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The notion of “strength of connectedness” between pixels has been successfully used in image segmentation. We present extensions
to these works, which can considerably improve the efficiency of object delineation tasks. A set of pixels is said to be a κ-connected
component with respect to a seed pixel, when the strength of connectedness of any pixel in that set with respect to the seed is
higher than or equal to a threshold. We discuss two approaches that define objects based on κ-connected components with respect
to a given seed set: with and without competition among seeds. While the previous approaches either assume no competition
with a single threshold for all seeds or eliminate the threshold for seed competition, we show that seeds with different thresholds
can improve segmentation in both paradigms. We also propose automatic and user-friendly interactive methods to determining
the thresholds. The proposed methods are presented in the framework of the image foresting transform, which naturally leads to
efficient and correct graph algorithms. The improvements are demonstrated through several segmentation experiments involving
medical images.
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1. INTRODUCTION

Image segmentation has been a challenge which involves
object recognition and delineation. Recognition is represented
by cognitive tasks that determine the approximate location
of a desired object in a given image (object detection),
verify the correctness of a segmentation result, and identify a
desired object among candidate ones (object classification).
Delineation is the task that completes segmentation by
defining the precise spatial extent of the desired object in the
image. Effective recognition requires object properties while
accurate delineation usually depends on image properties to
distinguish object and background.

In the context of interactive segmentation, a human
operator performs the recognition tasks and the computer
performs delineation. In order to make these approaches
automatic, we must substitute the human operator by a
mathematical model. Model-based approaches have used
object properties to build numerical, geometrical, and
statistical models for segmentation [1–3], and for simple
object detection [4]. Since that a mathematical model usually
acts worse than a human expert in the recognition task, it is
important to develop interactive methods which minimize

the user’s time and involvement in the delineation process,
such that their automation becomes feasible. For example,
we are interested in reducing the user intervention to simple
selection of a few pixels in the image.

Delineation methods are usually based on a functional
of the arc-weights such as graph-cut approaches [5–9] or
based on a connectivity functional in the form of a path-cost
function [10–13]. This work advances the state-of-the-art of
delineation methods based on connectivity functional, being
the recognition tasks performed by human operators.

Fuzzy connectedness/watersheds are image segmenta-
tion approaches based on seed pixels, which have been
successfully used in many applications [10, 14–18]. The
relation between relative-fuzzy connectedness [11, 19, 20] and
watershed transform by markers [12, 13] has been pointed
out in [21] and formally proved in [22]. They are essentially
the same method (one is the dual of the other), where
the seeds are specified inside and outside the object, each
seed defines an influence zone composed by pixels more
strongly connected to that seed than to any other, and the
object is defined by the union of the influence zones of its
internal seeds. In absolute-fuzzy connectedness [23], a seed is
specified inside the object, and the strength of connectedness
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of each pixel with respect to that seed is computed, such
that the object is obtained by thresholding the resulting
connectivity image. Clearly, these approaches represent two
distinct region-based segmentation paradigms, with and
without competition among seeds.

We present extensions to these works, using the frame-
work of the image foresting transform (IFT) [21]—a general
tool for the design, implementation, and evaluation of image
processing operators based on connectivity. In the IFT, the
image is interpreted as a graph, whose nodes are the image
pixels and whose arcs are defined by an adjacency relation
between pixels. The cost of a path in this graph is determined
by an application-specific path-cost function, which usually
depends on local image properties along the path—such as
color, gradient, and pixel position. For suitable path-cost
functions and a set of seed pixels, one can obtain an image
partition as an optimum-path forest rooted at the seed set.
That is, each seed is root of a minimum-cost path tree whose
pixels are reached from that seed by a path of minimum cost,
as compared to the cost of any other path starting in the seed
set. The IFT essentially reduces image operators to a simple
local processing of attributes of the forest [24–28].

The strength of connectedness of a pixel with respect
to a seed is inversely related to the cost of the optimum
path connecting the seed to that pixel in the graph. In
absolute-fuzzy connectedness, the object can be obtained
by selecting pixels reached from an internal seed by an
optimum path whose cost is less than or equal to a number
κ. In this case, the object is said to be a single κ-connected
component (a minimum-cost path tree). The object can also
be defined as the union of all κ-connected components
created from each seed separately, which requires one IFT
for each seed. In relative-fuzzy connectedness, seeds selected
inside and outside the object compete among themselves,
partitioning the image into an optimum-path forest, and
the object is defined by the union of the optimum-path
trees rooted at its internal seeds. The initial appeal for
relative-fuzzy connectedness was the possibility to delineate
multiple objects simultaneously, without depending on
thresholds. However, the use of thresholding together with
seed competition provides a hybrid approach which turns
out to be more efficient than the previous ones in many
situations. While the previous approaches either assume
no competition with a single value of κ for all seeds or
eliminate κ for seed competition, we show that seeds with
different values of κ can considerably improve segmentation
in both paradigms. Of course, this comes with the problem
of finding the values of κ for each seed, but we provide
automatic and user-friendly interactive ways to determine
them.

Section 2 describes some definitions related to the IFT,
making them more specific for region-based image seg-
mentation. For the sake of simplicity, we will describe the
methods for gray-scale and two-dimensional images, but
they are extensive to multiparametric and multidimensional
data sets. The proposed variants and their algorithms are
presented in Sections 3 and 4. Section 5 demonstrates the
improvements with respect to the previous approaches.
Conclusion and future work are presented in Section 6.

2. BACKGROUND

An image ̂I is a pair (DI , I) consisting of a finite setDI of pixels
(points in Z2) and a mapping I that assigns to each pixel p in
DI a pixel value I(p) in some arbitrary value space.

An adjacency relationA is a binary relation between pixels
p and q of DI . We use q ∈ A(p) and (p, q) ∈ A to indicate
that q is adjacent to p. Once the adjacency relation A has
been fixed, the image ̂I can be interpreted as a directed
graph (DI ,A) whose nodes are the image pixels in DI and
whose arcs are the pixel pairs (p, q) in A. We are interested
in irreflexive, symmetric, and translation-invariant relations.
For example, one can take A to consist of all pairs of pixels
(p, q) in the Cartesian product DI ×DI such that d(p, q) ≤ ρ
and p /= q, where d(p, q) denotes the Euclidean distance and
ρ is a specified constant (i.e., 4-adjacency, when ρ = 1, and
8-adjacency, when ρ = √2).

A path is a sequence π = 〈p1, p2, . . . , pn〉 of pixels, where
(pi, pi+1) ∈ A, for 1 ≤ i ≤ n − 1. The path is trivial if n = 1.
Let org(π) = p1 and dst(π) = pn be the origin and desti-
nation of a path π. If π and τ are paths such that dst(π) =
org(τ) = p, we denote by π · τ the concatenation of the two
paths, with the two joining instances of p merged into one.
In particular, π · 〈p, q〉 is a path resulting from the concate-
nation of its longest prefix π and the last arc (p, q) ∈ A.

A predecessor map is a function P that assigns to each pixel
q ∈ DI either some other pixel in DI , or a distinctive marker
nil not in DI—in which case q is said to be a root of the map.
A spanning forest is a predecessor map which contains no
cycles—in other words, one which takes every pixel to nil in a
finite number of iterations. For any pixel q ∈ DI , a spanning
forest P defines a path P∗(q) recursively as 〈q〉, if P(q) = nil,
or P∗(p) · 〈p, q〉 if P(q) = p /= nil (see Figure 1(a)).

A pixel q is connected to a pixel p if there exists a path in
the graph from p to q. In this sense, every pixel is connected
to itself by its trivial path. Since A is symmetric, we can also
say that p is connected to q, or simply p and q are connected.
Therefore, a connected component is a subset of DI wherein
all pairs of pixels are connected.

A path-cost function f assigns to each path π a path cost
f (π), in some totally ordered set V of cost values, whose
maximum element is denoted by +∞. A path π is optimum
if f (π) ≤ f (τ) for any other path τ with dst(τ) = dst(π),
irrespective to its starting point. The IFT establishes some
conditions applied to optimum paths, which are satisfied
by only smooth path-cost functions. That is, for any pixel
q ∈ DI , there must exist an optimum path π ending at q
which either is trivial, or has the form τ · 〈p, q〉, where

(C1) f (τ) ≤ f (π),

(C2) τ is optimum,

(C3) for any optimum path τ′ ending at p, f (τ′ · 〈p, q〉) =
f (π).

The IFT takes an image ̂I , a smooth path-cost function f
and an adjacency relation A; and returns an optimum-path
forest—a spanning forest P such that P∗(q) is optimum for
every pixel q ∈ DI . In the forest, there are three important
attributes for each pixel: its predecessor in the optimum
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Figure 1: (a) The main elements of a spanning forest with two roots, where the thicker path indicates P∗(q). (b) An image graph with
4-adjacency, where the integers are the image values I(p) and the bigger dots indicate two seeds. One is inside the brighter rectangle and
one is in the darker background outside it. Note that the background also contains brighter parts. (c) An optimum-path forest for fmax, with
δ(p, q) = |I(q)− I(p)|. The integers are the cost values, and the rectangle is obtained as an optimum-path tree rooted at the internal seed.

path, the cost of that path, and the corresponding root
(or some label associated with it). The IFT-based image
operators result from simple local processing of one or more
of these attributes.

For a given seed set S ⊂ DI , the concept of strength of
connectedness [23, 29] of a pixel q ∈ DI with respect to a
seed s ∈ S can be interpreted as an image property inversely
related to the cost of the optimum path from s to q according
to the max-arc path-cost function fmax:

fmax
(〈q〉) =

{

0, if q ∈ S,

+∞, otherwise,

fmax
(

π · 〈p, q〉) = max
{

fmax(π), δ(p, q)
}

,

(1)

where (p, q) ∈ A, π is any path ending at p and starting in S,
and δ(p, q) is a nonnegative dissimilarity function between p
and q which depends on image properties, such as brightness
and gradient (see Figures 1(b) and 1(c)).

One may think of smoothness as a more general defini-
tion for strength of connectedness. In this work, we discuss
only fmax because the comparison with previous approaches
and our practical experience in region-based segmentation,
which shows that fmax often leads to better results than other
commonly known smooth cost functions.

3. IMAGE SEGMENTATION BY κ-CONNECTIVITY

We assume given a seed set S either interactively, by simple
mouse clicks, or automatically, based on some a priori
knowledge about the approximate location of the object. The
adjacency relation A is usually a simple 8-neighborhood, but
sometimes it is important to allow farther pixels be adjacent.
This may reduce the number of seeds required to label nearby
components of a same object, such as letters of a word in the
image of a text. Some examples of δ functions for fmax are
given below:

δ1(p, q) = K
(

1− exp
(

− 1
2σ2

(

I(p)− I(q)
)2
))

, (2)

δ2(p, q) = G(q), (3)

δ3(p, q) = K
(

1− exp
(

− 1
2σ2

(

I(p) + I(q)
2

− I(s)
)2))

,

(4)

δ4(p, q) = min
∀s∈S

{

δ3(p, q)
}

, (5)

δ5(p, q) = aδ1(p, q) + bδ3(p, q), (6)

δ6(p, q) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

δ3(p, q)(1 + �g(p, q) · �η(p, q)),

if Er(p, q) > Dr(p, q),

K , otherwise,

(7)

where K is a positive integer (e.g., the maximum image
intensity), σ is an allowed intensity variation, G(q) is a
gradient magnitude computed at q, and I(s) is the intensity
of a seed s ∈ S, such that s = org(P∗(p)) in δ3 and δ4

considers all seeds in S. The parameters a and b are constants
such that a + b = 1, and �g(p, q) is a normalized gradient
vector computed at arc(p, q), �η(p, q) is the unit vector of
the arc(p, q), Er(p, q), and Dr(p, q) are the pixel intensities
at a distance r to the left and right sides of the arc(p, q),
respectively.

The dissimilarity functions aim to penalize arcs that
cross borders, by assigning higher arc weights to them.
We are interested in using the above functions under two
possible segmentation paradigms: with and without seed
competition. Functions δ1 and δ2 assume low inhomogeneity
within the object. They represent gradient magnitudes with
different image resolutions and lead to smooth functions in
both paradigms. In fact, fmax is smooth whenever δ(p, q)
is fixed for any (p, q) ∈ A. Function δ3 exploits the
dissimilarity between object and pixel intensities, being the
object represented by its seed pixels. Although fmax is smooth
for δ3 with no seed competition, it may not be smooth in the
case of competition among seeds [21] (i.e., the IFT results in
a spanning forest, but it may be non-optimal). This problem
was the main motivation for δ4 [11]. However, sometimes δ3

with seed competition provides better segmentation results
than δ4 (see Section 5). Function δ3 may also limit the
influence zones of the seeds, when the intensities inside the
object vary linearly toward the background. Function δ5
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Figure 2: An MR-T1 image of the brain with one seed s inside the cortex. (a-b) The maximum influence zones of s within the cortex for fmax

with δ3 and with δ6, respectively. The asymmetry of δ6 favors segmentation in anticlockwise orientation, increasing the influence zone of s.

reduces this problem, and in the case of seed competition,
one can also replace δ3 by δ4 in (6). The basic idea in
function δ6 stemmed from [30], where the intensities on
the left and right sides of each arc are used to compute
its weight, such that longer boundary segments are favored
in only one orientation (either clockwise or anticlockwise).
We are extending this idea to provide oriented region
growing. Function δ6 is suitable to objects, such as the cortex,
composed by intermediary intensities with respect to the
intensities on both of its sides. For MR-T1 images of the
brain, the GM intensities in the cortex are expected to be
higher than the intensities in one side (CSF) and lower than
the intensities in the other side (WM). To grow regions
in anticlockwise, we expect that the intensity Er(p, q) at a
distance r to the left (WM) of an arc (p, q) be higher than the
intensity Dr(p, q) at the same distance r to the right (CSF)
of the arc. We favor or penalize the arc dissimilarities based
on this rule in δ6. The term �g(p, q) · �η(p, q) also penalizes
arcs which cross boundaries. The result is that the same
seed s allows to delineate more pixels in the cortex with δ6

(Figure 2(b)), following the anticlockwise orientation, than
with δ3 (Figure 2(a)). Other interesting ideas of dissimilarity
functions for fmax are presented in [11, 19, 23, 31, 32].

The basic differences between the formulations proposed
in [11, 19, 20] are that (i) the former assumes δ(p, q) =
δ(q, p) for all (p, q) ∈ A, and requires smooth path-cost
functions, and (ii) the later allows asymmetric dissimilarity
relations (e.g., δ2), and nonsmooth cost functions (e.g., fmax

with δ3 and seed competition). The strength of connected-
ness between image pixels in (i) is a symmetric relation, while
it may be asymmetric in (ii). The main theoretical differences
between our formulation and these ones are presented next.

3.1. Object definitionwithout seed competition

We say that a pixel p is κ-connected to a seed s ∈ S, if there
exists an optimum path π from s to p such that f (π) ≤ κ.
This κ-connectivity relation will be asymmetric whenever the
dissimilarity δ(p, q) is asymmetric.

An object is a maximal subset of DI wherein all pixels
p are at least κ-connected to one pixel s ∈ S. Similarly to
the method presented in [23], the object is the union of all
κ-connected components with respect to each seed s ∈ S,

which must be computed separately. This makes fmax smooth
for all dissimilarity functions described in (2)–(7).

The algorithm described in [23] assumes that the object
can be defined by a single value of κ for all seeds in S.
Figure 3(a) illustrates an example where this assumption
works. However, a simple change in the position of a seed
can fail segmentation (Figure 3(b)), because the influence
zone of each seed inside the object is actually limited by a
distinct value of cost κ (Figure 3(c)). Moreover, the choice of
seeds with distinct values of κ usually reduces the number
of seeds required to complete segmentation. This situation is
better understood when we relate the concepts of minimum-
spanning tree and minimum-cost path tree for fmax and
symmetric κ-connectivity relations [33].

A minimum-spanning tree is a spanning forest P with a
single arbitrary root, where the sum of the arc weights δ(p, q)
for all pairs (p, q) ∈ A, such that P(q) = p, is minimum,
as compared to any other minimum-spanning tree obtained
from the original graph (DI ,A) (Figures 4(a) and 4(b)). If we
remove the orientation of the arcs in Figure 4(b), every pair
of pixels in P is connected by a path which is also optimum
according to fmax (Figure 4(c)). That is, the minimum-
spanning tree encodes all possible minimum-cost path trees
for fmax. A κ-connected object with respect to a seed s can
be obtained by taking the component connected to s, after
removing all arcs from P whose δ(p, q) > κ. Suppose, for
example, that the object is the brighter rectangle in the center
of Figure 4(a). Figure 4(c) shows that only the left side of the
rectangle is obtained with s1 and κ1 = 3. If κ1 = 4, s1 reaches
the right side of the rectangle but invades the background.
The rectangle can be obtained with three seeds and κ = 2.
However, different values of κ reduce the number of seeds to
two, s1 with κ1 = 3 and s2 with κ2 = 2 (Figure 4(d)).

There may be many arcs connecting object and
background in a minimum-spanning tree. The choice of
a single value of κ is equivalent to remove the arcs whose
weight δ(p, q) is minimum among those connecting object
and background. This usually divides the object into several
κ-connected components (minimum-spanning trees) and
the segmentation will require one seed for each component.
When we allow different values of κ, the object components
become larger, and consequently, the number of seeds is
reduced.
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Figure 3: A CT image of a knee where the patella can be segmented with two seed pixels, s1 and s2, fmax with δ3, and without seed competition.
(a) The result with a single value of κ for both seeds. (b) The segmentation with a single value of κ fails when we change the position of s1,
because s1 requires a higher value of κ to get the brighter part of the bone, and B invades the background at this higher value of κ. (c) The
result can be corrected with distinct values of κ for each seed.
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Figure 4: (a) An image graph with 4-adjacency, where the integers are the image values I(p) and the bigger dot is an arbitrary pixel. The
object of interest is the brighter rectangle in the center. (b) A minimum-spanning tree computed from the arbitrary pixel, where the integers
for each pixel q are the arc weights δ(p, q) = |I(q)− I(p)|, for p = P(q). (c) The minimum-spanning tree without arc orientation. A single
seed s1 can not extract the rectangle for any value of κ. (d) The rectangle can be obtained with two seeds and distinct values of κ, s1 with
κ1 = 3 and s2 with κ2 = 2.

3.2. Object definitionwith seed competition

In [11, 19], seeds are selected inside and outside the object,
and the object is defined by the subset of pixels which are
more strongly connected to its internal seeds than to any
other. This is the same as removing the arcs of maximum
weight from the paths that connect object and background
in the minimum-spanning tree. For example, the rectangle
in Figure 4(c) is obtained by changing the position of s1

to any pixel in the background and selecting s2 as shown
in Figure 4(d). The main motivation for this paradigm was
to eliminate the choice of κ, favoring the simultaneous
segmentation of multiple objects.

We define the object as the subset of pixels which are more
strongly κ-connected to its internal seeds than to any other.
That is, the seeds will compete among themselves for pixels
reached from more than one seed by paths whose costs are
less than or equal to κ. In which case, the pixel is conquered
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(a) (b) (c)

Figure 5: A CT image of the orbital region where the eye ball is obtained by seed competition. (a) One internal seed and many external seeds
are required for segmentation, using fmax with δ4. (b) The segmentation fails when some of the external seeds are removed. (c) A value of κ
is used to limit the influence zone of the internal seed in parts, where the seed competition fails.

by the seed whose path cost is minimum. Note that even
the internal seeds compete among themselves, and a distinct
value of κ may be required for each seed. When the seed
competition fails, these thresholds should limit the influence
zones of the seeds avoiding connection between object
and background, and the pixels, which are not conquered
by any seed, should be considered as belonging to the
background.

In general, the use of distinct values of κ together with
seed competition reduces the number of seeds required to
complete segmentation. Figure 5(a) shows an example where
many seeds have to be carefully selected in the background
to delineate the object. The segmentation fails when some
of these seeds are removed (Figure 5(b)), but it works when
we limit the extent of the internal seed to some value of κ
(Figure 5(c)).

The algorithms and the problem of determining these
thresholds for the internal seeds are addressed next.

4. ALGORITHMS

The IFT uses a variant of Dijkstra’s algorithm [34] to
compute three attributes for each pixel p ∈ DI [21]: its
predecessor P(p) in the optimum path, the cost C(p) of that
path, and the corresponding root R(p). In the algorithms
presented in this section, we do not need to create the
predecessor map P and the root map R is only used in the
case of seed competition.

The IFT with fmax propagates wavefronts Wcst of same
cost cst around each seed, following the order of the costs
cst = 0, 1, . . . ,K . By assigning higher values of δ(p, q) to arcs
that cross the object’s boundary, the wavefronts fill first the
object and, when they leak to the background, a considerable
increase in their areas can be observed (Figures 6(a) and
6(b)). That is, many pixels in the background are reached
by optimum paths whose cost is the lowest value δ(p, q)
among the dissimilarities of the arcs (p, q) that cross the
boundary. This ordered region growing process is exploited
to compute the values κs of each seed s ∈ S automatically and
interactively.

4.1. Automatic computation of κs

First consider the wavefronts around a seed s selected inside
a given object. All pixels p in the wavefront Wcst around
s have optimum cost C(p) = cst, 0 ≤ cst ≤ K . If the
object is a single κ-connected component with respect to s,
then there exists a threshold κs, 0 ≤ κs ≤ K , such that the
object can be defined by the union of all wavefronts Wcst, for
cst = 0, 1, . . . , κs. We can specify a fixed κs for this particular
application, but this is susceptible to intensity variations.
Another alternative is to search for matchings between the
shape of the object and the shape of the wavefronts. One
drawback is the speed of segmentation, but this may be
justified in some applications. A more complex situation
occurs when the object definition requires more than one
seed pixel. Each seed defines its own maximal extent inside
the object and we need to match the shape of the object with
the shape of the union of their influence zones.

The approach presented here is much simpler and yet
effective. It stems from the previously mentioned observa-
tion about the areas of the wavefronts, when they invade the
background. The ordered region growing process of a seed s
must stop when the size of its wavefront of cost cst is greater
than an area threshold 0% < T < 100%, computed over the
image size, and the value of κs is determined as max{cst −
1, 0}. The choice of one value κs for each seed s ∈ S is then
substituted by the choice of T , which limits the maximum
sizes of the wavefronts. This threshold can be verified by
selecting internal seeds and setting T = 99%. The total area
of the wavefronts during propagation can be displayed as a
curve. A peak on this curve indicates the maximum possible
value for T at the instant of leaking. Some animations of
this ordered region growing process are provided in http://
www.liv.ic.unicamp.br/demo/miranda-kconnected.avi.

The algorithms are presented for single object delin-
eation without seed competition (Algorithm 1) and multiple
object definition with seed competition (Algorithm 2).

The priority queue Q can be implemented as described in
[35, 36], such that each instance of the IFT will run in time
proportional to the number |DI | of pixels. Note that the first
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INPUT: Image ̂I = (DI , I), adjacency A, internal seeds S, and path-cost function fmax, and the size threshold T.
OUTPUT: Binary image ̂L = (DI ,L), where L(p) = 1, if p belongs to the object, and L(p) = 0 otherwise.
Auxiliary: A priority queue Q, variables tmp, κ, cst and size, and cost map C defined in DI .

(1) For every pixel p ∈ DI , set L(p) ← 0.
(2) While S /=∅, do
(3) For every pixel p ∈ DI , set C(p) ← +∞.
(4) Remove a seed s from S.
(5) Set C(s) ← 0, size ← 0, cst ← 0, κ← +∞, and insert s in Q.
(6) While Q /=∅ and κ = +∞, do
(7) Remove a pixel p from Q such that C(p) is minimum.
(8) For every q ∈ A(p), such that C(q) > C(p), do
(9) Set tmp ← max{C(p), δ(p, q)}.
(10) If tmp < C(q), then
(11) If C(q) /= +∞, then remove q from Q.
(12) Set C(q) ← tmp and insert q in Q.
(13) If C(p) /= cst, then set size ← 1 and cst ← C(p).
(14) Else, set size ← size + 1.
(15) If size > T then set κ← max{cst− 1, 0}
(16) For every pixel p ∈ DI , do
(17) If C(p) ≤ κ, then set L(p) ← 1.
(18) Remove any remaining pixels from Q.

Algorithm 1: Single object definition without seed competition.

Input: Image ̂I = (DI , I), adjacency A, path-cost function fmax, size threshold T, and a labeled image ̂L = (DI ,L),
where L(p) = i, 0 ≤ i ≤ k, if p is a seed pixel selected inside object i > 0 among k objects, being i = 0 reserved
for seeds in the background, and L(p) = −1 otherwise.
Output: A labeled image ̂L = (DI ,L), where L(p) = i, 0 ≤ i ≤ k.
Auxiliary: Priority queue Q, variable tmp, and C, R, κ, size, and cst are maps defined in DI to store cost and root
of each pixel and threshold, wavefront size, and wavefront cost of each seed, respectively.

(1) For every pixel p ∈ DI , do
(2) Set R(p) ← p, size(p) ← 0, cst(p) ← 0, and κ(p) ← +∞.
(3) If L(p) = −1, then set C(p) ← +∞ and L(p) ← 0.
(4) Else, set C(p) ← 0 and insert p in Q.
(5) While Q /=∅, do
(6) Remove a pixel p from Q such that C(p) is minimum.
(7) If κ(R(p)) = +∞ and L(R(p)) /= 0, then
(8) If C(p) /= cst(R(p)), then set size(R(p)) ← 1 and cst(R(p)) ← C(p).
(9) Else, set size(R(p)) ←size(R(p)) + 1.
(10) If size(R(p)) > T , then set κ(R(p)) ← max{cst(R(p))− 1, 0}.
(11) If C(p) ≤ κ(R(p)), then
(12) For every q ∈ A(p), such that C(q) > C(p), do
(13) Set tmp ← max{C(p), δ(p, q)}.
(14) If tmp < C(q), then
(15) If C(q) /= +∞, then remove q from Q.
(16) Set C(q) ← tmp, R(q) ← R(p), and insert q in Q.
(17) For every pixel p ∈ DI , do
(18) If C(p) ≤ κ(R(p)), then set L(p) ← L(R(p)).

Algorithm 2: Multiple object definition with seed competition.

algorithm stops propagation when the value κs of a seed s
is found. In the case of seed competition, the root map is
used to find in constant time the root of each pixel in S. The
influence zone of a seed s ∈ S is limited either when it meets

the influence zone of other seed at the same minimum cost
or when the value κs of s is found.

One advantage of the presented algorithms as compared
to classical segmentation methods based on seed competition
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(a) (b) (c)

Figure 6: A CT image of the orbital region with one seed inside the eye ball. (a) A wavefront of cost κ which represents the maximum extent
of this seed inside the eye ball. (b) The wavefront of cost κ+ 1 shows a considerable augment in size when it invades the background. (c) The
pixel propagation order provides more continuous transitions of the wavefronts to select κ, interactively.

A
B

(a)

A
B

(b)

A
B

(c) (d)

Figure 7: Segmentation of a caudate nucleus with two internal seeds, A and B. (a) The leaking occurs before the object be filled. (b) The
moment when κA = 324 is detected. (c) The instant when κB is detected. (d) Final segmentation.

occurs when the object contains several background parts
(holes) inside it. In this case, the use of κs usually eliminates
the need for at least one background seed at each hole. On
the other hand, some small noisy parts of the object may
not be conquered by the internal seeds due to the use of κs.
The labeled image can be postprocessed, such that holes with
area below a threshold are closed [37, 38]. The area closing
operator has shown to be a very effective complement for the
presented algorithms. In many situations, the objects do not
have holes and high area thresholds can be used to reduce the
number of internal seeds.

The animations in http://www.liv.ic.unicamp.br/demo/
miranda-kconnected.avi were created by using Algorithm 2.
It is usually preferable with respect to Algorithm 1, because
it allows faster multiple object segmentation. Note that a
wavefront of one seed can leak to the background before
the object be fully filled by the wavefronts of other seeds.
Figure 7(a) illustrates an example where the leaking occurs
for seed A before the object be filled. The moment when
κA = 324 is detected is shown in Figure 7(b), and Figure 7(c)
shows the instant when κB = 770 is detected. The figures
show only a region of interest of the original image,

where the segmentation was done with T = 1%. The
final segmentation is shown in Figure 7(d). Even when
the dissimilarities are not higher for arcs that cross the
object’s boundary, Algorithm 2 can work either due to the
seed competition among internal seeds (parts of the object
can be filled without leaking) or due to the automatic κs
computation, as shown in the example of Figure 7.

4.2. Interactive computation of κs

A first approach is to compute the IFT for every pixel p ∈ DI ,
such that the cost C(p) of the optimum path that reaches
p from S is found. In the case of seed competition, the
corresponding root R(p) ∈ S is also propagated to each
pixel p ∈ DI . Then, the user moves the cursor of the mouse
over the image, and for each position q of the cursor, the
program displays the influence zone of the corresponding
root s = R(q) ∈ S defined by pixels p ∈ DI , such that
C(p) ≤ C(q) and R(p) = R(q). This interactive process can
be repeated until the user selects a pixel q to confirm the
influence zone of s (i.e., κs = C(q)). The user can repeat this
interactive process for each seed s ∈ S, in both paradigms.
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Input: Image ̂I = (DI , I), adjacency A, internal seeds S, and path-cost function fmax.
Output: Binary image ̂L = (DI ,L), where L(p) = 1, if p belongs to the object, and L(p) = 0 otherwise.
Auxiliary: Priority queue Q, variables tmp, ord, and cost map C and propagation order map O defined in DI .

(1) For every pixel p ∈ DI , set L(p) ← 0.
(2) While S /=∅, do
(3) For every pixel p ∈ DI , set C(p) ← +∞.
(4) Remove a seed s from S.
(5) Set C(s) ← 0, ord ← 0, and insert s in Q.
(6) While Q /=∅, do
(7) Remove a pixel p from Q such that C(p) is minimum.
(8) Set O(p) ← ord + 1 and ord ← ord + 1.
(9) For every q ∈ A(p), such that C(q) > C(p), do
(10) Set tmp ← max{C(p), δ(p, q)}.
(11) If tmp < C(q), then
(12) If C(q) /= +∞, then remove q from Q.
(13) Set C(q) ← tmp and insert q in Q.
(14) The user selects a pixel q on the image.
(15) For every pixel p ∈ DI , do
(16) If O(p) ≤ O(q), then set L(p) ← 1.

Algorithm 3: Single object definition without seed competition.

One drawback of the method above is the abrupt size
variations of the wavefronts (Figures 6(a) and 6(b)), which
makes the selection of pixel q sometimes difficult. We
circumvent the problem by exploiting the propagation order
O(p) (a number from 1 to |DI |) of each pixel p removed
from Q during execution of the IFT. Note that a pixel p
propagates before a pixel q (i.e., O(p) < O(q)) when it is
reached by an optimum path from S, whose cost C(p) is
less than the cost C(q) of the optimum path that reaches q.
When C(p) = C(q), we assume a first-in-first-out (FIFO) tie-
breaking policy for Q. That is, among all pixels with the same
minimum cost in Q, the one first reached by an optimum
path from S is removed for propagation. Therefore, we also
compute the propagation order O(p) of each pixel p ∈ DI .
When the user moves the cursor to a position q, the program
displays the influence zone of the corresponding root s =
R(q) ∈ S defined by pixels p ∈ DI , such that O(p) ≤ O(q)
and R(p) = R(q). The rest of the process is the same. Note
that although κs = C(q), only the pixels p in the wavefront
WC(q) which have O(p) ≤ O(q) are selected as belonging to
the influence zone of s. This provides smoother transitions
between consecutive wavefronts (Figure 6(c)) as compared to
the first idea. See Algorithms 3 and 4.

5. EVALUATION

We have selected 100 images from magnetic resonance (MR)
and computerized tomography (CT) data sets of 7 objects for
evaluation (see Table 1 and Figure 8). Each object consists of
some slices that represent different degrees of challenge for
segmentation. The original images have been preprocessed to
increase the similarities between pixels inside the objects and
the contrast between object and background. Each of four

Table 1: Description, imaging modality, and number of slices for
each object used in the experiments.

Object Description
Imaging
modality

Number of slices

O1 Left eye ball CT-orbit 15

O2 Left caudate
nucleus

MR-brain 15

O3 Lateral
ventricles

MR-brain 15

O4 Corpus
callosum

MR-brain 10

O5 Patella CT-knee 15

O6 Femur CT-knee 15

O7 White matter MR-brain 15

users has performed segmentation over the 100 images using
each of three methods, M1, M2, and M3, with interactive
seed selection (mouse clicks).

M1: Object delineation without seed competition and
automatic/interactive computation of κs. This
method uses Algorithms 1 and 3. When M1 requires
a single κs for all seeds, it indicates that absolute-fuzzy
connectedness (AFC) would work.

M2: Object delineation with seed competition and auto-
matic κs computation. This method uses only
Algorithm 2. We did not evaluate Algorithm 4,
because preliminary tests indicated that user inter-
vention to add external seeds in Algorithm 2 is
simpler and more effective than to indicate κs in
Algorithm 4.
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(a) Left eye ball (b) Left caudate nucleus (c) Lateral ventricles

(d) Corpus callosum (e) Pattela (f) Femur

(g) White matter

Figure 8: (a)–(g) Results of slice segmentation of the objects from 1 to 7, respectively, overlaid with the preprocessed images.

M3: Object delineation with seed competition without
κs computation. As mentioned in Section 1, relative-
fuzzy connectedness (RFC) and watershed transform
by markers (WT) are the same method [22] (one is
the dual of the other), represented here by M3.

Therefore, the user can correct segmentation by
adding/removing seeds in M1, M2, and M3, and in the case
of M1, by pointing the mouse to the pixel, whose propaga-
tion order indicates the correct κs implicitly (Section 4.2).

M1 aims to show two aspects about AFC: (i) a single κ for
all seeds is not sufficient in most cases and (ii) the problem
of computing multiple κs thresholds can be easily solved by a
wavefront area threshold 0% < T < 100%, computed over
the image size. Note that, being M1 an extension of AFC,
there is no situation where AFC works and M1 would fail.
M2 aims to reduce the number of required seeds with respect
to M3 by automatic κs computation. When this automatic

procedure fails, M2 becomes M3. Therefore, in the worst
case, the efficiency of M2 should be the same of M3.

Given that M1 and M2 are extensions of AFC and
RFC/WT, we expect that they do not affect the accuracy of the
original approaches, which is assumed to be good from the
results of several other works [10, 14–18]. The experiments
then aimed to show that M1 works in situations where AFC
would fail, M1 and M2 require less user interaction than M3,
and the methods produce similar results.

The choice of parameters took a couple of minutes per
object, by trying the methods in a first slice. Then, the
parameters were fixed to the rest of the slices. Note that
this can be done only once for any given application (object
of interest and imaging protocol). We have chosen the best
dissimilarity function for each object and method (Table 2).
We used the 8-neighborhood as adjacency relation A and
set the wavefront area threshold T to 1% of the image size
(except for O2 where T = 0.5% in M1 and T = 0.2% in
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Input: Image ̂I = (DI , I), adjacency A, path-cost function fmax, and a labeled image ̂L = (DI ,L), where L(p) = i,
0 ≤ i ≤ k, if p is a seed pixel selected inside object i > 0 from k objects, being i = 0 reserved for seeds in the
background, and L(p) = −1 otherwise.
Output: A labeled image ̂L = (DI ,L), where L(p) = i, 0 ≤ i ≤ k.
Auxiliary: Priority queue Q, variables tmp and ord, and C, R, O are maps defined in DI to store cost, root and
propagation order of each pixel, respectively.

(1) Set ord ← 0.
(2) For every pixel p ∈ DI , do
(3) Set R(p) ← p.
(4) If L(p) = −1, then set C(p) ← +∞ and L(p) ← 0.
(5) Else, set C(p) ← 0 and insert p in Q.
(6) While Q /=∅, do
(7) Remove a pixel p from Q such that C(p) is minimum.
(8) Set O(p) ← ord + 1 and ord ← ord + 1.
(9) For every q ∈ A(p), such that C(q) > C(p), do
(10) Set tmp ← max{C(p), δ(p, q)}.
(11) If tmp < C(q), then
(12) If C(q) /= +∞, then remove q from Q.
(13) Set C(q) ← tmp, R(q) ← R(p), and insert q in Q.
(14) While the user is not satisfied.
(15) The user can select a pixel q on the image.
(16) For every pixel p ∈ DI , do
(17) If O(p) ≤ O(q) and R(p) = R(q), then set L(p) ← L(R(p)).

Algorithm 4: Multiple object definition with seed competition.

Table 2: The dissimilarity functions used for each combination of
object and method.

Object M1 M2 M3

O1 δ3 δ2 δ2

O2 δ3 δ4 δ2

O3 δ3 δ3 δ3

O4 δ3 δ4 δ2

O5 δ3 δ4 δ4

O6 δ3 δ3 δ2

O7 δ3 δ3 δ3

M2). Since objects from O1 to O6 do not have holes, we set
the area closing threshold to some arbitrary high value (e.g.,
500 pixels). The only exception was O7, whose area closing
threshold could not be higher than 3 pixels due to its holes.
In function δ2, we used the magnitude of the Sobel’s gradient.
The value of σ was 20 for all cases involving δ3 and δ4. Note
also that δ3 has been chosen in some situations involving seed
competition, despite fmax is not smooth.

Each object was represented by a set of l binary slices
̂Li = (DI ,Li), i = 1, 2, . . . , l, where Li(p) = 1 for object pixels
and 0 otherwise. Let ̂Li and ̂L′i be the binary images resulting
from the segmentation of a same object slice using different
methods. The similarity between these results was measured
by

1.0−
∑i=l

i=1

∑

∀p∈DI
Li(p)⊕ L′i (p)

∑i=l
i=1

∑

∀p∈DI
Li(p) +

∑i=l
i=1

∑

∀p∈DI
L′i (p)

, (8)

where ⊕ is the “exclusive or” operation (i.e., Li(p)⊕ L′i (p) =
1, if Li(p) /= L′i (p), and 0 otherwise). Given that we have four
different users using three distinct methods, we may assume
that similarity values around 0.90 represent good agreement
in delineation (Figure 9).

The number of user interactions in M3 is the total
number of seeds selected inside (NIS—number of internal
seeds) and outside (NES—number of external seeds) the
object. In M1, the amount of user interaction is represented
by the total number of interactive κs detections (IKD) and
NIS. The automatic κs detections (AKD) are chosen as
much as possible in order to reduce the number of user
interactions. In M2, the number of user interactions is
computed as in M3, but the number of seeds is expected to
be much less due to automatic κs detection.

Instead of quantifying the number of user interactions
for a fixed value of κ, we decided to quantify the number of
different κs values found in M1 for cases of multiple seeds.
The percentages of different κs values (PDK) are presented in
Table 3, together with the average number of interactions
and similarity values among all users. Note that O3 was
detected with a same value of κ, but the other objects
required from 6.8% to 92.4% of different κs values. O5 did
not count because it was segmented with only one seed
per slice. Therefore, AFC would work only for O3 and O5.
On average, M3 and M1 required 2.8 and 1.1 more user
interactions than M2, respectively. The advantages of M1
and M2 over M3 increase in more complex situations, such
as in the delineation of O7, where M3 required 6 times
more user interactions than M1 and M2. Although the
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(a) (b)

Figure 9: (a) A segmentation of the left caudate nucleus. (b) The result of dilating the binary image with a circular structuring element of
radius 1. The similarity value between these two masks is 0.87. The differences in the experiments using distinct methods on this object (O2)
are less significant than this small dilation.

Table 3: The percentages of different κs values (PDK) in M1, the average numbers of user interactions for each object and method, and the
average similarity values between different methods for a same object.

M1 PDK M2 M3 M1, M2 M1, M3 M2,M3

O1 35.0 83.4% 29.5 77.6 0.965 0.969 0.962

O2 38.5 92.4% 29.3 38.8 0.904 0.890 0.915

O3 31.8 0.0% 31.3 61.3 0.992 0.932 0.935

O4 29.7 57.4% 27.5 46.8 0.922 0.914 0.918

O5 15.0 — 15.0 61.0 0.973 0.954 0.946

O6 26.3 27.1% 26.3 37.8 0.992 0.982 0.981

O7 47.5 6.8% 46.3 284.8 0.973 0.931 0.930

Table 4: Average numbers of internal seeds (NIS), interactive κs detections (IKD), external seeds (NES), and automatic κs detections (AKD).

M1 M2 M3

NIS IKD AKD NIS NES AKD NIS NES

O1 30.7 4.3 26.4 18.0 11.5 13.0 26.8 50.8

O2 30.0 8.5 21.5 25.3 4.0 24.3 18.8 20.0

O3 30.0 1.8 28.2 30.3 1.0 30.3 30.3 31.0

O4 24.5 5.2 19.3 22.3 5.2 19.8 22.3 24.5

O5 15.0 0.0 15.0 15.0 0.0 15.0 44.0 17.0

O6 26.3 0.0 26.3 26.3 0.0 15.5 22.8 15.0

O7 47.5 0.0 47.5 46.0 0.3 46.0 66.0 218.8

performances of M1 and M2 have been equivalent, M2 is
preferable because its extension to 3D does not suffer from
interactive κs indication and it can provide simultaneous
segmentation of multiple objects.

Table 4 shows in detail the average values of NIS, NES,
IKD, and AKD for each object and method. Note that, AKD
varied from 59% to 100% of NIS, being on average 90%
of NIS in M1 and 88% of NIS in M2. This demonstrates
the effectiveness of the proposed approach for automatic κs
detection and explains the reduction of user interactions in
M1 and M2 with respect to M3. Note also that the number
of external seeds was considerably reduced in comparison
to M3. This is an important result for future automation,
because seed competition is sensitive to the location of the
external seeds due to the heterogeneity of the background.

6. CONCLUSIONS

We have presented four IFT-based algorithms for object
delineation based on κ-connected components with and
without seed competition. They differ from the previous
approaches in the following aspects: computation of different
values of κ for each seed, effective automatic κs detection,
and user friendly κs computation, where the user moves the
cursor of the mouse to indicate the pixel whose propagation
order defines the object. The use of propagation order
rather than the pixel cost is important to create smoother
transitions between possible objects, facilitating the user’s
work. The new methods have considerably reduced the
number of user interactions in medical image segmentation
with respect to the previous approaches. We believe that



Paulo A. V. Miranda et al. 13

these results are extensive to other image types by suitable
choice of pre-processing and dissimilarity function.

The interactive κs detection counted with real time
response for every position of the cursor, but this may not
be feasible in 3D segmentation involving several slices. In
this sense, the algorithms based on interactive κs detection
are more adequate for 2D/3D segmentation in a slice by slice
fashion, where seeds may be automatically propagated along
the slices. In such a case, the interactive κs detection can be
used to correct segmentation when the automatic detection
of κs fails.

Seed competition with automatic κs detection
(Algorithm 2) seems to be the most promising approach.
We are currently investigating two approaches for 3D
segmentation of medical images: (i) automatic segmentation
with only internal seeds and automatic κs detection, and (ii)
interactive segmentation with automatic κs detection, where
the user can add/remove internal and external seeds, and
subsequent IFTs are executed in a differential way [27].
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