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This paper proposes a new face recognition method, named kernel learning of histogram of local Gabor phase pattern (K-HLGPP),
which is based on Daugman’s method for iris recognition and the local XOR pattern (LXP) operator. Unlike traditional Gabor
usage exploiting the magnitude part in face recognition, we encode the Gabor phase information for face classification by the
quadrant bit coding (QBC) method. Two schemes are proposed for face recognition. One is based on the nearest-neighbor classifier
with chi-square as the similarity measurement, and the other makes kernel discriminant analysis for HLGPP (K-HLGPP) using
histogram intersection and Gaussian-weighted chi-square kernels. The comparative experiments show that K-HLGPP achieves a
higher recognition rate than other well-known face recognition systems on the large-scale standard FERET, FERET200, and CAS-
PEAL-R1 databases.
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1. INTRODUCTION

A good object representation or pattern representation is
one of the key issues for a well-designed pattern recognition
system. Representation issues include: what representation
is desirable for the recognition of a pattern and how to
effectively extract the representation from the original input
signal. In face community, Gabor feature recently appears to
be a promising way toward high accuracy face recognition.
Gabor wavelet models quite well the receptive field profiles
of cortical simple cells, therefore, Gabor feature can capture
the salient visual properties such as the spatial localization,
orientation selectivity, and spatial frequency characteristic
[1]. Lades et al. [2] pioneer the use of Gabor wavelet for face
recognition in the Dynamic Link Architecture framework.
Wiskott et al. [3] subsequently develop elastic bunch graph
matching (EBGM) method to label and recognize human
faces. In the EBGM method, the face is represented as a
graph, each node of which contains a group of coefficients,
knows as a jet. Lyons et al. [4] have shown through
experiments that the Gabor wavelet representation is optimal

for classifying facial actions. The Gabor Fisher classifier
(GFC) method proposed by Liu and Wechsler [5] is based on
the magnitude part of Gabor feature, providing a promising
way to enhance the face recognition performance. There are
also some important applications of Gabor wavelet in sign
recognition [6] and fingerprint recognition [7, 8]. It is easy
for us to know that Gabor-based face recognition methods
are mostly based on the magnitude part of Gabor feature.
In fact, Gabor phase is very discriminative, and has been
successfully used in iris and palm print identifications [9, 10].

Recently, Ahonen et al. [11] present a new approach
based on local binary pattern (LBP) histograms for face
recognition, considering both shape and texture information
to represent the face images. Zhang et al. [12] combine
the magnitude part of Gabor feature and the LBP operator,
the so-called local Gabor binary pattern histogram sequence
(LGBPHS) method, and achieved an excellent performance
on the standard FERET database. Our former work, the so-
called histogram of Gabor phase pattern (HGPP), encodes
the Gabor phase variation derived from orientation change
and local phase variations [13]. These methods are, in nature,
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based on spatial histograms, which can capture the structure
information of the input face object and provide an easy
matching strategy.

In this paper, we propose a new kind of local Gabor
phase pattern (LGPP) [13], from which local histograms
are extracted and concatenated into a single extended
histogram feature to capture the spatial information, named
HLGPP. The recognition can be performed using the nearest-
neighbor classifier with chi-square or histogram intersection
as the similarity measurement. Moreover, histogram inter-
section (HI) [14] and Gaussian-weighted chi-squared (GW-
chi) [15] functions have been proved to be positive definite,
which were smoothly used in support vector machine (SVM)
classifier [14, 15]. They show us that kernel methods can
be successfully combined with the histogram feature, and
motivate us to make kernel Fisher discriminant analysis
for HLGPP (K-HLGPP). Experiments on the large-scale
standard FERET, FERET200 [16], and CAS-PEAL [17]
databases are performed to evaluate the effectiveness of
HLGPP and K-HLGPP methods. Experimental results show
that the proposed methods are much better than other well-
known systems.

The rest of the paper is organized as follows. In
Section 2, the background about the proposed method is
introduced. In Section 3, HLGPP is proposed to extract the
face representation from the original image. In Section 4, we
propose a kernel learning method for HLGPP. In Section 5,
experiments on the large-scale FERET, CAS-PEAL-R1, and
FERET200 databases are conducted to evaluate the perfor-
mances of the proposed methods. In the last section, some
brief conclusions are drawn with some discussion on the
future work.

2. BACKGROUND

Face Recognition is still an ongoing topic in computer vision
research [18], because the current systems only perform
well under the controlled environment but tend to fail in
the complex situations with variations in different factors
such as pose, illumination, expression, and so forth. Major
approaches for face recognition in recent years are Eigenface
[19], Fisherface [20], Bayesian method [21], Elastic Bunch
Graph Matching (EBGM) [3], LBP-based methods [11, 12],
and so forth. The performances of popular statistical or
learning methods degrade abruptly, if the distribution of the
testing samples is very different from that of the training
set. Eigenface and Fisherface are the statistic methods
based on principal component analysis (PCA) and Fisher
discriminant analysis (FDA), which are linear feature extrac-
tion approaches. The Bayesian method uses a probabilistic
measure of similarity to divide intensity difference into
extrapersonal and intrapersonal spaces. In recent years, the
kernelized feature extraction methods have been paid much
attention, such as kernel principal component analysis
(KPCA) [22] and kernel Fisher discriminant analysis (KFDA)
[23, 24], which are nonlinear extensions to PCA and FDA,
respectively. The selection of kernel function is one of
open problems for the kernel-based methods, and some
simple mercer’s kernels are available, such as polynomial,

Gaussian, RBF, and so on. We also find that some special
kernel functions, GW-chi [15] and HI-kernel [14], have been
successfully used in the field of computer vision. In this
paper, we use the histogram-based HI and GW-chi kernel
functions to make discriminant analysis for HLGPP.

2.1. Kernel Fisher discriminant analysis

The idea of KFDA is to yield a nonlinear discriminant
analysis in a higher dimensional space. The input data is first
projected into an implicit feature space F by the nonlinear
mapping Φ : x ∈ RN− > f ∈ F, and then seek to
find a transformation, maximizing the between-class scatter
and minimizing the within-class scatter in F [25]. In its
implementation, Φ is implicit and we just compute the inner
product of two vectors in F by using a kernel function:

k(x, y) = (Φ(x)·Φ(y)
)
. (1)

The between-class scatter matrix Sb and within-class scatter
matrix Sw in the feature space F are defined as follows:
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ui = (1/ni)
∑ni

j=1φ(xi j) denotes the sample mean of class i, u
is the mean of all training images in F, and p(�i) is the prior
probability. To perform FDA in F, it is equal to maximize (3).
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Because any solution w ∈ F should lie in the span of all the
samples in F, there exists

w =
n∑

i=1

αiφ
(
xi
)
. (4)

Then we get the following maximizing criterion:
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where ηj = (k(x1, xj), k(x2, xj), . . . , k(xn, xj))T , mi= ((1/ni)×∑ni
j=1k(x1, xj), (1/ni)
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T ,

and m is the mean of all ηj .
This problem can be solved by finding the leading

eigenvectors of K−1
w Kb, the so-called generalized kernel

Fisher discriminant (GKFD) criterion. In our paper, we
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use the technique of the pseudoinverse of the within-class
scatter matrix, and then perform PCA on K−1

w Kb to get the
transformation matrix α. The projection of a data point x
onto w in F is given by:

v = (w.Φ(x)
) =

n∑

i=1

αik
(
xi, x

)
. (7)

In (1), if the x, y is the histogram feature, the kernel function
can be redefined as follows:

k(x, y) = KHI(x, y), k(x, y) = KGW-chi(x, y),

KHI(x, y) = SHI(x, y) =
B∑

i=1

min
(
xi, yi

)
,

(8)

where SHI(x, y) is histogram intersection, which actually
accumulates the common parts of two histograms.

KGW-chi(x, y) = exp
(− r∗SGW-chi(x, y)

)
, (9)

where SGW-chi(x, y) is the chi-square statistic, B is the number
of bins in the histogram, r is a constant, and xi, yi denote the
frequency.

2.2. Daugman’smethod

Gabor wavelets (kernels, filters) can be defined as:

ψu,v(z) =
∥∥ku,v

∥∥2

σ2
e(−‖ku,v‖2|‖z‖2/2σ2)

[
eiku,vz − e−σ

2/2
]

, (10)

where
−→
ku,v= (

kjx
kj y

) = (
kvcosφu
kv sin φu

), kv = fmax/2v/2, φu = u(π/8),
v = 0, . . . , 4,u = 0, . . . , 7, v is the frequency, and u is the
orientation, with fmax =

√
2π. For a given image z, the Gabor

wavelet transformation can be defined as:

Gu,v(z) = I(z)∗Ψu,v(z), (11)

where z = (x, y), ∗ denotes the convolution operator, and
Gu,v(z) is the convolution result corresponding to the Gabor
kernel at scale v = 0, . . . , 4 and orientation u = 0, . . . , 7. It is
well known that the magnitude part varies slowly with the
spatial position, while the phases rotate in some rate with
position. However, Gabor phase is not worthless, a typical
successful application of Gabor phase is the phase-quadrant
demodulation coding method proposed by Daugman for iris
recognition, and each pixel in the resultant image is encoded
to two bits, (PRe

u,v(Z),PIm
u,v(Z)), by the following rules:

PRe
u,v(Z) =

⎧
⎨

⎩

0, if Re
(
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)
> 0,

1, if Re
(
Gu,v(Z)

) ≤ 0,

PIm
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⎩

0, if Im
(
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)
> 0,

1, if Im
(
Gu,v(Z)

) ≤ 0,

(12)

where Re(Gu,v(Z)) and Im(Gu,v(Z)) are the real and imagi-
nary parts of the Gabor transformed image.

II 10 I 00

III 11 IV 01

θu,v(z)

Figure 1: Quadrant bit coding.

3. HLGPP: AN OBJECT REPRESENTATION APPROACH

In this section, we propose a new kind of LGPP, which
encodes the local neighborhood variations of Gabor phase
at each orientation and scale. And LGPPs are combined with
the local histograms to model the original face.

3.1. Quadrant bit coding (QBC) of Gabor phase angle

As shown in Figure 1, (12) can be reformulated as:

PRe
u,v(Z) =

⎧
⎨

⎩

0, if θu,v(Z) ∈ {I,IV},
1, if θu,v(Z) ∈ {II,III},

PIm
u,v(Z) =

⎧
⎨

⎩

0, if θu,v(Z) ∈ {I,II},
1, if θu,v(Z) ∈ {III,IV}.

(13)

Thus, another bit code can be further obtained as follows:

PAtan
u,v (Z) =

{
0, if θu,v(Z) ∈ {I,III},
1, if θu,v(Z) ∈ {II,IV}. (14)

Specially, (14) reveals the relationship between the real
and imaginary parts of Gabor feature. It is actually the XOR
result of Daugman’s two bit codes:

PAtan
u,v (Z) = PRe

u,v XOR PIm
u,v. (15)

We call these three bit codes PRe
u,v, PIm

u,v, PAtan
u,v as quadrant

bit coding (QBC) of the phase angle, since they are obtained
according to the quadrants in which the phase angle lies.

3.2. Local Gabor phase pattern based on the local XOR
pattern (LXP) operator

In this section, we propose to encode the local phase
variations for each pixel with its neighborhood positions,
the so-called LGPP. Formally, for each orientation u and
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Figure 2: LGPPu,v(Z0) is a binary string 00101001.

frequency v, the real-, imaginary-, and atan-LGPP value at
each pixel position are formulated as:
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where Zi, i = 1, 2, . . . , 8, is the 8-neighbors around the pixel
position Z0, and XOR denotes the bit exclusive or operator,
the so-called local XOR pattern (LXP) operator [13] as
shown in Figure 2. Eight neighbors can provide 8 bits to form
a byte for each pixel, therefore, a decimal number ranged in
[0, 255] can be computed. Each value represents a mode how
the Z0 pixel is different from its neighbors.

By recalling the definition of QBC (16), the computation
of each bit in (17) is actually equivalent to:
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Figure 3: A sample of LGPP divided into 64 subregions.

From (17), one can clearly know that LGPP actually
encodes the sign difference of the central pixel from its
neighbors, or reveals the relationships between neighbors
whether they are in the same quadrants.

3.3. Histogram of local Gabor phase pattern

In Daugman’s iris recognition method, quadrant-bit codes
are directly used to form the representation of an iris image,
and classification is achieved by the hamming distance. To
model LGPPs more efficiently and compactly, in this paper,
we exploit the spatial histogram to represent the distribution
of the encoded micropatterns.

However, a single global histogram suffers from losing
the structure information of the object, and the spatial
structure information is of the high importance for face
recognition. In order to reserve the spatial information
in the histogram features, LGPPs are spatially divided
into nonoverlapping rectangular regions represented by
R1, . . . ,RL, from which local histogram features are extracted,
respectively (shown in Figure 3), and all these histograms
are concatenated into a single extended histogram feature,
the so-called joint local-histogram feature (JLHF), for all
frequencies and orientations. We call the resulting repre-
sentation, that is, JLHF of LGPP images, histogram of local
Gabor phase pattern (HLGPP).

Formally, the HLGPP extraction procedure is formulated
as:

HLGPP =
(
HLGPP(u, v, l) : u = 0, . . . , 7;

v = 0, . . . , 4; l = 1, . . . ,L
)
,

(18)

where L is the number of subregions divided for the
histogram computation.

4. FACE RECOGNITION BASEDONHLGPP

As a kind of histogram-based object representation method,
HLGPP cannot be matched effectively by the traditional
distance measurements such as the Euclidean distance. There
exist several methods for the histogram matching, such as
histogram intersection, chi-square distance. In this paper, we
mainly exploit the chi-square as the similarity measurement.
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4.1. Direct HLGPPmatchingmethod

The chi-square distance is used to measure the similarity
between two histograms, and we formally formulate the
similarity of two HLGPPs, H1,H2, as follows:

Su,v
GW-chi

(
H1LGPP,H2LGPP

)

=
L∑

l=1

SGW-chi
(
H1LGPP(u,v, l),H2LGPP(u, v, l)

)
,

S
(
H1LGPP,H2LGPP

)

=
7∑

u=0

4∑

v=0

Su,v
GW-chi

(
H1LGPPI,H2LGPPI

)
,

(19)

where L denotes the number of subregions for histogram
extraction.

In the traditional statistic-based face recognition meth-
od, a training procedure is often necessary to extract the face
representation. The advantage of the leaning-based methods
lies in that they can use the background information, such as
the variations due to expression, lighting, and aging changes,
contained in a given training dataset, which is often offered
by the face recognition test protocol, that is FERET. In the
following part, we present how HLGPP makes discriminant
analysis based on the HI and GW-chi kernels, which show
that it can be easily combined with the statistic or leaning-
based methods.

4.2. Kernel learning for HLGPP (K-HLGPP)

In this section, the proposed spatial histogram based kernel
Fisher discriminant analysis method is used to find a
discriminant transformation space, which is a prelearning
way to use the background information. Formally, for
spatial histogram feature extracted from each local region,
a transformation matrix wi can be calculated by the kernel
Fisher method with HI and GW-chi kernels shown in
Section 2, and then vi is the extracted feature calculated by
using (20):

vi = wiΦ(x) =
n∑

j=1

α
j
i k
(
x
j
i , x
)
, (20)

x
j
i is the histogram feature for the local region Ri of the jth

face image, and v1, v2 are the feature vectors corresponding
to two face images P1,P2. The similarity rule based on
the cosine similarity between the corresponding extracted
feature vectors is defined as follows:

d
(
P1,P2

) =
L∑

i=1

v1
i ·v2

i∥
∥v1

i

∥
∥·∥∥v2

i

∥
∥ . (21)

From (21), we can easily know that the proposed method
is based on the sum rule. It can actually use the spatial
structure information of the face image, therefore, it should
be appropriate to face recognition.

Table 1: Rank-1 recognition rate for different HLGPPs.

Methods Fb Fc Dup1 Dup2

LGBPHS 94.7 97.0 58.8 49.0

Re HLGPP 95.1 96.9 70.5 69.6

Im HLGPP 95.8 97.9 71.1 67.9

Atan HLGPP 96.1 98.5 73.7 69.6

Atan K-HLHPPHI 97.3 98.9 74.2 68.4

Atan K-HLGPPGW-chi 97.99 99.5 77.9 72.6

Table 2: Recognition rates for different sizes of the subregion
(direct Atan HLGPP).

Subregion size
Probe sets

Fb (%) Fc (%)

16× 16 94.3 98.5

8× 16 95.1 98.5

8× 8 96.1 98.5

8× 4 95.8 99.5

5. EXPERIMENTS

To compare the performances of the proposed method and
other well-known face recognition methods, the experiments
are conducted on the standard FERET, CAS-PEAL-R1, and
FERET200 databases, respectively.

5.1. Experiments on the standard FERET database

We have tested the proposed method on the standard FERET
database [16], which is widely used to evaluate the face
recognition algorithms. In the experiments, all images are
cropped to the size of 64 × 64 according to the manually
located eye positions supplied with the FERET database. We
use the same gallery and probe image sets as in the standard
FERET test. Fa (1196 images for 1196 subjects) is the gallery
database, while Fb (1195 images), Fc (194 images), Dup I
(722 images), and Dup II (234 images) are used as the probe
sets.

Experiment 1: on different HLGPPs

In this part, we evaluate the performances of the HLGPPs
face representation based on three kinds of QBC schemes on
all the probe sets of the standard FERET database, and 64
subregions for the 64×64 normalized face images are chosen
to reserve more structure information.

From Table 1, we can see that Atan HLGPP achieves
a better performance than Re HLGPP and Im HLGPP,
partly because QBC of Atan HLGPP reveals the relationship
between real and imaginary parts of Gabor feature, and
Re HLGPP or Im HLGPP just consider the real or imaginary
part Gabor feature. HLGPP gets a much better results than
LGBPHS using the same parameters, which confirms that
the proposed method can provide a more effective face
representation. The GW-chi kernel (r = 0.00005) achieves
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Figure 4: Performance of Atan K-HLGPP for different number of
classifiers on FERET Fb and Fc.
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Figure 5: Relationship between the number of histogram bins and
recognition rate (direct Atan HGLXP).

a higher recognition rate than the HI-kernel, because it can
capture the complex variations existed in a training database.

Experiment 2: on different subregion sizes

The advantage of the spatial histogram over holistic his-
togram lies in its preservation of the spatial information. We
do the following experiments to examine the influence of
the subregion size on the recognition rate on FERET-Fb and
FERET-Fc. Four different subregion sizes, 16 × 16, 8 × 16,
8 × 8, 8 × 4, are tested. From Table 2, as expected, a too
large subregion size degrades the system due to the loss of
much spatial information for Atan HLGPP. In Figure 4, we
also evaluate the performance of K-HLGPP when different
numbers of classifiers are used for the final classification,
which shows that a larger number of classifiers result in a
performance increase.
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Figure 6: Relationship between the number of histogram bins and
recognition rate (Atan K-HGLXP).

Table 3: Rank-1 recognition rate comparisons with other state-of-
the-art results tested on FERET probe sets according to the standard
FERET evaluation protocol.

Fb Fc Dup I Dup II

K-HLGPP 98.9 99.5 81 75.6

Atan K-HLGPP 97.99 99 . 5 77.9 72.6

Atan HLGPP 96.1 98.5 73.7 69.6

HGPP 95.1 97.4 74.9 72.2

LGBPHS 94 97 68 53

LBP 93 51 61 50

GFC 97.2 79.9 68.3 46.6

Experiment 3: on different numbers of histogram bins

In this paper, the uniform quantization method is used to
partition the subregion histogram with equal intervals, that
is, [0, . . . , 256/B-1], [256/B, . . . , 2∗256/B-1], . . . , [255-256/B,
. . . , 255] with B representing the number of histogram bins.
It is obvious that the length of the histogram feature is greatly
reduced when the number of histogram bins is changed
from 256 to 32 as shown in Figures 5 and 6, however, the
performance does not suffer a lot.

Experiment 4: Comparisons with other well-known face
recognition systems based on FERET evaluation protocol

To further validate the effectiveness of HLGPP-based meth-
ods, we compare their performances with other well-known
results reported on the four FERET probe sets according to
the standard FERET evaluation protocol. There are several
results available in the published literatures, such as the
FERET’97 results published in 2000 [16], results of LBP
[11] published in ECCV2004, and more recent results of
LGBPHS published in ICCV2005 [12]. We compared our
results with them, and the rank-1 recognition rates of these
methods are shown in Table 3. From this table, we can see
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Table 4: Experiment result on CAS-PEAL-R1 database (rank-1 recognition rate).

Eigenface Fisherface GFC LGBPHS Atan HLGPP HGPP Atan K-HLGPP

Accessory 37.1 61.0 85.1 86.8 91.2 91.9 92.8

Lighting 8.2 21.8 44.3 51.0 57.9 61.7 70.1

Expression 53.7 71.3 92.9 95.2 96.1 96.4 96.9

that K-HLGPP outperforms all the other results lies in that it
can use the background information, such as the variations
due to expression, lighting, and aging changes, contained in
the training set provided by the standard FERET protocol
[16]. Results of these comparisons evidently illustrate that
K-HLGPP (including three kinds of QBCs) achieves the best
results on the FERET face database. It should be noted
that the numbers of Atan K-HLGPP and K-HLGPP are 128
and 32 to reduce the feature length, respectively. HGPP is
also based on the 64 × 64 normalized face images, with 64
subregions and 128 histogram bins. Note that K-HLGPP uses
the GW-chi kernel.

5.2. Experiments based on the CAS-PEAL-R1
evaluation protocol

More experiments are conducted on another large-scale face
database, CAS-PEAL, for further validation of the proposed
method. Part of the CAS-PEAL face database, named CAS-
PEAL-R1, has been released for research purpose, which
contains 9060 images of 1040 subjects. An accompanying
evaluation protocol is provided, as well as the evalua-
tion results of several well-known benchmarks including
Eigenface, Fisherface, and Gabor Fisher Classifier (GFC).
Experiments are conducted on three largest CAS-PEAL-R1
probe sets, that is, expression, accessory, and lighting. The
training database contains 1200 images of 300 subjects. From
the comparison results in Table 4, we can see that the K-
HLGPP method outperforms all the other benchmarks, for
instance, the rank-1 recognition rate of our method is 70.1%,
while that of GFC is only 44.3% on the lighting probe set.

5.3. Experiments based on the FERET200 database

A good face recognition system is expected to tolerate
pose, expression, and illumination variations. The proposed
algorithm is tested on FERET200. This set includes 1400
images of 200 individuals (each individual has 7 images)
with moderate pose, expression, and illumination variations
[16, 25]. The images are named by two character strings as
“ba,” “bj,” “bk,” “be,” “bd,” “bf,” and “bg.” In this experiment,
we randomly select 100 people as the training set. The other
100 people are used to test the proposed method. The “ba”
part is used as the gallery images, and other images are as
the probe images. We repeat this procedure 10 times, and
the mean recognition rate and variance are used evaluate the
performances of comparative methods.

The complexity is evaluated in terms of time consuming
for feature extraction, which is key part of all comparative
methods. To calculate the final feature for each face image in
HGPP, Atan HLGPP and Atan K-HLGPP, we need 232 ms,

Table 5: Experiment result on FERET200 (rank-1 recognition rate).

HGPP Atan HLGPP Atan K-HLGPP

Mean recognition rate 81.91 81.85 93.83

Variance 0.816556 0.529444 0.760111

163 ms, and 268 ms using a 3.2 G CPU, 2 G RAM PC. The
performances of the comparative methods are evaluated in
terms of the rank-1 recognition rate. As shown in Table 5,
Atan HLGPP achieves the best performance and gets about
12% improvement than other comparative methods. For
Atan HLGPP and HGPP, they achieve similar performances
while Atan HLGPP saves 69 ms per image.

6. CONCLUSIONS AND FUTUREWORK

Unlike traditional Gabor usage exploitingonly the magnitude
information in face recognition, this paper proposes to
encode the Gabor phase angle for face classification by
quadrant bit coding (QBC)and local XOR pattern (LXP)
operator. After coding the Gabor phaseby QBC, we further
use the LXP operator to encode the local phase variations
of QBC, and spatial region-based histograms are exploited
as the final representation of a given face image, that is,
histogram of local Gabor phase pattern (HLGPP). Two
schemes are proposed to solve the face recognition problem,
one is based on nearest-neighbor classifier with the chi-
square distance as the similarity measure, and another is
based on kernel analysis for HLGPP (K-HLGPP) to extract
discriminative features for the final classification, which can
use the background information contained in the training
set. Our experiments showthat the proposed methods are
impressively better than other well-known face recognition
methods on the standard FERET, FERET200, and CAS-
PEAL-R1 databases, and they are robust enough against the
extrinsic imaging conditions.

Although the high performance is achieved in our paper,
some improvements are still possible. One drawback of
our method lies in the feature length. One of the possible
directions is to speed up the system by some kinds of dimen-
sionality reduction methods, for example, making feature
selection to choose the more discriminative patterns. Due
to its excellent performance, we expect that the proposed
method can be applicable to other object recognition as well.
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