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Noise, corruptions, and variations in face images can seriously hurt the performance of face-recognition systems. To make these
systems robust to noise and corruptions in image data, multiclass neural networks capable of learning from noisy data have been
suggested. However on large face datasets such systems cannot provide the robustness at a high level. In this paper, we explore a
pairwise neural-network system as an alternative approach to improve the robustness of face recognition. In our experiments, the
pairwise recognition system is shown to outperform the multiclass-recognition system in terms of the predictive accuracy on the
test face images.
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1. INTRODUCTION

The performance of face-recognition systems is achieved at
a high level when these systems are robust to noise, corrup-
tions, and variations in face images [1]. To make face recog-
nition systems robust, multiclass artificial neural networks
(ANNs) capable of learning from noisy data have been sug-
gested [1, 2]. However, on large face image datasets, con-
taining many images per class (subject) or large number of
classes, such neural-network systems cannot provide the per-
formance at a high level. This happens because boundaries
between classes become complex and a recognition system
can fail to solve a problem; see [1–3].

To overcome such problems, pairwise classification sys-
tems have been proposed; see, for example, [4]. Pairwise clas-
sification system transforms a multiclass problem into a set
of binary classification problems for which class boundaries
become much simpler than those for a multiclass system. Be-
side that, the density of training samples for a pairwise clas-
sifier becomes lower than that for a multiclass system, mak-
ing a training task even simpler. As a result, classifiers in a
pairwise system can learn to divide pairs of classes most effi-
ciently.

The outcomes of pairwise classifiers, being treated as class
membership probabilities, can be combined into the final
class posteriori probabilities as proposed in [4]. This pro-

posed method aims to approximate the desired posteriori
probabilities for each input although such an approximation
requires additional computations. Alternatively, we can treat
the outcomes of pairwise classifiers as class membership val-
ues (not as probabilities) and then combine them to make
decisions by using the winner-take-all strategy. We found
that this strategy can be efficiently implemented within a
neural network paradigm in the competitive layer as de-
scribed in [5].

However, the efficiency of such pairwise neural-network
schemes has not been yet explored sufficiently in face recog-
nition applications. For this reason in this paper we are aim-
ing to explore the ability of pairwise neural-network systems
to improve the robustness of face recognition systems. The
exploration of this issue is very important in practice, and
that is the novelty of this research. In our experiments, the
pairwise neural networks are shown to outperform the mul-
ticlass neural-network systems in terms of the predictive ac-
curacy on the real face image datasets.

Further in Section 2, we briefly describe a face image rep-
resentation technique and then illustrate problems caused by
noise and variations in image data. Then in Section 3 we in-
troduce a pairwise neural-network system proposed to en-
hance the robustness of face recognition system. In Section 4
we describe our experiments, and finally in Section 5 we con-
clude the paper.
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2. FACE IMAGE REPRESENTATION AND
NOISE PROBLEMS

Image data are processed efficiently when they are rep-
resented as low-dimensional vectors. Principal component
analysis (PCA), allowing data to be represented in a low-
dimensional space of principal components, is a common
technique for image representation in face recognition sys-
tems; see, for example, [1–3]. Resultant principal compo-
nents make different contribution to the classification prob-
lem.

The first two principal components, which make the
most important contribution to face recognition, can be used
to visualise the scatter of patterns of different classes (faces).
Particularly, the use of such visualisation allows us to ob-
serve how noise can corrupt the boundaries of classes. For
instance, Figure 1 shows two examples of data samples repre-
senting four classes whose centres of gravity are visually dis-
tinct. The left-side plot depicts the samples taken from the
original data while the right-side plot depicts the same sam-
ples mixed with noise drawn from a Gaussian density func-
tion with zero mean and the standard deviation alpha = 0.5.

From the above plot, we can observe that the noise cor-
rupts the boundaries of the classes, affecting the performance
of a face recognition system. It is also interesting to note that
the boundaries between pairs of the classes do not change
much. This observation inspires us to exploit a pairwise-
classification scheme to implement a neural network-based
face recognition system which would be robust to noise in
image data.

3. A PAIRWISE NEURAL-NETWORK SYSTEM FOR
FACE RECOGNITION

The idea behind the pairwise classification is to use two-
class ANNs learning to classify all possible pairs of classes.
Consequently, for C classes a pairwise system should include
C∗(C − 1)/2 ANNs trained to solve two-class problems. For
instance, given C = 3 classes Ω1, Ω2, and Ω3 depicted in
Figure 2, we can setup three two-class ANNs as illustrated in
this figure. The lines f i/ j are the separating functions learnt
by the ANNs to separate class i from class j. We can assume
that functions f i/ j give the positive values for inputs belong-
ing to classes i and the negative values for the classes j.

Now we can combine functions f 1/2, f 1/3, and f 2/3 to build
up the new separating functions g1, g2, and g3. The first func-
tion g1 combines the outputs of functionsf 1/2 and f 1/3 so that
g1 = f 1/2 + f 1/3. These functions are taken with weights of 1.0
because both f 1/2 and f 1/3 give the positive output values for
data samples of class Ω1. Likewise, the second and third sep-
arating functions g2 and g3 are described as follows:

g2 = f2/3 − f1/2, g3 = − f1/3 − f2/3. (1)

In practice, each of the separating functions g1, . . . , gc can
be implemented as a two-layer feed-forward ANN with a
given number of hidden neurons fully connected to the input
nodes. Then we can introduceC output neurons summing all
outputs of the ANNs to make a final decision. For instance,

the pairwise neural-network system depicted in Figure 3 con-
sists of three ANNs learning to approximate functions f 1/2,
f 1/3, and f 2/3. The three output neurons g1, g2, and g3 are
connected to these networks with weights equal to (+1, +1),
(−1, +1), and (−1,−1), respectively.

In general, a pairwise neural-network system consists
of C(C − 1)/2 ANN classifiers, represented by functions
f1/2, . . . , fi/ j , . . . , fC−1/C, and C output neurons g1, . . . , gc,
where i < j = 2, . . . ,C. We can see that the weights of output
neurons gi connected to the classifiers fi/k and fk/i should be
equal to +1 and −1, respectively.

Next, we describe the experiments which are carried
out to evaluate the performance of this technique on syn-
thetic and real face images datasets. The performances of the
pairwise-recognition systems are compared with those of the
multiclass neural networks.

4. EXPERIMENTS

In this section, we describe our experiments with synthetic
and real face image datasets, aiming to examine the proposed
pairwise and multiclass neural-network systems. The exam-
ination of these systems is carried out within 5-fold cross-
validation.

4.1. Implementation of recognition systems

In our experiments, both pairwise and standard multiclass
neural networks were implemented in Matlab, using neu-
ral networks Toolbox. The pairwise classifiers and the mul-
ticlass networks include hidden and output layers. For the
pairwise classifiers, the best performance was achieved with
two hidden neurons, while for the multiclass networks the
numbers of hidden neurons were dependent on problems
and ranged between 25 and 200. The best performance for
pairwise classifiers was obtained with a tangential sigmoid
activation function (tansig), while for multiclass networks
with a linear activation function (purelin). Both types of the
networks were trained by error back-propagation method.

4.2. Face image datasets

All the face images used in our experiments are processed
to be in a grey scale ranging between 0 and 255. Because of
large dimensionalities of these data, we used only the first 100
principal components retrieved with function “princomp”.

The face image datasets Cambridge ORL [6], Yale ex-
tended B [7], and Faces94 [8], which were used in our exper-
iments, were partially cropped and resized in order to satisfy
the conditions of using function “princomp”. Image sizes for
the ORL, Yale extended B, and Faces94 were 64×64, 32×32,
and 45× 50 pixels, respectively. For these face image sets, the
number of classes and number of samples per subject were
40 and 10, 38 and 60, and 150 and 20, respectively.

4.3. Impact of data density in case of synthetic data

These experiments aim to compare the robustness of the
proposed and multiclass neural networks to the density of



J. Uglov et al. 3

0 1 2 3 4 5 6 7

p1

0

1

2

3

4

5

p2

(a)

0 1 2 3 4 5 6 7

p1

0

1

2

3

4

5

p2

(b)

Figure 1: An example of scattering the samples drawn from the four classes for alpha = 0 (a) and alpha = 0.5 (b) in a plane of the first two
principal components p1 and p2.
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Figure 2: Splitting functions f 1/2, f 1/3, and f 2/3 dividing the follow-
ing pairs of classes: Ω1 versus Ω2, Ω1 versus Ω3, and Ω2 versus Ω3..
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Figure 3: An example of pairwise neural-network system for C = 3
classes.

synthetic data. The synthetic data were generated for four
classes which were linearly separable in a space of two vari-
ables, p1 and p2 that allowed us to visualise the boundaries
between the classes. Each of these variables ranges between 0
and 1.

The class boundaries are given by the following lines:

y = p1 + 0.5, y = p2 + 0.5. (2)

The number of data samples in each class was given be-
tween 10 and 200, making the data density different. Clearly,
when the density is higher, the data points are closer to each
other, and the classification problem becomes more difficult.
Figure 4 shows two cases of the data densities with 10 and
200 samples per class.

From this figure, we see that when the density is high the
data samples may be very close to each other, making the
classification problem difficult. Hence, when the data den-
sity is high or the number of classes is large, pairwise classi-
fiers learnt from data samples of two classes can outperform
multiclass systems learnt from all the data samples. This hap-
pens because the boundaries between pairs of classes become
simpler than the boundaries between all the classes.

The robustness of the proposed pairwise and multiclass
systems is evaluated in terms of the predictive accuracy on
data samples uniformly distributed within (0, 1). The classes
C1, . . . ,C4 are formed as follows:

C1 : p1 ∈ [0, 0.5], p2 ∈ [0, 0.5]; C2 : p1 ∈ [0, 0.5],

p2 ∈ [0.5, 1.0], C3 : p1 ∈ [0.5, 1.0], p2 ∈ [0.5, 1.0];

C4 : p1 ∈ [0.5, 1.0], p2 ∈ [0, 0.5].
(3)

In theory, multiclass neural networks with two hidden
and four output neurons are capable of solving this classi-
fication problem. However, practically the performance of a
multiclass neural network is dependent on the initial weights
as well as on the density of data samples.
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Figure 4: High density of data samples makes the classification problem difficult. The zoomed fragment shows how close are the data
samples to each other.
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Figure 5: Performances of the pairwise and multiclass recognition
systems versus the numbers of samples per subject. Solid lines and
bars are the mean and 2σ intervals, respectively.

In our experiments, the numbers of data samples per
class were given between 50 and 200. Table 1 shows the per-
formances of the pairwise and multiclass systems for these
data.

From this table we can see that the proposed pairwise
system outperforms the multiclass system on 16% and 20%
when the numbers of samples are 50 and 200, respectively.

4.4. Impact of data density in case of Yale data

The Yale extended B data contain 60 samples per subject that
gives us an opportunity to examine the robustness of the face
recognition systems to the data density. In these experiments,
we compare the performances of both recognition systems
trained on the datasets containing different number of sam-
ples per subject. The numbers of these samples are given 12,
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Figure 6: Performance of the pairwise and multiclass-recognition
systems over the number of classes. Solid lines and bars are the mean
and 2σ intervals, respectively.

24, 36, 48, and 60 per subject. Figure 5 shows the perfor-
mance of the proposed pairwise and multiclass systems over
the number of samples per subject.

From this figure, we can see that the proposed pairwise-
recognition system significantly outperforms the multiclass
system in terms of the predictive accuracy on the test data.
For instance, for 24 samples a gain in the accuracy is equal to
9.5%. When the number of samples is 60, the gain becomes
11.5%.

4.5. Impact of the number of classes in
case of faces94 data

The Faces94 dataset contains images of 150 subjects. Each of
these subjects is represented by 20 images. Hence, this image
dataset gives us an opportunity to compare the performances
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Figure 7: Performances of the multiclass recognition systems over the number of hidden neurons for 25, 50, 100, and 150 classes. Solid lines
and bars are the mean and 2σ intervals, respectively.

of the proposed and multiclass recognition systems against
different number of classes (subjects). In our experiments,
we vary the number of classes between 25 and 150 as depicted
in Figure 6.

From this figure, we can see that when the number of
classes varies between 25 and 50, the performance of both
systems in terms of predictive accuracy is close to maximal.
However, when the number of classes increases, the perfor-
mance of the multiclass system declines while the perfor-
mance of the pairwise system remains near to maximal.

In these experiments, the best performance of the multi-
class system was obtained with 100 hidden neurons. Figure 7
shows the performance of the multiclass system versus the
numbers of hidden neurons under different numbers of
classes.

From this figure, we can observe first that the number
of hidden neurons does not contribute to the performance

much. In most cases, the best performance is achieved with
100 hidden neurons.

4.6. Robustness to noise in ORL and Yale datasets

From our observations, we found that the noise existing in
face image data can seriously corrupt class boundaries, mak-
ing recognition tasks difficult. Hence, we can add noise of
variable intensity to face data in order to examine the robust-
ness of face-recognition systems. The best way to make data
noisy is to add artificial noise to principal components rep-
resenting face-image data. An alternative way is to add such
noise directly to images. However, this method affects only
the brightness of image pixels not the class boundaries loca-
tions.

For this reason in our experiments we add artificial noise
to the principal components representing the ORL and Yale
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Figure 8: Performance of the pairwise and multiclass recognition systems over noise levels alpha. Solid lines and bars are the mean and 2σ
intervals, respectively.

Table 1: Performance of the pairwise and multiclass recognition systems over the number of data samples. The performances are represented
by the means and 2σ intervals.

Classification system Number of data samples per class

50 100 150 200

Pairwise 0.965± 0.0103 0.981± 0.0124 0.983± 0.012 0.976± 0.0253

Multiclass 0.796± 0.157 0.812± 0.1485 0.807± 0.157 0.774± 0.1515

data in order to compare the robustness of the proposed pair-
wise and multiclass recognition systems. The performances
of the pairwise and multiclass recognition systems over dif-
ferent noise levels are shown in Figure 8.

From this figure, we can see that for alpha ranging be-
tween 0.0 and 1.3, the proposed pairwise system outperforms
the multiclass system. For instance, for alpha = 0.0, a gain in
the performance is 2.0% on the ORL and 4.0% on the Yale
datasets. For alpha = 1.1, the gain becomes 10.2% and 14.1%,
respectively.

5. CONCLUSION

In order to reduce the negative effect of noise, corruptions,
and variations in face images, we have proposed a pairwise
neural-network system for face recognition. We assumed that
the use of such classification scheme can improve the robust-
ness of face recognition. Such assumption has been made on
the base of our observations that the boundaries between
pairs of classes are corrupted by noise much less than the
boundaries between all the classes. High density of data can

also make the recognition task difficult for multiclass sys-
tems.

We have compared the performances of the proposed
pairwise and multiclass neural-network systems on the syn-
thetic data as well as on the real face images. Having esti-
mated the mean values and standard deviations of the per-
formances under different levels of noise in the image data
and different numbers of classes and samples per subject, we
have found that the proposed pairwise system is superior to
the multiclass neural-network system.

Thus, we conclude that the proposed pairwise system is
capable of decreasing the negative effect of noise and varia-
tions in face images. Clearly, this is a very desirable property
for face recognition systems when the robustness is of crucial
importance.
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