inherently a blind algorithm because the error signal
is determined from the current sample and the past sam-
ples. A relationship between the PEF weights and the DFE
feedback weights is obtained, allowing the DFE to be oper-
ated in decision-directed mode after convergence of the PEF
weights. This technique outperforms the nonblind decision-
directed implementation when a small number of training
symbols is used. The nonblind decision-directed implemen-
tation suffers because the feedback weights lie far from their
steady-state values prior to the switch to decision-directed
mode. This blind method also allows for a reduction in the
complexity of the system (i.e., fewer weights that need to be
adapted) at the cost of a slight increase in steady-state BER.

The paper is organized as follows. Section 2 describes the
system model. The LMS algorithm and its convergence prop-
erties are reviewed in Section 3. In Section 4, the previous ap-
proaches of the DFE and the PEF are discussed. The proposed
two-stage system is revealed in Section 5 along with its rela-
tion to the DFE. A blind implementation for the proposed
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Figure 1: Discrete-time system model.

system is also presented in Section 5. In Section 6, the conver-
gence and steady-state BER results are presented. Concluding
remarks are given in Section 7.

2. SYSTEMMODEL

A complex baseband representation of a single-carrier com-
munication system is depicted in Figure 1. The signal of in-
terest, dk, is composed of i.i.d. symbols, drawn from an arbi-
trary QAM constellation, with average power equal to σ2

s . It
is passed through a pulse shaping filter that is necessary for
bandlimited transmission. This signal is corrupted by nar-
rowband interference, ik, modeled as a pure complex expo-
nential and additive white Gaussian noise. A matched filter
is employed at the receiver to maximize the signal-to-noise
ratio (SNR) at the output of the filter. Note that the overall
frequency response of the pulse shape and the matched filter
is assumed to satisfy Nyquist’s criterion for no intersymbol
interference (ISI) and the filters operate at the symbol rate.

The signal at the input to the equalizer, xk, is defined as

xk = dk + ik + nk

= dk +
√
Je j(ΩkT+θ) + nk,

(1)

where T is the symbol duration, J is the interferer power, Ω
is the angular frequency of the interferer, and θ is a random
phase that is uniformly distributed between 0 and 2π. The
additive noise, nk, is modeled as a zero-mean Gaussian ran-
dom process with variance σ2

n. The signal-to-noise ratio is
defined as SNR = σ2

s /σ
2
n and the signal-to-interference ratio

is defined as SIR = σ2
s /J .

It is assumed that the communication signal, interferer,
and noise are uncorrelated to each other. The autocorrelation
function of the input, rx(m), is defined as

rx(m) = E
[
xkx

∗
k−m

]
= (

σ2
s + σ2

n

)
δm + Je jΩmT ,

(2)

where E[·] is the expectation operator, (·)∗ indicates conju-
gation, and δm is the Kronecker delta function.

3. LMS ALGORITHM

The LMS algorithm [11] is defined by the following three
equations:

yk = wH
k xk,

ek =
⎧⎨⎩dk − yk, training,

d̂k − yk, decision-directed,

wk+1 = wk + μe∗k xk,

(3)

where xk is the input vector to the equalizer, wk is the vec-

tor of adapted tap weights, dk is the desired signal, d̂k is the
output of the decision-device when yk is its input, ek is the
error signal, μ is the step-size parameter, and (·)H represents
conjugate (Hermitian) transpose.

Note that there are two stages associated with the adap-
tive algorithm. The first stage is the training phase, where
known training symbols are used to push the filter in the
direction of the optimal weights. After the training sym-
bols have been exhausted, the algorithm switches to decision-
directed mode. The output of the decision device is used as
the desired symbol when calculating the error signal. Ideally,
at the end of the training phase the output of the filter is close
to the desired signal.

3.1. LMS convergence

In conventional analyses, convergence refers to the asymp-
totic progress of either the adaptive weights or the MSE to-
ward the optimal solutions. The convergence (as well as the
stability) of the system is dependent on the step-size. The
step-size parameter is chosen in a manner to guarantee con-
vergence in the mean-square sense, namely,

0 < μ <
1

λmax
, (4)

where λmax is the maximum eigenvalue of the input autocor-
relation matrix.

Assuming that the adaptive weights and the input vector
are independent, Shensa [23] showed that the convergence of
the weight vector can be expressed as

∥∥wopt − E
[
wk

]∥∥2 =
N∑
i=1

(
1− μλi

)2k∣∣viHwopt
∣∣2

, (5)

where λi are the eigenvalues and vi are the eigenvectors of the
input autocorrelation matrix. The optimal Wiener solution is
represented by wopt. A similar equation arises for the conver-
gence of the mean-square error (MSE) [24], when gradient
noise (on the order of NμE[e2

min]) is neglected

∥∥E[
e2
k

]− E
[
e2

min

]∥∥2 =
N∑
i=1

(
1− μλi

)2k
λi

∣∣∣viHwopt

∣∣∣2
. (6)

Letting the learning curve be approximated by a single ex-
ponential allows a time constant [11] to be defined for each
mode,

τi � 1
2μλi

. (7)

The maximum modal time constant is associated with the
minimum eigenvalue,

τmax � 1
2μλmin

. (8)

This maximal time constant can be seen to be a conser-
vative estimate by examining (5) more closely. The conver-
gence will be influenced only by those eigenvalues for which
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the projection of the corresponding eigenvector on the op-
timal weights is large. Lastly, it can be seen for the case of
λi � 1, that it is possible for the convergence of the fil-
ter output (mean-square error) to be faster than the con-
vergence of the filter weights. This is because there may be
fewer modes controlling the MSE convergence (i.e., when

λi|viHwopt| < |viHwopt|).
The equations above provide excellent insight into the

convergence of the LMS algorithm; however, in this paper,
we are interested in the convergence in a limited time inter-
val when the metric of interest is BER. Therefore, we define
the convergence to be the average number of training sym-
bols needed to achieve a BER of 10−2. This value is consistent
with the notion that the BER should be less than 10−1 when
switching from training to decision-directed mode [25]. Ad-
ditionally, using a convolutional code with an input BER
equal to 10−2 is equivalent to a BER of 10−5 at the output
of the decoder [26].

3.2. Sliding BERwindow

As mentioned above, the convergence of an adaptive filter is
viewed by the ensemble average learning curve [11], a plot of
the MSE versus iteration. Note that in this work, each itera-
tion of the adaptive algorithm occurs at the symbol rate. To
examine the convergence of the BER here, we employ a slid-
ing window of Nwindow symbols. For example, the first BER
value corresponds to the average number of bit errors over
symbols 1 through 100; the second value corresponds to the
average number of bit errors over symbols 2 through 101;
and so forth. These values are then averaged for Nruns trials.
A general formula for BPSK modulation can be seen as

BERk = 1
Nruns

Nruns∑
n=1

1
Nwindow

k∑
m=k−Nwindow+1

∣∣d(n)
m − d̂(n)

m

∣∣,

k ≥ Nwindow,

(9)

where d(n)
m is the mth transmitted symbol of the nth packet

and d̂ (n)
m is the decision of the mth symbol of the nth packet.

Note that the minimum nonzero BER value will be equal to
1/NrunsNwindow.

4. PREVIOUS APPROACHES

4.1. Decision-feedback equalizer

4.1.1. Equalizer structure

The DFE is composed of a transversal feedforward filter with
K + 1-taps (one main tap and K side taps) and a feedback
filter that has M-taps. A block diagram of the DFE is shown
in Figure 2. The output of the filter, yDFE,k, with inputs xk and

d̂k is

yDFE,k =
K∑
l=0

w∗l xk−l +
M∑
l=1

f ∗l d̂k−l, (10)

z−1 z−1 z−1

w∗0 ×

×

· · ·

· · ·

w∗1 ×

×

w∗2 × w∗K ×

×

∑
yDFE,k

f ∗1 f ∗2 f ∗M

xk

d̂k
z−1 z−1 z−1

Figure 2: Decision-feedback equalizer block diagram.

where d̂k is the estimate of the symbol dk out of the deci-
sion device. Note that wl are the tap weights associated with
the feedforward filter, and fl are the tap weights associated

with the feedback filter. During the training phase, d̂k in (10)
equals dk.

The feedback taps allow the equalizer to cancel out post-
cursor ISI based on the estimated decisions without enhanc-
ing the noise. The BER analysis of the DFE with error propa-
gation can be accomplished utilizing Markov chains to model

the term [dk−l−d̂k−l] as contents of a shift register and the as-
sumption that the fed back decisions are perfect [3, 27–29].
The number of states in the Markov chain grows exponen-
tially with the number of feedback taps.

4.1.2. DFE optimal weights

The optimal weights under the minimum mean-square er-
ror (MMSE) criterion can be found using the orthogonality
principle [11]. K + M + 1 equations are obtained, and the
weights can be found using the method described in [3, 30].
The optimal DFE tap weights are given by

wDFE,l =
SNR

[
(1 + SNR)

(
σ2
n + MJ

)
+ (K −M)J

]
(1 + SNR)

[
(1 + SNR)

(
σ2
n + MJ

)
+ (K −M + 1)J

]
= C0, l = 0,

(11)

wDFE,l = −J SNR
(1 + SNR)

(
σ2
n + MJ

)
+ (K −M + 1)J

e− jΩlT

= C1e
− jΩlT , l = 1, . . . ,M,

(12)

wDFE,l= −J SNR
(1+SNR)

[
(1+SNR)

(
σ2
n +MJ

)
+(K−M+1)J

] e− jΩlT

= C1

1 + SNR
e− jΩlT , l =M + 1, . . . ,K ,

(13)

fDFE,l = J SNR
(1 + SNR)

(
σ2
n + MJ

)
+ (K −M + 1)J

e− jΩlT

= −C1e
− jΩlT , l = 1, . . . ,M.

(14)

Observe that the weight of the feedback taps (14) is the
negative of the feedforward side taps (12) when l = 1, . . . ,M.
This implies that if the data fed back is perfect, the ISI caused
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by the M previous data symbols will be completely canceled.
Also note that (13) is a scaled (by 1/(1 + SNR)) multiple of
(12). This scaling value effectively removes the influence of
the associated data symbols that can not be canceled by the
feedback taps. For the special case of K = M, it can be seen
that if the data fed back is perfect, the ISI caused by the feed-
forward equalizer will be completely canceled, leaving only
the symbol of interest.

4.1.3. DFE SINR calculation

The signal-to-interference-plus-noise ratio (SINR) at the in-
put to the decision device of the DFE can be found using (10)
and the optimal weights given in (11)–(14) to be

SINR =
(
C2

0 + (K −M)
(

C1

1 + SNR

)2)
SNR

×
((

C0 + MC1 + (K −M)
C1

1 + SNR

)2

J/σ2
n

+C2
0 + MC2

1 + (K −M)
(

C1

1 + SNR

)2)−1

.

(15)

4.1.4. Autocorrelation structure

The input to the decision-feedback equalizer is the concate-
nation of the received input to the equalizer and the fed back

decisions, given by uk =
[
xTk , d̂Tk

]T
, where (·)T is the trans-

pose operator. The vector, d̂k, is composed of the fed back
decisions that are assumed to be correct, and is thus defined
as

d̂k = dk �
[
dk−1, dk−2, . . . , dk−M

]T
. (16)

The autocorrelation matrix for the K+1-tap feedforward and
M-tap feedback equalizer is defined as

RDFE = E
[
ukuHk

] = E

⎡⎣xkxHk xkdHk

dkxHk dkdHk

⎤⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rx(0) rx(1) rx(2) · · · rx(K) 0 0 · · · 0

r∗x (1) rx(0) rx(1) · · · rx(K−1) σ2
s 0 · · · 0

r∗x (2) r∗x (1) rx(0) · · · rx(K−2) 0 σ2
s · · · 0

...
...

...
. . .

...
...

...
. . .

...

r∗x (K) r∗x (K−1) r∗x (K−2) · · · rx(0) 0 0 · · · σ2
s

0 σ2
s 0 · · · 0 σ2

s 0 · · · 0

0 0 σ2
s · · · 0 0 σ2

s · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · σ2
s 0 0 · · · σ2

s

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(17)

The autocorrelation matrix seen in (17) is partitioned into 4
submatrices. The matrices on the diagonal are the autocor-
relation matrix of the received input to the equalizer and the

autocorrelation matrix of the data symbols, respectively. The
values in the upper left submatrix are given by (2). The cross-
correlation matrix between the received input to the equal-
izer and the data symbols is located on the off-diagonal.

4.1.5. Eigenvalues

There is no closed form expression for determining the
eigenvalues of the correlation matrix defined in (17).
A method to bound the eigenvalues of positive-definite
Toeplitz matrices can be found in [31] and its application
to the correlation matrix given in (17) can be found in [32].
However, for the case of K ≥ 1 and M ≥ 2, the minimum
and maximum eigenvalues are found to be

λDFE,min =
2σ2

s + σ2
n −

√
4
(
σ2
s

)2
+

(
σ2
n

)2

2
,

λDFE,max ≈ σ2
s + (K + 1)J + σ2

n,

(18)

and the eigenvalue spread is

χ
(
RDFE

) = λDFE,max

λDFE,min
= 2

(
σ2
s + (K + 1)J + σ2

n

)
2σ2

s + σ2
n −

√
4
(
σ2
s

)2
+

(
σ2
n

)2
.

(19)

Note that the eigenvalues given in (18) are not a function of
M.

4.1.6. Convergence properties

The projection of any of the eigenvectors on the optimal
weight vector is nonzero. This implies that the time con-
stant (8) is inversely proportional to the minimum eigen-

value
(

i.e., τDFE � 1/
{
μ
(

2σ2
s + σ2

n −
√

4(σ2
s )2 + (σ2

n)2
)})

. The
delay in convergence can be attributed to the fact that the
DFE does not have a direct reference for the interferer dur-
ing adaptation and is thus forced to converge on the basis
of the training data only. The feedback taps converge slower
than the feedforward taps because the DFE is designed such
that the interferer is canceled by the feedforward taps, while
the feedback taps attempt to cancel out the signal distortion
caused by the feedforward taps [3].

4.2. Prediction filter

4.2.1. Predictor structure

The linear predictor (LP) is a structure that uses the correla-
tion between past samples to form an estimate of the current
sample [11, 25, 33]. A variant of this filter, the prediction-
error filter (PEF), has the property that it removes the cor-
relation between samples, thereby whitening the spectrum.
A common example of this property is seen when determin-
ing the parameters of an autoregressive (AR) process. The
prediction-error filter (assuming a sufficient filter order) of
such an input provides both the AR parameters and a white
output sequence that is equal to the innovations process.

This technique has also been used to remove narrowband
interference in many applications [6–8, 29, 30]. The filter is
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able to predict the interferer due to its narrowband proper-
ties. A block diagram of the prediction-error filter is shown
in Figure 3. The PEF is a transversal filter with L taps. The
decorrelation delay (Δ) ensures that the signal of interest at
the current sample is decorrelated from the samples in the fil-
ter when calculating the error term. Because the data is i.i.d.,
Δ = 1 is a sufficient choice, giving the one-step predictor. The
linear combination of the weighted input samples, xk, forms
an estimate of the interferer, given by

yLP,k =
L−1∑
l=0

c∗l xk−Δ−l, (20)

where cl are the tap weights of the predictor. The output of
the PEF, yPEF,k, is defined as the subtraction of the estimate of
the interference given in (20) from the current input sample

yPEF,k = xk − yLP,k = xk −
L−1∑
l=0

c∗l xk−Δ−l . (21)

Note that yPEF,k is also the error term of the structure. This
implies that the PEF is in fact a blind algorithm. It does
not require any training symbols when calculating the error
term.

4.2.2. Predictor optimal weights

The optimal tap weights can be found in a way similar to
those for the equalizer above [3, 30]. Using the orthogonality
principle, L equations are obtained and the weights of the
PEF are given by

cPEF =
⎡⎣1, 0, . . . , 0︸ ︷︷ ︸

Δ−1

, − Ae− jΩΔT , . . . ,−Ae− jΩ(L−1+Δ)T

⎤⎦,

(22)

where A is equal to

A = J

σ2
s + σ2

n + LJ
. (23)

For the scenario of interest in this paper, the interference
power is much larger than both the signal power and the
noise power. Therefore, the SIR and the noise-to-interference
ratio (NIR) can be assumed to be very small (i.e., SIR� 0 dB,
NIR� 0 dB [3]) and A can be approximated as

A ∼= 1
L
. (24)

4.2.3. Sensitivity to additive noise

The PEF has been shown to be sensitive to additive noise
when used for channel estimation [34, 35]. An algorithm was
proposed in [36] to provide adaptive estimation of unbiased
linear predictors with the goal of obtaining a consistent es-
timate of an ISI single-input multiple-output (SIMO) chan-
nel. To examine the effect of the additive noise on the PEF

z−Δ z−1 z−1

c∗0 c∗1 c∗L−1

−
+

×

· · ·

× ×

∑yLP,k

yPEF,k

xk

Figure 3: Prediction-error filter block diagram.

for this problem, we are interested in the noise-free predictor
weights, given by

cPEF,no noise =
⎡⎣1, 0, . . . , 0︸ ︷︷ ︸

Δ−1

,−Ãe− jΩΔT , . . . ,−Ãe− jΩ(L−1+Δ)T

⎤⎦,

(25)

where Ã is equal to

Ã = J

σ2
s + LJ

. (26)

We compare (25) with the biased predictor weights given in
(22) and look at the norm of the difference (bias),∥∥cPEF,no noise − cPEF

∥∥ = Lσ2
nJ(

σ2
s + σ2

n + LJ
)(
σ2
s + LJ

) . (27)

This bias can be approximated using the assumptions that
the SIR and NIR are very small to give

∥∥cPEF,no noise − cPEF
∥∥ ≈ (

σ2
n/J

)
√
L

= NIR√
L
. (28)

The value in (28) is quite small due to the assumption that
the NIR is small. Thus, in this work, the bias in the linear pre-
dictor does not substantially affect the system’s performance.

4.2.4. Autocorrelation structure

The L×L input autocorrelation matrix for the PEF is defined
as

RPEF,i=E
[
xkxHk

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

rx(0) rx(1) rx(2) · · · rx(L− 1)

r∗x (1) rx(0) rx(1) · · · rx(L− 2)

r∗x (2) r∗x (1) rx(0) · · · rx(L− 3)
...

...
...

. . .
...

r∗x (L− 1) r∗x (L− 2) r∗x (L− 3) · · · rx(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(29)

where the components of the matrix are given by (2).

4.2.5. Eigenvalues

The eigenvalues for the correlation matrix given by (2) and
(29) can be found [7, 23, 37] to be equal to

λPEF =
⎧⎨⎩σ

2
s + σ2

n + LJ , order 1,

σ2
s + σ2

n, order L− 1.
(30)
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The eigenvalue spread is defined [11] as

χ
(
RPEF,i

) = λPEF,max

λPEF,min
= 1 +

LJ

σ2
s + σ2

n
. (31)

4.2.6. Convergence properties

In this case the L− 1 eigenvectors corresponding to the min-
imum eigenvalues are orthogonal to the optimal weight vec-
tor, hence these eigenvalues do not affect the convergence
[23]. Thus the time constant is dependent only upon the
maximum eigenvalue (i.e., τPEF � 1/{2μ(σ2

s + σ2
n + LJ)}).

4.2.7. Output Autocorrelation

The whitening property of the PEF can be seen more clearly
through the autocorrelation function of the output of the
PEF, which is derived to be

rPEF,o(m)

= E
[
yPEF,k y

∗
PEF,k−m

] = (1− AL)Je jΩmT

+
(
σ2
s +σ2

n

)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 + A2L

)
, m=0,

A2
(
L− |m|)e jΩmT , |m|=1, . . . ,Δ−1,

A
(
A(L−|m|)−1)e jΩmT , |m|=Δ, . . . ,L−1,

−AejΩmT , |m|=L, . . . ,L+Δ−1.
(32)

An approximation for the output autocorrelation function in
(32) can be found using the approximation given in (24),

rPEF,o(m)

∼=
(
σ2
s + σ2

n

)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 +
1
L

, m = 0,

(
1
L
− |m|

L2

)
e jΩmT , |m| = 1, . . . ,Δ− 1,

−|m|
L

e jΩmT , |m| = Δ, . . . ,L− 1,

− 1
L
e jΩmT , |m| = L, . . . ,L + Δ− 1.

(33)

Finally, letting the filter order increase toward infinity shows
that the output spectrum is approximately white,

lim
L→∞

rPEF,o(m) ∼=
(
σ2
s + σ2

n

)
δm. (34)

0 10 20 30 40 50 60 70 80 90 100

L

Eigenvalue spread prior to interference removal

Eigenvalue spread after removal of interference by PEF

100

101

102

103

104

105

106

χ

Figure 4: Eigenvalue spread of input to DFE-only and output of
PEF for SNR = 10 dB, SIR = −20 dB, and Ω = π/6.

4.2.8. Eigenvalue spread

The effect of the PEF is that the interference is removed,
which then results in the reduction of the eigenvalue spread.
This can be seen in Figure 4 for SNR = 10 dB, SIR= −20 dB,
and Ω = π/6. Also in the plot is the eigenvalue spread of
the received data given by (31). Note that it is assumed that
L = K . It is clearly seen that the spread has been reduced,
and the modes of this input to the LMS DFE will converge in
similar amounts of time.

5. TWO-STAGE SYSTEM

As discussed in Section 4.2.7, the PEF provides an approxi-
mately white output spectrum when an infinite number of
filter taps is used. Each additional tap provides an increase in
spectral resolution when notching out the narrowband inter-
ference. However, the implementation of a large number of
taps is not generally feasible and some distortion in the form
of postcursor ISI will be present. To combat the distortion in-
duced by the PEF, the DFE is a simple structure that removes
the ISI without enhancing the noise. This leads to a simple
two-stage structure that uses the PEF for rapid convergence
and the DFE for removing postcursor ISI as a system to mit-
igate narrowband interference.

A similar approach is discussed in [25, pages 364-365]
when deriving the zero-forcing decision-feedback equalizer.
Barry et al. demonstrate that the optimal DFE precursor
equalizer is related to optimal linear prediction. Consider
transmitting data through a channel that induces ISI. This
distortion can be removed by employing a linear zero-forcing
equalizer, while causing the noise samples at the output of
the equalizer to be correlated. This correlation can be subse-
quently removed with a PEF, at the expense of postcursor ISI.
Finally, a zero-forcing feedback postcursor equalizer removes
the ISI without enhancing the noise.

We now consider the performance of the PEF followed
by the DFE, which will be abbreviated as PEF + DFE. A block
diagram of the two-stage structure is shown in Figure 5. The
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PEF is tasked with whitening the spectrum by removing the
interference, but due to its limited length it will introduce
postcursor ISI; this ISI is then removed by the DFE. The
DFE is designed to have a one tap feedforward section and
an M-tap feedback section. In general, there is no need for a
feedforward section, because the input is distorted with only
postcursor ISI that can be resolved by the feedback equalizer
portion. We have chosen to include the one tap to compen-
sate for any phase shifts that might exist because of phase
errors, and/or gain mismatch between the transmitter and
receiver.

5.1. Feedback filter order estimation

We can estimate the optimal feedback filter order by looking
at the output of the DFE. Assuming that the feedforward fil-
ter weight is equal to 1 and the decisions fed back are perfect,
let the output be defined as

yPEF+DFE,k =
0∑

n=0

w∗PEF+DFE,nyPEF,k−n +
M∑
n=1

f ∗PEF+DFE,ndk−n

= yPEF,k +
M∑
n=1

f ∗PEF+DFE,ndk−n.

(35)

We would like to find the weights that minimize the error,

fPEF+DFE,l

= arg min
fl

E

⎡⎢⎣∥∥∥∥∥dk −
(
yPEF,k +

M∑
l=1

f ∗l dk−l

)∥∥∥∥∥
2
⎤⎥⎦

= arg min
fl

E

⎡⎢⎣∥∥∥∥∥dk −
(
xk − AejΩΔT

L−1∑
n=0

xk−Δ−ne jΩnT

+
M∑
l=1

f ∗l dk−l

)∥∥∥∥∥
2
⎤⎥⎦.

(36)

Taking the derivative of the expected value term and setting
this result to zero, the optimal weights are given by

fPEF+DFE,l =
{
Ae− jΩlT , l = Δ, . . . , min (M,L),

0, l = {1, . . . ,Δ− 1} ∪ {L + Δ, . . . ,M}.
(37)

When Δ = 1, the optimal choice for the feedback filter or-
der is M = L. This ensures that the ISI caused by the PEF
is removed. With these choices and the assumption that the
interference is canceled by the PEF, the output of the DFE is
given by

yPEF+DFE,k = dk + nk − A
L∑

n=1

nk−ne jΩnT . (38)

×

· · ·

×

w∗0 ×

×

PE filter
L taps

∑

yPEF,k

yPEF+DFE,k

f ∗1 f ∗2 f ∗M

xk

d̂k
z−1 z−1 z−1

Figure 5: Two-stage structure (PEF + DFE) block diagram.

5.2. Optimal equalizer weights after
prediction-error filtering

The DFE possesses a 1-tap feedforward section and an M-tap
feedback section. The optimal weights for the DFE are found
by solving the Wiener-Hopf equations [11, 19]. The feedfor-
ward weight is equal to wPEF+DFE = (RPEF,o − QHQ/σ2

s )−1p.
The output autocorrelation matrix RPEF,o reduces to a scalar
value due to the 1-tap feedforward filter and is defined as

RPEF,o = rPEF,o(0). (39)

The latter term is given in (32). Q is defined as

Q = E
[
dk y∗PEF,k

]
, (40)

where the components of Q are given by

E
[
dk−my∗PEF,k

] = −Aσ2
s e
− jΩmT ,

m = {Δ, . . . ,Δ + L− 1} ∩ {1, . . . ,M}.
(41)

Finally, p is defined as

p = E
[
yPEF,kd

∗
k

] = σ2
s . (42)

The feedback weights are defined as fPEF+DFE = −QwPEF+DFE/
σ2
s .

5.3. Steady-state equivalence

The two-stage structure can be viewed in a different manner
when operating in steady-state. Based on linear system the-
ory, two linear time-invariant (LTI) systems can be combined
into one LTI structure [38, pages 107-108]. For example, the
PEF weights given in (22) and the feedforward weight of the
subsequent DFE (wPEF+DFE) can be combined to form an ex-
tended feedforward filter (wext) of a DFE with one main tap
and K = L + Δ− 1 side taps. This is accomplished by

wext = cPEF∗wPEF+DFE = wPEF+DFE × cPEF, (43)

where “∗” represents linear convolution. The feedback taps
remain the same, that is fext = fPEF+DFE. Observe that wext

and fext are the weights of a DFE operating in steady state.
The case of interest is when Δ = 1 and L = M (as postulated
in Section 5.1).
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Solving, wPEF+DFE = (RPEF,o −QHQ/σ2
s )−1p and fPEF+DFE

= −QwPEF+DFE/σ2
s for the weights gives

wPEF+DFE = SNR

SNR +
(
A2M + 1

)
+ (1− AM)2J/σ2

n

, (44)

fPEF+DFE,l = A SNR

SNR +
(
A2M + 1

)
+ (1− AM)2J/σ2

n

e− jΩlT ,

l = 1, . . . ,M.
(45)

The extended feedforward filter weights can be found ac-
cording to (43),

wext,0 = SNR

SNR +
(
A2M + 1

)
+ (1− AM)2J/σ2

n

,
(46)

wext,l = −A SNR

SNR +
(
A2M + 1

)
+ (1− AM)2J/σ2

n

e− jΩlT ,

l = 1, . . . ,M,

(47)

fext,l = A SNR

SNR +
(
A2M + 1

)
+ (1− AM)2J/σ2

n

e− jΩlT ,

l = 1, . . . ,M.

(48)

Note that the feedback weights remain the same, namely (45)
is equal to (48).

As mentioned previously in Section 4.2.2, the scenario of
interest occurs when the interference dominates the signal of
interest and the noise. Equations (46)–(48) can be approxi-
mated in this region using (24) to give

wext,0
∼= SNR

(1 + SNR) + 1/M
,

wext,l
∼= − SNR

(1 + SNR)M + 1
e− jΩlT , l = 1, . . . ,M,

fext,l
∼= SNR

(1 + SNR)M + 1
e− jΩlT , l = 1, . . . ,M.

(49)

As a comparison to (49), the DFE-only weights described
by (11)–(14) need to be approximated for the assumption
of small SIR and NIR as well. Letting K = M, so that there
are M + 1 taps in the feedforward section and M taps in the
feedback section, the DFE-only weights are approximated as

wDFE,0
∼= SNR

(1 + SNR) + 1/M
,

wDFE,l
∼= − SNR

(1 + SNR)M + 1
e− jΩlT , l = 1, . . . ,M,

fDFE,l
∼= SNR

(1 + SNR)M + 1
e− jΩlT , l = 1, . . . ,M.

(50)

Comparing (49) and (50), it can be seen that combining
the two-stage weights approximates the weights of the DFE-
only.

5.4. Blind implementation

The previous sections established a relationship between
the PEF weights, the feedforward weight, and the feedback
weights. Note that in Section 5.1 the feedback weights are
equal to the PEF weights associated with past data symbols
scaled by the feedforward tap weighting. Also, recall that the
weights of the PEF rapidly converge and the structure does
not require knowledge of training symbols. With Δ = 1 and
L = M, the two-stage system can be implemented in a man-
ner where the feedback tap weights are not adapted. After the
PEF weights have converged, the multiplication of the PEF
weights and the feedforward weight is used as the feedback
weights. The feedforward tap is initialized to unity and is
adapted in decision-directed mode. Thus, no explicit train-
ing symbols are required during the adaptation process. This
method also reduces the complexity of the system; only M+1
of the total 2M + 1 tap weights are adapted. In the scenario
where there is a phase and/or gain error, the system requires
the use of either training symbols to adapt the feedforward
weight or a phase locked loop (PLL) and automatic gain con-
trol (AGC). Observe that these two components can be im-
plemented in a decision-directed manner with no need for
training symbols.

6. RESULTS

6.1. Simulation parameters

In the simulation results to follow, a QPSK constellation is
utilized and the SNR = 9 dB. For convergence results, a
100-symbol window was used and the BER values are av-
eraged over 1000 runs. The interferer frequency is located
at DC (Ω = 0). All of the data were considered as training
data, unless specified otherwise. The step-sizes are chosen to
ensure convergence toward the steady-state BER. The DFE
steady-state BER results in the convergence plots are given
by Q(

√
SINR), where Q(·) is the Q-function [29, page 40]

and the SINR is given in (15). The simulation results demon-
strating complete agreement with this theory-based result are
omitted to avoid unnecessary clutter in the figures to follow.

The DFE adapted with the RLS algorithm [11] is also
simulated as a benchmark for the LMS DFE and the LMS
PEF + DFE. The forgetting factor and the regularization fac-
tor were found through trial and error and set to λ = 0.99,
δ = 0.001, respectively, for all simulations.

The adaptive weights are initialized such that the main
tap is set to one, resulting in the desired symbol being part
of the output of the equalizer. The remaining taps are set to
zero.

6.2. Convergence results

In previous works [3, 39], the convergence has been viewed
through the adaptive weights, even though they may not be
unique [18]. As mentioned above in Section 3.1, the conver-
gence of the weights may lag behind the MSE convergence
if the eigenvalues are small. Similarly, the weight conver-
gence does not provide an indication of how the BER behaves
during the transient period. Thus, the convergence results
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Figure 6: Convergence comparison of the LMS DFE, the LMS PEF
+ DFE, and the RLS DFE for SNR = 9 dB, SIR = −20 dB, K =
L = M = 3, Ω = 0, μDFE = 0.0001, μPEF = 0.0001, μPEF + DFE =
0.01, λ = 0.99, δ = 0.001.
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Figure 7: Convergence comparison of the LMS DFE, the LMS PEF
+ DFE, and the RLS DFE for SNR = 9 dB, SIR = −30 dB, K =
L = M = 3, Ω = 0, μDFE = 0.00001, μPEF = 0.00001, μPEF + DFE =
0.001, λ = 0.99, δ = 0.001.

are shown in terms of a sliding BER window, discussed in
Section 3.2.

Figure 6 demonstrates the convergence of the LMS DFE,
the LMS PEF + DFE, and the RLS DFE in relation to the
steady-state BER for SIR = −20 dB. The number of taps is
set such that K = L = M = 3, and the step-sizes for each
structure are μDFE = 0.0001,μPEF = 0.0001,μPEF + DFE = 0.01.
The LMS PEF + DFE is seen to converge significantly faster
than the LMS DFE. Specifically, the LMS PEF + DFE con-
verges to a BER of 10−2 in approximately 450 symbols (or it-
erations, as adaptation takes place at the symbol rate), while
the LMS DFE converges in approximately 20 000 symbols. An
improvement of two orders of magnitude is obtained by im-
plementing the LMS PEF + DFE structure instead of the LMS
DFE structure for this particular scenario. In the case of the

0 0.5 1 1.5 2 2.5
×104Symbol index

LMS DFE

LMS PEF + DFE
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Figure 8: Convergence comparison of the LMS DFE, the LMS PEF
+ DFE, and the RLS DFE for SNR = 9 dB, SIR = −20 dB, K =
L = M = 6, Ω = 0, μDFE = 0.0001, μPEF = 0.00005, μPEF + DFE =
0.01, λ = 0.99, δ = 0.001.

RLS DFE, convergence to a BER of 10−2 occurs in 150 sym-
bols. As expected, RLS provides faster convergence because
it whitens the input by using the inverse correlation matrix.
This improved convergence comes at the cost of higher com-
plexity. For example, in the context of echo cancellation, it
has been shown that the implementation of RLS in floating
point on the 32 bit, 16 MIPS, 1 serial port, TMS320C31 re-
quires 20 times the number of machine cycles that LMS does
[40].

Figure 7 is a plot of the convergence for the above sce-
nario when the SIR = −30 dB. The step-sizes for this case are
μDFE = 0.00001,μPEF = 0.00001,μPEF + DFE = 0.001. Again,
the time required for convergence of the LMS PEF + DFE is
dramatically less than for the convergence of the LMS DFE.
The LMS PEF + DFE converges in 3000 symbols, while the
LMS DFE requires 200 000 symbols. The RLS DFE requires
160 symbols to converge for this case.

Finally, Figure 8 shows the convergence of the two sys-
tems when the number of filter coefficients for each stage
is doubled, namely, K = L = M = 6 and SIR = −20 dB.
The step-sizes for this scenario are μDFE = 0.0001,μPEF =
0.00005,μPEF+DFE = 0.01. The LMS PEF + DFE converges in
300 symbols and the LMS DFE converges in 10 000 symbols.
The RLS DFE converges in 130 symbols. Doubling the com-
plexity reduces the convergence time of the LMS DFE and the
LMS PEF + DFE more than that of the RLS DFE. Note that
increasing the order will eventually lead to a degradation in
the performance due to the increase of gradient noise. This
degradation is observed when increasing the number of taps
from K = L = M = 3 (in Figure 6) to K = L = M = 6 (in
Figure 8).

6.2.1. Blind implementation

In this section, we examine the convergence of the blind im-
plementation discussed in Section 5.4. This algorithm allows
the LMS PEF to converge before the LMS DFE that follows
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Figure 9: Convergence comparison of the different LMS PEF + DFE
implementations for SNR = 9 dB, SIR = −20 dB, K = L = M =
3,Ω = 0,μPEF = 0.0001,μPEF+DFE = 0.01,Noff = 200.
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Figure 10: Convergence comparison of the different LMS PEF +
DFE implementations for SNR = 9 dB, SIR = −20 dB, K = L =
M = 3,Ω = 0,μPEF = 0.0001,μPEF+DFE = 0.01,Noff = 100.

it is turned on. Let Noff represent the number of symbols
that is allocated to allow for PEF convergence. This system is
compared to two other cases. The first is the scenario where
all the transmitted symbols are considered as training data
(similar to the results shown above). The second scenario
demonstrates the convergence when a subset of the symbols
is used for training, while the adaptive algorithm operates in
decision-directed mode for the remaining symbols. We refer
to this case as the decision-directed algorithm. The number
of training symbols used for this case will also be equal to
Noff.

Figure 9 demonstrates the BER convergence of the three
discussed cases in relation to the steady-state BER for SIR
= −20 dB and Noff = 200 symbols. The number of taps
is set such that K = L = M = 3, and the step-sizes for
each structure are μPEF = 0.0001 and μPEF+DFE = 0.01. The
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Figure 11: Steady-state BER results of the DFE and the PEF + DFE
for SIR = −20 dB and Ω = 0. DFE results obtained using optimal
weights given in (11)–(14), PEF + DFE results obtained using opti-
mal weights given in (22), (44), and (45).

performance of both the blind algorithm and the decision-
directed algorithm deviates from the case of using all train-
ing data. This is due to propagation of feedback errors that
cause more errors. Observe that the blind algorithm pro-
duces faster convergence and better BER performance than
the decision-directed algorithm.

Figure 10 demonstrates the BER convergence of the three
discussed cases in relation to the steady-state BER for SIR
= −20 dB, however now Noff = 100 symbols. The blind
algorithm outperforms the decision-directed algorithm in
terms of both convergence and BER. The degradation of
the decision-directed algorithm arises from the fact that the
number of training symbols used does not allow the feedback
weights to approach their steady-state values before switch-
ing to decision-directed mode.

6.3. BER results

Figure 11 is a plot of the steady-state BER results for the DFE
and PEF + DFE for SIR = −20 dB and varying filter orders.
The performance of ideal QPSK is plotted as a reference. The
performance of the PEF + DFE is seen to be approximately
the same as the performance of the DFE when both struc-
tures are operating in steady state. This validates the analy-
sis performed in Section 5.3. It is also seen that the perfor-
mance of the systems improves as the number of filter taps is
increased, approaching the performance of QPSK. The im-
provement results from the increased spectral resolution pro-
vided by the larger number of taps in the feedforward section
of each system.

Figure 12 demonstrates the BER results of the LMS PEF
+ DFE blind implementation in comparison to the steady-
state PEF + DFE results. For the blind implementation, the
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Figure 12: Steady-state BER results of PEF + DFE and the BER for
the LMS blind implementation for SIR = −20 dB and Ω = 0. PEF
+ DFE steady-state results obtained using optimal weights given in
(22), (44), and (45).

Table 1: Step-sizes and Convergence (at SNR = 10 dB) for LMS PEF
+ DFE Blind Implementation.

L = M 2 4 8

μPEF 1e-4 5e-5 1e-5

μPEF + DFE 0.01 0.01 0.01

No. of symbols to BER = 10−2 354 250 555

DFE is turned on after Noff = 250 symbols and the BER is
calculated over the last 2500 symbols. The step-sizes are cho-
sen for convergence to the steady-state BER and are noted in
Table 1. This table also gives the average number of symbols
required to obtain a BER of 10−2 for the blind implementa-
tion when SNR = 10 dB. A convergence value equal to Noff

indicates that the blind algorithm has converged to the target
BER after the first windowed calculation. It is clear that there
is a small degradation in the BER when implementing the
blind version of the PEF + DFE algorithm. This degradation
is attributed to the combination of the misadjustment of the
adaptive algorithm and the presence of uncanceled interfer-
ence that causes feedback errors. Note that this degradation
in BER becomes smaller as the number of parameters is in-
creased. This occurs because a larger number of taps allows
for more of the interference to be canceled, thereby reducing
the number of feedback errors.

7. CONCLUSION

We investigated the response of the LMS DFE in the pres-
ence of severe narrowband interference. Due to the absence
of a reference for the interference, the convergence time for
this equalizer may be unacceptably slow for use in some re-
alistic applications. The proposed system of an LMS PEF as
a prefilter to the equalizer is shown to provide a solution to

this problem. This two-stage system was shown to reduce the
convergence time, in terms of reaching a BER of 10−2, by
two orders of magnitude. An added benefit is that the steady-
state BER for the two-stage system approximates that of the
LMS DFE-only. Thus, it is possible to improve the conver-
gence results of the LMS DFE, by splitting the system into an
LMS prediction-error filter and a separate LMS DFE while
not significantly degrading the steady-state BER results. The
convergence results were also benchmarked against the DFE
adapted with the RLS algorithm, which demonstrated faster
convergence at the cost of higher complexity. A blind imple-
mentation (i.e., no training symbols are needed) that reduces
complexity at the cost of a small degradation in the steady-
state BER is also discussed.
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