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A fundamental problem in signal processing is to estimate signal from noisy observations. This is usually formulated as an
optimization problem. Optimizations based on variational lower bound and minorization-maximization have been widely used
in machine learning research, signal processing, and statistics. In this paper, we study iterative algorithms based on the conjugate
function lower bound (CFLB) and minorization-maximization (MM) for a class of objective functions. We propose a generalized
version of these two algorithms and show that they are equivalent when the objective function is convex and differentiable. We
then develop a CFLB/MM algorithm for solving the MAP estimation problems under a linear Gaussian observation model. We
modify this algorithm for wavelet-domain image denoising. Experimental results show that using a single wavelet representation
the performance of the proposed algorithms makes better than that of the bishrinkage algorithm which is arguably one of the
best in recent publications. Using complex wavelet representations, the performance of the proposed algorithm is very competitive
with that of the state-of-the-art algorithms.
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1. INTRODUCTION

Estimating signal from noisy observations is a fundamental
task in signal processing. A linear observation model is given
by

y = Ax + e, (1)

where x is a column vector of the true signal, y and e are vec-
tors of observations and noise, respectively. We assume that
A is a known matrix. When noise is assumed independent
and identically distributed (i.i.d.) Gaussian, the maximum
likelihood (ML) estimation is a typical least-squares problem
[1]. When the distribution of the noise is assumed heavy-
tailed, the ML estimation is a robust regression problem [2].
When noise is i.i.d. Gaussian, the maximum a posteriori
(MAP) estimation problem is essentially a penalized least-
squares problem. For example, the problem is known as a
ridge-regression [3] or weight-decay [4] problem when the

prior for x is also i.i.d. Gaussian. When the prior for x is non
Gaussian, it is usually chosen to model the sparseness of the
signal [5, 6], to control the complexity of the model [3, 4], or
to perform model selection [7, 8]. A typical application that
exploits the sparseness of the signal is in wavelet-based image
denoising [9–11].

Among the non-Gaussian distributions, a particular fam-
ily of heavy-tailed distributions is the scale mixture of Gaus-
sian (SMG) distribution [12]. These distribution functions,
including power exponential, student-t, and slash distribu-
tions [13, 14], have found many successful applications in
robust statistical data analysis [14, 15], image processing [11,
16], and machine learning problems [6, 17]. An interesting
discussion of robust estimation using the SMG distribution
is given in [18].

After we make assumptions about the likelihood and the
prior, the MAP estimate of x can be determined by solving
a specific optimization problem. Optimization algorithms
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that are based on variational methods [19, 20] and the
minorization-maximization principle [21] are powerful al-
ternatives to the EM algorithm. For example, optimiza-
tion algorithms based on variational methods have been
widely used in Bayesian learning that employs non-Gaussian
distributions. These algorithms are based on maximizing
the variational lower bound which is given either by
introducing an auxiliary distribution function [20, 22, 23]
or by representing the objective function in its variational
form using the conjugate function [19, 24, 25]. Variational
methods have also been applied to a number of signal
processing problems [17, 23, 26]. The basic idea of the
minorization-maximization (MM) algorithm [21] is that,
instead of directly maximizing the objective function,
another objective function that minorizes the original objec-
tive function is iteratively maximized. (The formal definition
is presented in Section 2.2.) The MM algorithm has been suc-
cessfully applied to solve many statistical problems including
variable selection [27] and quantile regression [28]. It has
also found applications in machine learning research [29].
Both variational methods and the MM algorithm have long
been applied to solve many signal processing problems such
as image restoration [30–34] and computer tomography
[35–38].

In this paper, we develop an iterative algorithm to
determine the MAP estimate of x based on the Gaussian
linear observation model given by (1) and the prior p(x)
given by an i.i.d. scale mixture of Gaussian distribution. A
direct application of this algorithm is image denoising in the
wavelet domain. This is performed by letting A = I in the
observation model and regarding y and x as the observed
and original wavelet coefficients, respectively. This is a special
case of the linear observation model. Since our study is
based on the conjugate function lower bound (CFLB) and
minorization-maximization, we also study the connection
between the two.

This paper is organized as follows. In Section 2, after
a brief introduction of the CFLB and MM algorithms, we
present a generalized view of both algorithms and two
extensions. In particular, we study iterative optimization
algorithms for a class of objective functions F(x). We assume
that through a suitable mapping of the variable t = q(x),
the resulting function f (t) ( f [q(x)] = F(x)) is convex
and differentiable. This type of objective function is studied
because the log-prior (the logarithm of the scale mixture
of Gaussian distribution) has this property and plays an
important role in the algorithmic development. We describe
iterative algorithms called the CFLB algorithm and MM
algorithm for maximizing the objective function. We then
propose a generalized version of both algorithms and show
that they are indeed equivalent for the class of objective
functions considered in this paper. In Section 3, we develop
an iterative algorithm for MAP estimate of the signal under
the general model setting of (1). We also discuss the
connection between the developed algorithm with an EM
algorithm. In Section 4, we modify the algorithm developed
in Section 3 for image denoising in the wavelet domain.
We study two heavy-tailed priors for wavelet coefficients:
student-t and slash distributions which are of interest as

they have not yet been widely studied in image denoising.
Recognizing that the proposed algorithms can be regarded
as generalized Wiener estimation algorithms, we propose
two algorithms which exploit the local statistics. One is a
noniterative algorithm which has a parameter that accounts
for the heavy-tailed characteristics of the signal. The other
is an iterative algorithm based on either the student-t
or slash distribution. We also discuss the connection of
proposed algorithms with algorithms based on empirical
Bayes and issues related to using the proposed algorithm
in complex wavelet representations. Experimental results
show that when using a single wavelet representation the
performance of the proposed algorithms is better than that
of the bi-shrinkage algorithm [39] which is arguably one of
the best in recent publications. Using over-complete wavelet
representations, the performance of the proposed algorithm
is competitive to that of the state-of-the-art image denoising
algorithms [16, 39, 40].

2. ITERATIVEMAXIMIZATION BASEDON
THE CONVEXITY OF THE OBJECTIVE FUNCTION

In this section, we present a brief introduction to the
CFLB and MM algorithms for determining the local/global
maximum of a objective function F(x). We assume that
through a suitable mapping t = q(x) we have a convex and
differentiable function f (t) such that F(x) = f [q(x)] = f (t).
The proposed CFLB and MM algorithms are based on the
convexity of f (t). We then present a generalized version of
these two algorithms and two extensions. This is followed by
two families of objective functions for which the CFLB and
MM algorithms are useful tools.

2.1. The conjugate function lower
bound 85(CFLB) algorithm [19, 20]

The conjugate function [41] of f (t) is

f ∗(λ) = arg max
t

[
λt − f (t)

]
. (2)

When f (t) is convex and differentiable, the maximizer of
λt − f (t) satisfies λ = f ′(t), where f ′(t) = df (t)/dt. For a
fixed t, f (t) is recovered by

f (t) = arg max
λ

[
λt − f ∗(λ)

]
. (3)

Using Fenchel’s inequality [41], for any t and λ, the conjugate
function lower bound for f (t) is given by

f (t) ≥ λt − f ∗(λ) for any λ. (4)

We can define a new objective function

P(x, λ) = λq(x)− f ∗(λ). (5)
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Substituting t = q(x) into (3), it is clear that

F(x) = arg max
λ

P(x, λ) (6)

and F(x) ≥ P(x, λ) for any λ.
An iterative algorithm that guarantees a nondecreasing

sequence of F(x) is the following. The algorithm, called the
conjugate function lower bound (CFLB) algorithm, has two
maximization steps. At the kth iteration, we know x(k) and
maximize P(x(k), λ) to obtain λ(k). It is easy to show that

λ(k) = arg max
λ

P
(
x(k), λ

) = f ′
(
t(k)), (7)

where t(k) = q(x(k)). Next, we calculate x(k+1) by maximizing
P(x, λ(k)),

x(k+1) = arg max
x

P
(
x, λ(k)), (8)

where we assume that there is at least a local maximum for
P(x, λ(k)). Since λ(k) is fixed, f ∗(λ(k)) is a constant. We can
write

P
(
x, λ(k)) = λ(k)q(x) + constant. (9)

From the above two maximization steps, we can write

P
(
x(k), λ(k)) ≤ P

(
x(k+1), λ(k)) ≤ P

(
x(k+1), λ(k+1)). (10)

According to definition, we have F(x(k)) = P(x(k), λ(k)) and
F(x(k+1))=P(x(k+1), λ(k+1)). Thus, F(x(k+1))≥F(x(k)). There-
fore, the CFLB algorithm leads to a nondecreasing sequence
of F(x(k)).

2.2. Theminorization-maximization
(MM) algorithm

A function g(t; t(k)) with a known parameter t(k) is said to
minorize f (t) at the point t(k) provided

g
(
t; t(k)

) ≤ f (t) ∀t
g
(
t(k); t(k)

) = f
(
t(k)
)
. (11)

Let t(k+1) be the maximizer of g(t; t(k)), such that

t(k+1) = arg max
t

g
(
t; t(k)). (12)

From the definition, we have

g
(
t(k+1); t(k)) ≥ g

(
t(k); t(k)) = f

(
t(k)),

f
(
t(k+1)) ≥ g

(
t(k+1); t(k)).

(13)

Therefore, maximizing g(t; t(k)) results in a nondecreasing
sequence f (t(k+1)) ≥ f (t(k)). This algorithm is called a
minorization-maximization (MM) algorithm.

For a convex and differentiable function f (t), we have

f (t) ≥ f
(
t(k)) + f ′

(
t(k))(t − t(k)). (14)

Substituting t = q(x) into (14), we have

F(x) ≥ F
(
x(k)) + f ′

[
q
(
x(k))][q(x)− q

(
x(k))]. (15)

Thus, F(x) is minorized by

D
(
x; x(k)) = F

(
x(k)) + f ′

[
q
(
x(k))][q(x)− q

(
x(k))]

= f ′
[
q
(
x(k))]q(x) + constant,

(16)

since F(x(k)) = D(x(k); x(k)) and F(x) ≥ D(x; x(k)). Therefore,
the MM algorithm that iteratively maximizes D(x; x(k)),

x(k+1) = arg max
x

D
(
x; x(k)), (17)

leads to a nondecreasing sequence F(x(k+1)) ≥ F(x(k)). The
convergent property of the MM algorithm and techniques to
speed up the convergence rate are discussed in [21, 42].

2.3. Generalization, comparison, and extensions

2.3.1. Generalization and comparison

The basic ideas of the CFLB and MM algorithms can be
generalized as the following. To find a local/global maximum
of f (x), we assume there is a function d(x, y):

f (x) ≥ d(x, y) for any x, y,

f (x) = d
(
x, yx

)
for a given x,

(18)

where yx = h(x) is a suitable function of x. An iterative
algorithm can now be developed. In the kth step, we assume

x(k) is known and we calculate y(k)
x = h(x(k)). Then in the

(k + 1)th step, we determine x(k+1) such that

d
(
x(k+1), y(k)

x

) ≥ d
(
x(k), y(k)

x

)
. (19)

Since by definition f (x(k+1)) ≥ d(x(k+1), y(k)
x ) and f (x(k)) =

d(x(k), y(k)
x ), we have f (x(k+1)) ≥ f (x(k)). Therefore, when

the two conditions stated in (18) are satisfied, the uphill

location x(k+1) for d(x, y(k)
x ) is also the uphill location for

f (x).
The CFLB and MM algorithms are special cases of

the above generalized algorithm. There are two special
considerations in the CFLB and MM algorithms.

(i) One is operational. x(k+1) is determined by the max-

imization x(k+1) = maxx d(x, y(k)
x ). In light of (19),

this maximization step in the CFLB and MM algo-
rithm is sufficient but not necessary.

(ii) The other is structural. For an MM algorithm, y(k)
x =

x(k), while for a CFLB algorithm, the function y(k)
x =

h(x(k)) depends on the definition of the conjugate
function lower bound d(x, y).

In addition, we can clearly see that the objective function
P(x, λ(k)) of the CFLB algorithm is exactly the same as
the minorization function D(x; x(k)) of the MM algorithm.
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This is because for a convex and differentiable function its
conjugate function lower bound [41] is the same as the
minorizing function used in the MM algorithm. Therefore,
the CFLB algorithm and the MM algorithm, when they rely
on the convexity of f (t), are essentially the same in searching
for a local/global maximum of the function F(x). We note
that for the MM algorithm there are other tools to construct
the minorizing function which is not necessarily the same as
that constructed by using the CFLB.

2.3.2. Two extensions

Here, we assume the objective function has at least a local
maximum. In the first extension, we consider an objective
function of a vector variable x:

J1(x) =
N∑

n=1

Fn(x), (20)

where Fn(x) = f [qn(x)] and qn(x) = tn is scalar. Assume
f (t) is convex. Then, J1(x) is minorized by G(x; x(k)) =
∑N

n=1 f ′(t(k)
n )qn(x). The CFLB/MM algorithm for maximiz-

ing J1(x) is given by

x(k+1) = arg max
x

G
(
x; x(k)). (21)

In the second extension, we consider an objective func-
tion which is the sum of J1(x) defined in (20) and another
objective function J0(x):

J(x) = J0(x) + J1(x). (22)

Here, we assume that J(x) has at least a local maximum.
Since J1(x) is minorized by G(x; x(k)), J(x) is minorized by
H(x; x(k)) = J0(x) + G(x; x(k)). The CFLB/MM algorithm for
maximizing J(x) is given by

x(k+1) = arg max
x

H
(
x; x(k)). (23)

2.4. An example

In this section, we show that the logarithm of the scale
mixture of Gaussian distribution function [12] has the
desired convex property after suitable mapping of variables.
A family of heavy-tailed distributions for a zero-mean scalar
random variable x is defined as a scale mixtures of Gaussian:

p
(
x | σ2, ν

) =
∫∞

0
N
(
x | σ2,u

)
p(u | ν)du, (24)

where N (x | σ2,u) = (
√
u/
√

2πσ)e−(u/2σ2)x2
and p(u | ν)

is the prior distribution of u (0 ≤ u < ∞). (We adopt
the following notations in this paper. The conditional
distribution function is denoted by p(x | y), while a function
parameterized by a parameter is denoted by f (x; y). A vector
x is written in bold-face font, while its nth elements is
denoted by xn.) Here, we have included two parameters σ2

and ν to account for certain distributions such as the student-
t distribution which has a scaling parameter and a parameter
for the degree of freedom. Different settings for p(u | ν)

Table 1: Three heavy-tailed distributions are presented, where

Γ(a) = ∫∞
0 ta−1e−tdt and Γ(a, b) = ∫ b

0 t
a−1e−tdt are the gamma

function and incomplete gamma function, respectively. We assume
ν is a fixed parameter.

Power exponential
1

2Γ(1 + 1/ν)σ
exp

[− (x2/σ2)ν/2], 0 < ν ≤ 2

Student-t
Γ((ν + 1)/2)
Γ(ν/2)

√
νπσ

(1 + x2/νσ2)−(ν+1)/2

Slash
ν√
2πσ

(x2/2σ2)−(ν+1/2)
Γ(ν + 1/2, x2/2σ2)

result in a family of heavy-tailed distributions [11, 12, 18].
For example, when p(u | ν) is a gamma distribution with
both parameters set to ν/2, the resulting SMG is the student-
t distribution. The Gaussian distribution is a special case
where u is not a random variable but is a constant u = 1.
The definitions of three heavy-tailed distributions: power
exponential, student-t, and slash are shown in Table 1. More
examples can be found in [11]. We note that the Laplacian
(ν = 1) and Gaussian distribution (ν = 2) are two special
cases of the power exponential distribution. In addition, the
power exponential distribution function can be represented
as the SMG when 0 < ν ≤ 2. (This is a subset of the power
exponential distribution function that can be represented as
SMG.)

We will use s = σ2 to simplify notations in the following
discussion. We study the logarithm of the scale mixture of
Gaussian distribution function

log
∫∞

0
N (x | s,u)p(u | ν)du = −1

2
log(2π)− 1

2
log s + F(x),

(25)

where

F(x) = log
∫∞

0

√
up(u | ν) exp

[
− ux2

(2s)

]
du. (26)

Changing the variable t = q(x) = x2/(2s), we have a new
function f (t) and its first derivative as follows:

f (t) = log
∫∞

0

√
up(u | ν) exp[−ut]du, (27)

f ′(t) = −
∫∞

0 u3/2p(u | ν) exp[−ut]du
∫∞

0
√
up(u | ν) exp[−ut]du . (28)

We can verify the convexity of f (t) by recognizing that
it is the logarithm of the Laplace transform of

√
up(u |

ν). The Laplace transform of
√
up(u | ν) is log-convex

[41]. Therefore, the proposed CFLB/MM algorithm can be
used to maximize an objective function which involves log-
SMG distribution functions. The function f (t) and its first
derivative for the three distributions are listed in Table 2.

3. MAP ESTIMATION UNDER LINEAR
GAUSSIAN OBSERVATIONMODEL

In this section, we present the development of a CFLB/MM
algorithm for solving a general MAP estimation problem
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Table 2: The function f (t) and its first derivative for the three heavy-tailed distributions. For power exponential, the parameter ν must be set
as 0 < ν ≤ 2 such that f (t) is convex. We note that f (t) and f ′(t) can be directly calculated from the distribution function. The knowledge
of the exact form of p(u | ν) is not required.

Power exponential Student-t Slash

f (t) −(2t)ν/2 −ν + 1
2

log(ν + 2t) −
(

ν +
1
2

)
log t + logΓ

(
ν +

1
2

, t
)

f ′(t) −ν(2t)(ν−2)/2 − ν + 1
ν + 2t

− Γ(ν + 3/2, t)
tΓ(ν + 1/2, t)

of linear Gaussian model. We then discuss the connection
between the developed algorithm with an expectation maxi-
mization (EM) algorithm.

3.1. Development of the iterative algorithm

Given a linear observation model in (1), we want to deter-
mine a MAP estimate of the parameter vector x based on
the following model assumptions. Elements of e are i.i.d.
Gaussian with known variance σ2

e . Elements of x are i.i.d.
scale mixture of Gaussian with unknown scaling parameter
s. The degree of freedom ν is assumed to be a free parameter
that can be tuned. (A full Bayesian estimate for ν is generally
very computationally complicated [15, 43] and is beyond the
scope of this paper.) More specifically, the log-posterior is
given by

J(x, s) = log p(x, s | y)

= log p(y | x) + log p(x | s) + log p(s) + constant,
(29)

where

log p(y | x) = −N

2
log
(
2πσ2

e

)− 1
2σ2

e
eTe,

log p(x | s) = −N

2
log 2π − N

2
log s +

N∑

n=1

Fn(x, s),

Fn(x, s) = log
∫∞

0

√
unp(un | ν) exp

[
− unx2

n

(2s)

]
dun.

(30)

Changing variable tn = qn(x, s) = x2
n/(2s), we have Fn(x, s) =

f [tn], where the function f (t) is convex and is given by (27).
We can rewrite (29) as

J(x, s) = J0(x, s) + J1(x, s), (31)

where

J0(x, s) = log p(y | x) + log p(s)− N

2
log s,

J1(x, s) =
N∑

n=1

Fn(x, s) =
N∑

n=1

f
(
tn
)
.

(32)

Since J1(x, s) is minorized by
∑N

n=1 f
′(t(k)

n )(x2
n/2s), J(x, s) is

minorized by the following objective function:

H
(
x, s; x(k), s(k))

= J0(x, s) +
N∑

n=1

f ′
(
t(k)
n

)x2
n

2s

= − 1
2σ2

e
eTe + log p(s)− N

2
log s− 1

2s
xTW(k)x,

(33)

where W(k) = diag[− f ′(t(k)
n )] is a diagonal matrix. The

update for x is then obtained by maximizing H(x, s; x(k), s(k)),

x(k+1) =
(
ATA +

σ2
e

s(k)
W(k)

)−1

ATy. (34)

Here, we need to make a further assumption that the matrix
A is properly defined such that the matrix inversion in
the above equation can be carried out for each iteration.
The next step is to determine the update for the scaling
parameter s. To simplify presentation, we assume p(s) is a
uniform distribution in this section. Other priors for p(s)
are considered in Section 4.1. The update of the scaling
parameter is given by

s(k+1) = 1
N

[
x(k+1)]TW(k)x(k+1). (35)

3.2. Equivalence with the EM algorithm

In [44], we develop an EM algorithm for the MAP estimation
problem. In this section, we present the details of the EM
algorithm and show that it is equivalent to the CFLB/MM
algorithm. In developing the EM algorithm, we regard the
parameters γ = {un} as the missing data. The signal x and
the scaling factor s, denoted φ = {x, s}, are the data to be
estimated. We then determine the Q-function [45]

Q
(
φ;φ(k)) =

∫∞

0
log p(φ, γ | y)p

(
γ | φ(k), y

)
dγ. (36)

We now give details of calculating the Q-function and the
E-step. Using Bayes’ rule, we can write

p(φ, γ | y) ∝ p(y | φ, γ)p(φ | γ)p(γ), (37)
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where

p(y | φ, γ) = (√2πσe
)−N

exp
(
−
∑N

n=1 e
2
n

2σ2
e

)
,

p(φ | γ) =
∏N

n=1
√
un

(√
2πs
)N exp

(
−
∑N

n=1 unx
2
n

2s

)
p(s),

p(γ) =
N∏

n=1

p
(
un
)
.

(38)

Therefore, ignoring constants and unrelated terms, we have
the following results:

Q
(
φ;φ(k)) = log p(y | x) + log p(s)− N

2
log s− 1

2s

∑
u(k)
n x2

n,

(39)

where u(k)
n is the conditional mean

u(k)
n = E

[
un | φ(k), y

]
. (40)

Equation (40) states the calculation required for the E-step.
In the M-step, we maximize the Q-function to determine
φ(k+1).

The E-step is calculated as the following:

u(k)
n =

∫∞

0
unp

(
un | x(k)

n , s(k))dun, (41)

where

p
(
un | x(k)

n , s(k)) = p
(
x(k)
n | s(k),un

)
p
(
un | ν

)

∫∞
0 p
(
x(k)
n | s(k),un

)
p
(
un | ν

)
dun

.

(42)

Since p(x(k)
n | s(k),un) is Gaussian

p
(
x(k)
n | s(k),un

) =
√
un√

2πs(k)
exp

[

− un
(
x(k)
n
)2

(
2s(k)

)

]

, (43)

we have

p
(
un | x(k)

n , s(k)) =
√
unp

(
un | ν

)
exp

(− unt
(k)
n
)

∫∞
0
√
unp

(
un | ν

)
exp

(− unt
(k)
n
)
dun

,

(44)

where we have used the substitution t(k)
n = (x(k)

n )2/(2s(k)).
Substituting (44) into (41) and comparing with (28), we can

see that f ′(t(k)) = −u(k)
n . Comparing objective function of

the CFLB/MM algorithm (33) with the Q-function of the EM
algorithm (39), we can see the two algorithms are equivalent.

4. APPLICATIONS IN IMAGE DENOISING

4.1. Iterative denoising algorithms

We now use image denoising in wavelet transform domain as
an example to demonstrate the application of the proposed
algorithm. (Part of this section was presented in [34, 46].)

In the wavelet domain, we have the following observation
model:

y = x + e, (45)

where y and x are observed and original wavelet coefficients
of the signal, respectively. e is the additive Gaussian noise.
Therefore, the denoising problem is a special case of the MAP
estimation problem (considered in Section 3), where A = I is
an identity matrix. From (34), we can easily derive the update
for the signal

x(k+1)
n = s(k)

s(k) + u(k)
n σ2

e

yn, (46)

where we have used u(k)
n = − f ′(t(k)

n ) to simplify notation.
(At the end of Section 3.2, we have commented on the
relationship between u(k)

n and f ′(t(k)
n ).) The update of the

scaling parameter depends on its prior distribution. In this
section, we consider three priors: a conjugate prior given by
the inverse-chi-square (Inv-χ2) distribution, Jeffreys’ prior
(p(s) ∝ 1/s), and the uniform prior [45]. The Inv-χ2

distribution is given by

p(s | η) = 2−η/2

Γ(η/2)
s−(η/2+1) exp

[
− 1

(2s)

]
, s > 0, η > 0,

(47)

where η is the degree of freedom. For η > 2, the mean of
s is given by E[s] = 1/(η − 2). Therefore, if we have prior
knowledge about the mean of s, say s0, then η = 2 + 1/s0.
With these considerations, we can determine the update for
the scaling parameter using the Inv-χ2 prior, Jeffreys’ prior
and the uniform prior as the following:

s(k+1) =
∑N

n=1 u
(k)
n
(
x(k)
n
)2

+ 1
N + η + 2

,

s(k+1) = 1
N + 2

N∑

n=1

u(k)
n

(
x(k)
n

)2
,

s(k+1) = 1
N

N∑

i=1

u(k)
n

(
x(k)
n

)2
.

(48)

4.2. Generalizedwiener estimation

We recall that for the observation model given by (45), when
the signal is modeled i.i.d. Gaussian with zero-mean and
known variance σ2, the MAP estimate of xn is a Wiener
estimate given by

xn = σ2

σ2 + σ2
e
yn. (49)

To link the proposed iterative algorithm with the Wiener
estimation, we compare (46) and (49). It is easy to see that
(49) is a special case of (46) where un is a constant, that is,

u(k)
n = 1. We regard the proposed algorithm as a generalized
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Wiener estimate, because (a) the variable un in (46) is a
scaling factor that accounts for the heavy-tailed characteristic
of the distribution, and (b) it is an iterative algorithm.

To gain further insight into the proposed algorithm, we
study the student-t distribution with the degree of freedom
ν > 2. The relationship between the variance of the signal σ2

s

and the scaling factor s is given by

σ2
s =

ν

ν− 2
s. (50)

Thus, once the estimated scale parameter s(k) at the kth

iteration is known, the estimated signal variance (σ2
s )(k) is

also known. Using this relationship, we can rewrite (46) as

x(k+1)
n = (ν− 2)

(
σ2
s

)(k)
+
(
x(k)
n
)2

(
σ2
s

)(k)
+
(
x(k)
n
)2

+ (ν + 1)σ2
e

yn, (51)

where we have used u(k)
n = − f ′(t(k)

n ) = (ν + 1)/(ν + 2t(k)
n ) and

t(k)
n = [x(k)

n ]2/2s. We can further rewrite (51) as

x(k+1)
n = σ2

L

σ2
L + σ2

e

yn, (52)

where

σ2
L =

(
σ2
s

)(k)
+

1
ν + 1

[(
x(k)
n

)2 − 3
(
σ2
s

)(k)
]
. (53)

Comparing (49) and (52), we can see that the latter can
be regarded as a generalized Wiener estimate of the signal,
where a localized signal variance σ2

L is estimated by taking
a weighted average of the signal variance σ2

s and the local
signal energy. It can be easily seen that when ν→∞, the
student-t distribution approaches the Gaussian distribution

and σ2
L = (σ2

s )(k). In this case, (52) is a generalized form of
(49) in that it represents an iterative algorithm for estimating
signal under unknown signal variance.

4.3. Two image denoising algorithms

Direct application of the proposed algorithm for image
denoising does not necessarily lead to satisfactory results.
This is because in developing the algorithm we have ignored
that image signals are generally nonstationary. Since the
proposed algorithms can be regarded as generalized Wiener
estimates that use localized information, they are modified
in the following two ways for image denoising.

4.3.1. A noniterative generalizedWiener
estimation algorithm

Motivated by developing a low-complexity algorithm, we
consider a noniterative algorithm given by

xn = σ2
n

σ2
n + ασ2

e
yn, (54)

where σ2
n is a localized estimate of the signal energy at

the nth location and α is constant to be determined for

a particular class of signals. When α = 1, this algorithm
is a Wiener estimate using local statistics. The heavy-tail
distribution of the signal is accounted for by setting α /= 1.
The performance of this algorithm also depends on the
estimation of noise variance σ2

e and the local signal variance
σ2
n . A robust estimation of the variance [10] of the noise is

given by

σe = median
(|y|)

0.6745
. (55)

A simple method to estimate the signal variance is the fol-
lowing:

σ2
n =

{
Sn − σ2

e , Sn > σ2
e ,

0, otherwise,
(56)

where Sn = (1/(2M + 1))
∑M

k=−My2
n−k. The underlying princi-

ple for this estimation is that the signal is uncorrelated with
noise. With the above results, we can see that the proposed
algorithm (in (54)) is actually a combination of shrinkage
and hard-thresholding. The shrinkage part is a generalized
adaptive Wiener filter with the parameter α accounting for
the heavy-tailed characteristics of the signal, while the hard-
thresholding part, which is well established [10], plays an
essential role in favouring a sparse solution.

It should be noted that (54) is not a direct result of
an optimization problem. It is, however, a low-complexity
approximation of the iterative algorithm given by (46).

Indeed, comparing these two equations, we can see that μ(k)
n

and s(k)
n in (46) are replaced by α and σ2

n , respectively. As
such, we can regard (46) as a one-step implementation of the
iterative algorithm.

4.3.2. An iterative generalizedWiener estimation
algorithm using local statistics

This algorithm is motivated by using the local statistics
discussed in Section 4.2. We note that in developing (46)
we have assumed a global scaling parameter s for the whole
image. This assumption is useful to simplify discussion.
However, it is not necessarily a valid one for wavelet coef-
ficients of an image. Therefore, we propose to replace the
global scaling parameter s with a localized scaling parameter
sn which is estimated by

s(k+1)
n = 1

2M + 1

M∑

m=−M
u(k)
n−m

[
x(k+1)
n−m

]2
. (57)

From Table 2, we can see that u(k)
n is a function of [x(k)

n ]
2
/s(k)

for the student-t and slash distribution. We replace it with

z(k)
n /s(k)

n , where

z(k)
n = 1

2M + 1

M∑

m=−M

[
x(k)
n−m

]2
. (58)

The estimate of the signal is then given by

x(k+1)
n = s(k)

n

s(k)
n + u(k)

n σ2
e

yn. (59)
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Table 3: PSNR (dB) results using two noisy images with different levels of additive noise. GWE1 and GWE2 are the GWE algorithms with
α = 1 and α = √2, respectively.

Barbara

σe GWE1 GWE2 IGWE-T IGWE-S Bishrink [47]

10 33.10 32.84 33.05 33.03 32.25

15 30.69 30.62 30.78 30.76 29.97

20 28.97 29.07 29.22 29.20 28.36

25 27.65 27.89 28.03 28.01 27.16

30 26.58 26.98 27.11 27.09 26.28

35 25.71 26.19 26.32 26.31 —

40 24.92 25.56 25.67 25.67 —

Lena

σe GWE1 GWE2 IGWE-T IGWE-S Bishrink [47]

10 34.56 34.63 34.81 34.79 34.36

15 32.37 32.81 32.92 32.89 32.51

20 30.72 31.48 31.54 31.51 31.19

25 29.50 30.45 30.48 30.44 30.15

30 28.37 29.61 29.60 29.56 29.41

35 27.43 28.88 28.84 28.80 —

40 26.62 28.28 28.20 28.16 —

Comparing (59) with (46), we can see that we have used a
local estimate of the scaling parameter to replace the global
scaling parameter.

4.3.3. Experimental results

The noniterative and the iterative algorithms will be referred
to as generalized Wiener estimate (GWE) and iterative gen-
eralized Wiener estimate (IGWE), respectively. For the GWE
algorithm, extensive experiments using different images
have shown that setting α = √

2 has led to good results
in terms of the peak-signal-to-noise ratio (PSNR) of the
denoised image. For the IGWE algorithm, since the power
exponential and a number of SMG distributions have been
studied [11, 16, 48], we focus on the student-t and slash
distributions which have not been widely applied to denois-
ing problem. We use IGWE-T and IGWE-S to indicate the
student-t and slash distributions being used, respectively.
Experimental results show that good results are obtained
for 3 to 4 iterations for the IGWE-T (ν = 3) and IGWE-S
(ν = 15) algorithms.

We first test image denoising using a single wavelet rep-
resentation. In all experiments, an image is decomposed
into 6 levels using the sym12 wavelet. Each subband of
the signal is then denoised independently. We have per-
formed simulations using the Barbara and Lena images.
The experimental results for each noise level setting are
obtained by taking the average of the PSNR of 100 runs of the
program. In each run of the program, pseudo-Gaussian noise
generator is reset to a different state and noise is added to the
image.

We can see from the experimental results shown in
Table 3 that for the Barbara image the iterative algorithms

perform better than the noniterative algorithms. For the Lena
image, their performance is about the same. We can also see
that using the GWE algorithm, the PSNR associated with the
setting α = √2 is generally higher than that with the setting
α = 1. The difference in PSNR is significant for images with
high-noise levels. We also note that slight improvement in
PSNR can be achieved by varying the value of α between 1.2
to 1.5 according to the estimated noise variance.

We compare the performance of the proposed algorithms
with that of the bi-shrinkage [39] which is arguably one
of the best in recent publications. We can see that the
performance of proposed algorithms (GWE2, IGWE-T, and
IGWE-S) is consistently better than that of the bi-shrinkage
algorithm.

Next, we test the proposed algorithm using the complex
wavelet representation [39]. In our experiments, we use
the proposed algorithms (IGWE-T and IGWE-S) to process
each individual image subband of the complex wavelet
representation. We use exactly the same complex wavelet
transform as that used in [39]. For IGWE-T and IGWE-S,
the number of iterations is 3 and the degrees of freedom are
set ν = 3 (IGWE-T) and ν = 15 (IGWE-S). Results are shown
in Table 4.

We can see that the performances of the two proposed
iterative algorithms are almost the same. When we compare
the results of the proposed algorithms in Table 4 and with
respective results in Table 3, we can see that using the com-
plex wavelet representation has led to substantially improved
results. Next, we compare results from three image denois-
ing algorithms which use different over complete wavelet
representations and different statistical models [16, 39, 40].
We can see from Tables 4 and 5 that the performance of the
proposed algorithms are comparable with that of the three
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Table 4: A comparison of denoising results based on the peak-
signal-to-noise ratio (dB). Five test images are used under different
noise levels. It should be noted that results due to references
[16, 39, 40] are calculated using the available software from the
authors. These results may be slightly different from those presented
in the original paper.

IGWE-S IGWE-T [40] [16] [39]

Lena

σe = 10 35.30 35.33 35.0 35.60 35.34

σe = 15 33.47 33.51 33.12 33.90 33.67

σe = 20 32.13 32.18 31.76 32.67 32.40

σe = 25 31.06 31.13 30.69 31.69 31.40

σe = 30 30.18 30.25 29.80 30.87 30.54

σe = 40 28.78 28.83 28.40 29.61 29.23

σe = 50 27.69 27.74 27.30 28.62 28.21

Barbara

σe = 10 33.69 33.70 33.45 34.03 33.67

σe = 15 31.52 31.54 31.20 31.86 31.47

σe = 20 29.97 29.99 29.64 30.32 29.93

σe = 25 28.78 28.80 28.44 29.13 28.74

σe = 30 27.83 27.85 27.48 28.14 27.80

σe = 40 26.36 26.37 26.0 26.62 26.39

σe = 50 25.26 25.27 24.90 25.46 25.32

Boat

σe = 10 33.13 33.17 33.09 33.58 33.23

σe = 15 31.21 31.26 31.05 31.70 31.37

σe = 20 29.84 29.88 29.65 30.38 30.02

σe = 25 28.78 28.83 28.58 29.36 29.0

σe = 30 27.94 27.98 27.72 28.55 28.18

σe = 40 26.65 26.69 26.40 27.30 26.92

σe = 50 25.69 25.72 25.42 26.37 26.0

Peppers

σe = 10 34.95 34.99 34.75 35.36 34.98

σe = 15 33.36 33.42 33.07 33.91 33.49

σe = 20 32.13 32.19 31.84 32.82 32.34

σe = 25 31.14 31.21 30.87 31.93 31.43

σe = 30 30.30 30.34 30.04 31.18 30.66

σe = 40 28.93 29.0 28.74 29.94 29.41

σe = 50 27.85 27.91 27.30 28.99 28.41

Mandrill

σe = 10 27.98 27.96 30.64 30.78 28.54

σe = 15 26.61 26.60 28.75 28.45 27.02

σe = 20 25.60 25.59 26.74 26.91 25.89

σe = 25 24.83 24.82 25.63 25.80 25.03

σe = 30 24.22 24.21 24.76 24.93 24.34

σe = 40 23.31 23.30 23.52 23.70 23.34

σe = 50 22.66 22.65 22.65 22.87 22.63

state-of-the-art algorithms in terms of the peak-signal-to-
noise ratio and mean absolute error.

The mandrill (also known as baboon) image is quite
different from the other four test images in that it contains
a lot of fine details. We notice that when the noise level is low

Table 5: A comparison of denoising results based on the mean
absolute error. Five test images are used under different noise levels.
It should be noted that results due to references [16, 39, 40] are
calculated using the available software from the authors.

IGWE-S IGWE-T [40] [16] [39]

Lena

σe = 10 3.25 3.24 3.40 3.17 3.23

σe = 15 3.95 3.93 4.14 3.78 3.95

σe = 20 4.58 4.55 4.80 4.31 4.52

σe = 25 5.17 5.13 5.40 4.78 5.03

σe = 30 5.72 5.68 5.96 5.21 5.51

σe = 40 6.72 6.67 6.99 5.98 6.35

σe = 50 7.65 7.58 7.95 6.68 7.12

Barbara

σe = 10 3.96 3.94 4.09 3.82 3.98

σe = 15 5.02 5.0 5.23 4.84 5.06

σe = 20 5.96 5.94 6.21 5.72 5.99

σe = 25 6.82 6.80 7.09 6.54 6.83

σe = 30 7.60 7.58 7.90 7.28 7.58

σe = 40 9.02 9.0 9.36 8.65 8.91

σe = 50 10.26 10.23 10.63 9.83 10.05

Boat

σe = 10 4.31 4.29 4.37 4.13 4.30

σe = 15 5.28 5.26 5.43 5.03 5.24

σe = 20 6.11 6.08 6.30 5.77 6.04

σe = 25 6.83 6.80 7.05 6.42 6.73

σe = 30 7.49 7.45 7.73 6.99 7.33

σe = 40 8.62 8.58 8.91 7.97 8.36

σe = 50 9.60 9.56 9.92 8.79 9.22

Peppers

σe = 10 3.43 3.41 3.55 3.31 3.46

σe = 15 4.06 4.03 4.24 3.85 4.05

σe = 20 4.63 4.60 4.83 4.32 4.59

σe = 25 5.17 5.12 5.36 4.75 5.06

σe = 30 5.68 5.63 5.87 5.14 5.50

σe = 40 6.63 6.57 6.79 5.87 6.31

σe = 50 7.52 7.45 7.56 6.51 7.05

Mandrill

σe = 10 7.79 7.81 5.83 5.73 7.31

σe = 15 9.05 9.06 7.56 7.38 8.63

σe = 20 10.10 10.11 8.95 8.72 9.76

σe = 25 10.99 11.0 10.12 9.85 10.73

σe = 30 11.75 11.77 11.14 10.83 11.57

σe = 40 13.02 13.03 12.80 12.42 12.93

σe = 50 14.02 14.03 14.12 13.66 14.01

(σe < 25) the performances of the two iterative algorithms are
not as good as those of three published algorithms. This may
be because the window size (7 × 7) used in the calculation
of local signal variance does not match the characteristics
of the image. Another reason could be that the prior with
a fixed setting of parameter ν does not model the signal well.
Therefore, the proposed algorithm could be improved by
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Figure 1: Image denoising results using the Lena image added with
random noise (σe = 25). Images shown from top to bottom, left
to right are the noisy results of algorithms in [16, 39, 40], the
proposed IGWE-T and GWE2 algorithms. Typical PSNR values for
these images are listed in Table 4.

introducing an adaptive estimation of the window size and
the parameter ν. However, this may significantly increase the
computational cost.

In Figures 1 and 2, we compare the results of denoised
images using algorithms in [16, 39, 40] and the proposed
IGWE-T and GWE2 algorithms. (Professor Xin Li kindly
provided us with his source code. Matlab codes for the
algorithms in [16, 39] are available from the following
addresses: http://decsai.ugr.es/∼javier/denoise/software/ and
http:// taco.poly.edu/WaveletSoftware/, respectively. Default
settings for algorithms in [39, 40] are used and suggested
settings to reproduce results in [16] are also used.) Again,
we can see that the denoised images are quite similar. We
note that computation time of these algorithms are quite
different in our simulations using a PC with a Pentium
4 3 GHz processor. While the running time for algorithm
in [16] is more than 75 seconds those for the proposed
GWE2 and IGWET algorithms are about 2.5 and 3.7 seconds,
respectively. The running time for the algorithm in [39] is
about 3.6 seconds and the running time for the algorithm in
[40] is about 7.2 seconds.

4.4. Discussion

In [49], an empirical Bayes (EB) approach is proposed to
develop low-complexity image denoising algorithms in
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50 100 150 200 250 300 350 400 450 500

Figure 2: Image denoising results using the Barbara image added
with random noise (σe = 25). Images shown from top to bottom,
left to right are the noisy, results of algorithms in [16, 39, 40], the
proposed IGWE-T and GWE2 algorithms. Typical PSNR values for
these images are listed in Table 4.

which parameters of the prior are estimated from the data.
These estimated parameters are then “plugged” into the pos-
terior. The proposed iterative algorithms using local statistics
can be regarded as a generalization of the idea of [49] in
that the scaling parameter is treated as a random variable
and is jointly estimated with the signal. More specifically, the
difference is in the way the problem is formulated. For the
denoising problem considered in this paper, if we used an
EB approach, we would first determine an estimate (e.g., a
MAP estimate) of the scale parameter s from the marginal
distribution ŝ = arg maxs p(s | y), where p(s | y) = ∫ p(x, s |
y)dx. We would then determine an estimate (e.g., a MAP
estimate) of the signal by assuming a known scale parameter
ŝ, that is, x̂ = arg maxx p(x | y, ŝ ). The approach used in
this paper, however, is different in that we determine a MAP
estimate from the joint posterior p(x, s | y) by using the
proposed iterative algorithm.

Another interesting question is as follows. In the obser-
vation model (see (45)), it is assumed that the wavelet
transform is orthogonal. However, the complex wavelet
transform is redundant and is usually nonorthogonal. Can
we still apply the denoising method developed for signals in
the orthogonal wavelet transform domain to signals in the
complex wavelet transform domain? This question is partly
answered in a recent paper [50] by Elad. Elad showed that for
signal denoising using redundant representations an iterative
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algorithm such as the basis pursuit [51] is usually employed.
Elad further showed that applying a shrinkage function
(usually developed for orthogonal wavelet representations)
to redundant wavelet representations is justified in that this
can be regarded as the first iteration step of the basis pursuit
algorithm.

In addition, the number of iterations deserves further
study. As the proposed iterative algorithm is essentially an
EM algorithm, it may converge to a local minimum. On the
other hand, since we use a local neighborhood to update the
scale parameter s, we effectively make a further assumption
that the scale parameter also follows an i.i.d. distribution
locally. This assumption may fit the data well in the first
few iterations. But this may not be the case after a few
iterations when the signal is less noisy. This is perhaps an
intuitive explanation of the observation that the performance
(measured by the PSNR and mean absolute errors) of the
proposed iterative algorithm improves in the first 3 to 4
iterations, drops slightly, and converges to a suboptimal
estimate.

The proposed algorithms are not optimal in removing
non-Gaussian noise (e.g., impulsive noise). This is because
we have taken a model-based approach in solving a MAP
estimating problem involving a Gaussian linear observation
model which has been used in many recent publications (see,
e.g., [11] and reference therein). As such, the solution is only
optimal for Gaussian noise. From a model-based point of
view, to deal with non-Gaussian noise, we need to make
proper assumption about the noise distribution function and
solve the MAP problem. Such work is beyond the scope of
this paper.

5. CONCLUSIONS

In this paper, we have studied CFLB/MM algorithms for a
special class of objective functions that are convex through
a suitable mapping of variable. We proposed a generalized
version of the CFLB/MM algorithm and show that the
CFLB and MM algorithms are equivalent for this class of
objective functions. We develop a CFLB/MM algorithm for
general MAP estimation problems under linear Gaussian
observation models. We also study the relationship between
the CFLB/MM algorithm and the EM algorithm. We then
modify the proposed algorithm to image denoising. We
show that the proposed image denoising algorithm can be
regarded as a generalization of the classical Wiener estimate
algorithm. We propose a noniterative and an iterative algo-
rithm for image denoising. We discuss connections of the
proposed iterative algorithm with those algorithms using
empirical Bayes and issues related to using the proposed
algorithms in over-complete wavelet representations. Exper-
imental results show that the performance of the proposed
algorithm using a single wavelet representation is better than
that of the bi-shrinkage algorithm which is arguably one of
the best in recent publications. When over-complete wavelet
representations such as the complex wavelets are used, the
performance of the proposed algorithms are competitive
with three state-of-the-art algorithms.
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