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Combined space division multiple access (SDMA) and scheduling exploit both spatial multiplexing and multiuser diversity, in-
creasing throughput significantly. Both SDMA and scheduling require feedback of multiuser channel sate information (CSI). This
paper focuses on uplink SDMA with limited feedback, which refers to efficient techniques for CSI quantization and feedback. To
quantify the throughput of uplink SDMA and derive design guidelines, the throughput scaling with system parameters is analyzed.
The specific parameters considered include the numbers of users, antennas, and feedback bits. Furthermore, different SNR regimes
and beamforming methods are considered. The derived throughput scaling laws are observed to change for different SNR regimes.
For instance, the throughput scales logarithmically with the number of users in the high SNR regime but double logarithmically
in the low SNR regime. The analysis of throughput scaling suggests guidelines for scheduling in uplink SDMA. For example, to
maximize throughput scaling, scheduling should use the criterion of minimum quantization errors for the high SNR regime and
maximum channel power for the low SNR regime.
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1. INTRODUCTION

In a wireless communication system, using the spatial de-
grees of freedom, a base station with multiantennas can com-
municate with multiple users in the same time and frequency
slot. This method, known as space division multiple access
(SDMA), significantly increases throughput. SDMA is capa-
ble of achieving multiuser channel capacity with only one-
end joint processing at the base station by employing dirty
paper coding for the downlink [1] or successive interfer-
ence cancelation for the uplink [2]. Despite being subopti-
mal, SDMA with the linear beamforming constraint has at-
tracted extensive research recently due to its low-complexity
and satisfactory performance (see, e.g., [3–5]). In a system
with a large number of users, the simplicity of beamform-
ing SDMA facilitates its joint designs with scheduling [6–8].
Integrating SDMA and scheduling achieves both the multi-
plexing and multiuser diversity gains [6, 8, 9], leading to high
throughput. This paper considers an uplink SDMA system
with scheduling. Specifically, this paper characterizes how
the throughput of uplink SDMA scales with different system
parameters. These parameters include the number of anten-
nas, the number of users, and the amount of channel state
information (CSI) feedback.

Both uplink SDMA and scheduling require CSI of the
multiuser uplink channels at the base station. In the pres-
ence of line-of-sight propagation, the base station estimates
the directions of arrival of different users, and uses this infor-
mation for beamforming and scheduling [10, 11]. For chan-
nels with rich scattering (non-line-of-sight), the base station
can estimate uplink channels using pilot symbols transmitted
by scheduled users [12–14]. Nevertheless, for a large num-
ber of users, scheduled users constitute only a small subset
of users, but joint SDMA and scheduling require CSI of all
users. Therefore, CSI feedback from all users is required if
the user pool is large.

Two CSI feedback methods exist, namely, limited feed-
back [15] and analog feedback [16]. Analog feedback in-
volves uplink transmission of pilot symbols from the mobile
users and thereby enables channel estimation at the base sta-
tion [16]. Alternatively, limited feedback replaces pilot sym-
bols with quantized CSI [15]. The relative efficiency of these
two types of feedback overhead, namely, pilot symbols and
quantized CSI, is unclear but is outside the scope of this
paper. The use of limited feedback requires channel reci-
procity (in, e.g., time division multiplexing (TDD) systems),
which enables users to acquire uplink CSI through downlink
channel estimation. Compared with analog feedback, limited
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feedback supports flexible feedback rates and CSI protec-
tion using error-control coding. For these advantages, lim-
ited feedback is considered in this paper. The required as-
sumption on the existence of channel reciprocity is made in
this paper.

To maximize throughput, the design of SDMA with
limited feedback requires joint optimization of scheduling,
beamforming, and CSI quantization algorithms. This opti-
mization problem is difficult and remains open. Neverthe-
less, it is a much easier task to design an SDMA system
that achieves the optimum throughput scaling with key sys-
tem parameters such as the feedback rate, the number of
users, and the antenna array size. The analysis of throughput
scaling laws provides useful guidelines for designing uplink
SDMA with limited feedback. Therefore, such analysis forms
the theme of this paper.

1.1. Prior work andmotivation

The prior work on throughput scaling laws of SDMA with
limited feedback targets the downlink [6, 8, 17]. The exist-
ing analytical approach is to use the extreme value theory
[6, 8], but this approach is not directly applicable for up-
link SDMA as explained below. The key to this approach is
the derivation of the probability density function (pdf) of the
signal-to-interference-noise ratio (SINR). This SINR PDF al-
lows the application of extreme value theory for analyzing
the throughput scaling law. The above approach is feasible
for downlink SDMA because the SINR of a scheduled user
depends only on this user’s CSI [6, 8]. In contrast, for uplink
SDMA, this SINR is a function of the CSI of all scheduled
users. Such a discrepancy is due to the difference between
the downlink and uplink. To be specific, both the signal and
interference received by a user (the base station) propagate
through the same channel (different channels) in the down-
link (uplink). Consequently, the derivation of the SINR pdf
for uplink SDMA is complicated because of its dependence
on the specific scheduling algorithm. This motivates us to
seek new tools for analyzing the throughput scaling laws for
uplink SDMA.

Two beamforming and scheduling methods, zero-forcing
beamforming [6, 18] and orthogonal beamforming [8, 17, 19],
are being discussed for enabling downlink SDMA with lim-
ited feedback in the 3GPP-LTE standard [19, 20]. Due to
the uplink-downlink difference mentioned above, the scal-
ing laws for downlink SDMA in [6, 8, 17] cannot be directly
extended to the uplink counterpart. Furthermore, the scaling
law for orthogonal beamforming in the interference-limited
regime remains unknown even for downlink SDMA. This
motivates us to consider both orthogonal and zero-forcing
beamforming in the analysis of uplink SDMA. Furthermore,
the throughput scaling analysis covers high SNR (interfer-
ence limited), normal SNR, and low SNR (noise limited)
regimes.

1.2. Contributions

To discuss the contributions of this paper, the system model
is summarized as follows. The uplink SDMA system model

includes a base station with multiantennas and users with
single-antennas. The multiuser channels are assumed to fol-
low the i.i.d. Rayleigh distribution. The CSI feedback of each
user consists of a quantized channel-direction vector and two
real scalars, namely, the quantization error and the chan-
nel power, which can be assumed perfect since they require
much less feedback than the vector. Moreover, both orthog-
onal [8, 17] and zero-forcing beamforming [6, 21] are con-
sidered for beamforming at the base station.

The main contributions of this paper are the asymptotic
throughput scaling laws for uplink SDMA with limited feed-
back in different SNR regimes and for both orthogonal and
zero-forcing beamforming. The derivation of the throughput
scaling laws makes use of new analytical tools including the
Vapnik-Chervonenkis theorem [22] and the bins-and-balls
model [23] for analyzing multiuser limited feedback. Our re-
sults are summarized as follows.

(1) In the high SNR regime and for orthogonal beam-
forming, an upper and a lower bound are derived for
the throughput scaling factor. These bounds show that
the throughput scales logarithmically with both the
number of users U and the quantization codebook
size N . Furthermore, the linear scaling factor is smaller
than the number of antennas Nt , indicating the loss in
the spatial multiplexing gain.

(2) In the high SNR regime and for zero-forcing beam-
forming, the exact throughput scaling factor is derived,
which provides the same observations as for orthogo-
nal beamforming. To be specific, the throughput scales
logarithmically with both U and N . The linear factor
of the asymptotic throughput is smaller than Nt .

(3) In the normal SNR regime, for both orthogonal and
zero-forcing beamforming, the throughput is shown
to scale double logarithmically with U and linearly with
Nt.

(4) The same results are obtained for the lower SNR
regime.

The analysis of the throughput scaling laws provides the
following guidelines for designing uplink SDMA with limited
feedback. In the high SNR regime, the scheduling algorithm
should select users with minimum quantization errors. Thus,
feedback of channel power for scheduling is unnecessary. In
the lower SNR regime, the scheduled users should be those
with maximum channel power. Consequently, scheduling re-
quires no feedback of quantization errors. In the normal SNR
regime, the scheduling criterion should include both channel
power and quantization errors. This implies that the feed-
back of both types of CSI is needed.

The remainder of this paper is organized as follows. The
system model is described in Section 2. Background on lim-
ited feedback, scheduling, and beamforming is provided in
Section 3. Analytical tools are discussed in Section 4. Us-
ing these tools, the asymptotic throughput scaling of uplink
SDMA is analyzed in Sections 5, 6, and 7, respectively, for
the high, normal, and low SNR regimes. Numerical results
are presented in Section 8, followed by concluding remarks
in Section 9.
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2. SYSTEMDESCRIPTION

The uplink SDMA system considered in this paper is illus-
trated in Figure 1. In this system, U backlogged users each
with a single antenna attempt to communicate with a base
station with Nt antennas. For each time slot, up to Nt users
are scheduled for uplink SDMA transmission. Users learn
the scheduling decisions from the indices of scheduled users
broadcast by a base station. The base station separates the
data packets of scheduled users by receive beamforming.
The base station requires the CSI feedback from all users
for scheduling and beamforming. Each user sends back CSI
using limited feedback as elaborated later. Two approaches
for scheduling and beamforming based on limited feedback
are analyzed in this paper, namely, orthogonal beamforming
[8, 17] and zero-forcing beamforming [6, 21], which are dis-
cussed, respectively, in Sections 3.3.1 and 3.3.2.

Assuming the presence of channel reciprocity (hence a
time-division multiplexing (TDD) system), each user esti-
mates the downlink channel, equivalently the uplink chan-
nel, using pilot symbols periodically broadcast by the base
station. For simplicity, we make the following assumption.

Assumption 1. Each user has perfect CSI of the correspond-
ing uplink channel.

This assumption simplifies analysis by allowing omission
of channel estimation errors. Consider a system with a large
number of users. Even by exploiting channel reciprocity, the
base station can acquire the CSI of only the scheduled uplink
users, which is a small subset of users. Nevertheless, the base
station requires the CSI of all users for scheduling and beam-
forming, which motivates the CSI feedback from all users.
Each user relies on a finite-rate feedback channel for CSI
feedback, thus limited feedback is used for efficiently quan-
tizing CSI for satisfying the finite-rate constraint.

The uplink channel of each user is modeled as a
frequency-flat block-fading vector channel. By blocking fad-
ing, channel realizations for different time slots are indepen-
dent. Consequently, the uplink channel of the uth user can be
represented by a random vector hu. To simplify our analysis,
we make the following assumption.

Assumption 2. The vector channel of each user, hu where
u = 1, 2, . . . ,U , is an i.i.d vector with complex Gaussian co-
efficients CN (0, 1).

This assumption is commonly made in the literature of
multiuser diversity [7, 8, 21, 24]. For analysis, the chan-
nel vector hu is decomposed into channel shape and channel
power, defined as su = hu/‖hu‖ and ρu = ‖hu‖2, respectively.

Based on the above model, the vector of multiantenna
observations at the base station, denoted as y, can be written
as

y =
∑

u∈A

√
P ρusuxu + ν, (1)

where A is the index set of scheduled users, xu is the data
symbol of the uth user, and ν is the AWGN vector. Further-

more, the recovered data symbol for the scheduled uth user
after beamforming is given as

x̂u = v†uy =
√
P ρuv

†
usuxu +

∑

m∈A/{u}

√
P ρmv

†
usmxm + νu,

(2)

where vu is the beamforming vector used for retrieving the
data symbol of the uth user.

3. LIMITED FEEDBACK, SCHEDULING,
AND BEAMFORMING

This section presents the analytical framework for limited
feedback, scheduling, and beamforming for uplink SDMA.
SINR and throughput are important quantities for schedul-
ing at the base station. Their exact values are unknown to the
base station because of imperfect CSI feedback. The approx-
imated SINR and throughput, named expected SINR and ex-
pected throughput, are discussed in Sections 3.1 and 3.2, re-
spectively. These new quantities are computable at the base
station using limited feedback.

Based on limited feedback, the beamforming vectors of
scheduled users are computed at the base station to satisfy
the following constraint:

vu ⊥ ŝu′ ∀u,u′ ∈A, u /= u′, (3)

where vu is the beamforming vector, ŝu the quantized
channel-shape, and A the index set of scheduled users. This
constraint has been also used for downlink SDMA with lim-
ited feedback [7, 8, 17, 21]. For perfect feedback (su = ŝu),
the above constraint ensures no interference between sched-
uled users. In Section 3.3, two beamforming approaches
for satisfying (3), namely, orthogonal beamforming and zero-
forcing beamforming, are introduced. In addition, the com-
patible scheduling methods are also described.

3.1. Expected SINR

In this section, the expected SINRs of scheduled users are de-
fined, which are computable using limited feedback. Given
the index set of scheduled users A and corresponding beam-
forming vectors {vu}, as in [6, 21], the SINR is obtained from
(2) as

SINRu =
γ ρu

∣∣v†usu
∣∣2

1 + γ
∑

m∈A,m /=u ρmεmβm,u

, (4)

where the signal-to-noise ratio (SNR) γ = P/σ2
ν, and su and ρu

are, respectively, the channel shape and power of the uth user,
εu = sin2(∠(su, ŝu)) is the quantization error of the chan-
nel shape. Moreover, βm,u is a Beta random variable that is
independent of εm and has the cumulative density function
(CDF) Pr (βm,u ≤ β0) = βNt−1

0 .
The direct feedback of SINRs in (4) by users is infeasible

as computation of SINRs requires multiuser CSI and such
information is unavailable to individual users. Note that the
SINR feedback is feasible for downlink SDMA since the SINR
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Figure 1: Uplink SDMA system with limited feedback.

depends only on single-user CSI [8] or approximately so [6].
Therefore, we require that the expected SINR is computable
at the base station using individual users’ CSI feedback.

The expected SINR is defined as follows, which is com-
putable from the feedback of channel power { ρu} and
channel-shape quantization errors {εu} by users. In addition,
the feedback of quantized channel shapes allows the base sta-
tion to compute beamforming vectors {vu} that satisfy the
constraint in (3). As feedback of a scalar requires potentially
much fewer bits than that of a vector, the following assump-
tion is made throughout this paper unless specified other-
wise.

Assumption 3. The feedback of channel power { ρu} and
channel-shape quantization errors {εu} from all users are
perfect.

Depending on the operational SNR regime, either of
these two types of scalar feedback can be avoided as shall
be discussed later. Given Assumption 3, limited feedback in
this paper focuses on quantization and feedback of channel
shapes. Under Assumption 3, the expected SINR for the uth
user, denoted as Ψu, is defined as

Ψu =
γ ρu

1 + γ
∑

m∈A,m /=u ρmεm
. (5)

3.2. Expected throughput

In this section, the expected throughput that approximates
the exact one is defined as follows:

R = E

[
∑

u∈A
log
(
1 + Ψu

)
]

, (6)

where Ψu is defined in (5) and A is the index set of sched-
uled users. This quantity is estimated by the base station
using limited feedback and for a given set of scheduled
users.

Next, the expected throughput is shown to converge to
the actual one when the number of users is large. There-
fore, the expected throughput can replace the actual one in
the asymptotic analysis of throughput scaling, which signifi-
cantly simplifies our analysis. To obtain the desired result, a
useful lemma from [21] is provided below.

Lemma 1. Let ε(N) be the minimum of N i.i.d. Beta random
variables. The following inequalities hold:

E
[− log

(
ε(N)

)] ≤ logN + 1
Nt − 1

,

E
[
ε(N)

]
< (N)−1/(Nt−1).

(7)

Let ϕu denote the angle between the beamforming vector
and quantized channel shape of the uth scheduled user, hence
ϕu = ∠(vu, ŝu). Using this lemma, the following result on the
difference between the expected and the exact throughput is
proved.

Proposition 1. If ϕu ≤ ϕ0, εu ≤ θ0, and (ϕ0 +θ0) < π/2, then

∣∣R−C∣∣≤max
{

2 log cos
(
ϕ0 +θ0

)
,

Nt

Nt − 1

[
log
(
Nt−1

)
+1
]}

,

(8)

where C is the exact throughput given as

C = E

[
∑

u∈A
log
(
1 + SINRu

)
]
. (9)

The proof is given in Appendix A. As shown in subse-
quent sections, the expected throughput R increases con-
tinuously with the number of users U . Consequently, from
Proposition 1, the expected throughput R has the same
asymptotic scaling factor as the exact throughput in (9).

3.3. Beamformingmethods

The orthogonal and zero-forcing beamforming methods are
commonly used in the literature of downlink SDMA with
limited feedback [6, 8, 17, 18, 21]. These methods are
adopted in this paper for uplink SDMA as elaborated in Sec-
tions 3.3.1 and 3.3.2, respectively.

The main difference between orthogonal and zero-
forcing beamforming lies in their use of the quantizer code-
book. For orthogonal beamforming, the codebook of unitary
vectors provides potential beamforming vectors. In other
words, quantized CSI of scheduled users directly provides
their beamforming vectors. For zero-forcing beamforming,
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the codebook is used in the traditional way as in vector quan-
tization. Beamforming vectors are computed from quantized
CSI using the zero-forcing method.

3.3.1. Orthogonal beamforming

In this section, orthogonal beamforming for downlink
SDMA with limited feedback is discussed. The orthogonal
beamforming method is characterized by the following con-
straint [8, 17]:

(orthogonal beamforming)

⎧
⎨
⎩
ŝu ⊥ ŝu′ ∀u,u′ ∈A, u /= u′,

vu = ŝu ∀u ∈A.

(10)

The above constraint can be implemented using the fol-
lowing joint design of limited feedback, beamforming, and
scheduling (see, e.g., [17]). First, the channel shape of each
user is quantized using a codebook that is comprised of mul-
tiple orthonormal vector sets. Let F denote the codebook,
N = |F | the codebook size, and M := N/Nt the num-
ber of orthonormal sets in F . Moreover, let v(m)

n denote
the nth member of the mth orthonormal set in F . Thus,
F = {v(m)

n , 1 ≤ n ≤ Nt , 1 ≤ m ≤ M}. As in [17], the M
orthonormal vector sets of F are generated randomly and
independently using a method such as that in [25]. Consider
the quantization of su, the channel shape of the uth user. Fol-
lowing [26], the quantizer function is given as

ŝu = arg max
v∈F

∣∣v†su
∣∣2

, (11)

where ŝu represents the quantized channel shape. The quan-
tization error is given as εu = |ŝ†s|2. The quantized chan-
nel shapes {ŝu} as well as channel power { ρu} and quanti-
zation error {εu} are sent back from the users to the base
station.

The base station constrains the quantized channel shapes
of scheduled users to belong to the same orthonormal set
in the codebook F . Furthermore, the quantized channel
shapes of scheduled users are applied as beamforming vec-
tors. Thereby, the orthogonal beamforming constraint in
(10) is satisfied. Under this constraint and for the criterion
of maximizing throughput, the expected throughput defined
in (6) can be written as

Ror = E

⎡
⎢⎢⎣ max

1≤m≤M
max
un∈I(m)

n
n=1,...,Nt

Nt∑

n=1

log
(
1 + Ψun

)

⎤
⎥⎥⎦ , (12)

where Ψun is the scheduling metric defined in (5). The user

index set I(m)
n , which groups users with identical quantized

channel shapes, is defined as

I(m)
n = {1 ≤ u ≤ U | ŝu = v(m)

n

}
, 1 ≤ m ≤M, 1 ≤ n ≤ Nt.

(13)

3.3.2. Zero-forcing beamforming

In this section, the zero-forcing beamforming method for
SDMA with limited feedback [6, 21] is introduced, which sat-
isfies the following constraint:

(zero-forcing beamforming)

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∠
(
ŝu, ŝu′

) ≥ ϕ0

∀u,u′ ∈A, u /= u′,

vu ⊥ ŝu′

∀u,u′ ∈A, u /= u′.
(14)

The constant 0 < ϕ0 < 1, which is usually large, ensures
that the quantized channel shapes of scheduled users are
well separated in angles [6]. The second condition of the
above constraint is satisfied by computing beamforming vec-
tors {vu, u ∈ A} from {ŝu, u ∈ A} using the zero-forcing
method [6, 21]. Following [6, 21], the channel shape of
each user is quantized using the random vector quantization
method, where the codebook F consists of N i.i.d. isotropic
unitary vectors.

To derive an expression of the expected throughput for
the criterion of maximizing throughput, define all subsets of
users whose quantized channel shapes satisfy the first condi-
tion of the beamforming constraint in (14) as follows:

{B} = {B ⊂U | |B| ≤ Nt,

∠
(
ŝu, ŝu′

) ≥ ϕ0 ∀u,u′ ∈ B, u /= u′
}
.

(15)

In terms of the above subsets, the expected throughput can
be written as

Rzf = E

[
max
A⊂{B}

∑

u∈A
log
(
1 + Ψu

)
]

, (16)

where the expected SINR Ψu is given in (5).

4. BACKGROUND: ANALYTICAL TOOLS

In this section, two analytical tools are provided for analyzing
the throughput scaling laws in the sequel. In Section 4.1, the
bins-and-balls model is discussed, which models multiuser
limited feedback. In Section 4.2, the theory of uniform con-
vergence in the weak law of large numbers is introduced. This
theory is useful for characterizing the number of users whose
channel shapes lie in a same Voronoi cell.

4.1. Bins and balls

In this section, a bins-and-balls model for multiuser feed-
back of quantized channel shapes is introduced. This model
provides a useful tool for analyzing throughput scaling law
for orthogonal beamforming in Section 5.1. In this model as
illustrated in Figure 2, U balls are thrown into N + 1 bins: N
small bins and one big one, whose total volume is equal to
one.

Some useful results are derived using the bins-and-balls
model. Let the probability that a ball falls into a specific bin



6 EURASIP Journal on Advances in Signal Processing

U balls

1 2
· · ·

N N + 1

Area of small bin = p Area of big bin = 1−Np

Figure 2: The bins-and-balls model for multiuser feedback of
quantized channel shapes.

be equal to p for each small bin and q for the big bin, hence
q = 1−Np. The first question to ask is how many small bins
are nonempty? The answer to this question is provided in the
following lemma, obtained Using the Chebychev’s inequality
[23].

Lemma2. Denote p̃ = 1−(1− p)U . The number of nonempty
small binsW satisfies

Pr
(
W ≥ N p̃ −

√
logN

(
N p̃ −N p̃2

)) ≥ 1− 1
logN

. (17)

Next, consider clusters of Nt neighboring small bins. In
Section 5.1, each cluster is related to an orthonormal vector
set in the quantizer codebook for orthogonal beamforming.
Each cluster is said to be nonempty if it contains no empty
bins. Then, the second question to ask is how many clusters
are nonempty? The answer is provided in the following corol-
lary of Lemma 2.

Corollary 1. Denote the number of nonempty clusters of small
bins as Q. Then Q satisfies

Pr
(
Q ≥Mp̃Nt −

√
logM

(
Mp̃Nt −Mp̃2Nt

)) ≥ 1− 1
logM

,

(18)

whereM is the total number of clusters.

4.2. Uniform convergence in weak law of
large numbers

In this section, a lemma on the uniform convergence in the
weak law of large numbers [22] is obtained by generalizing
[27, Lemma 4.8]. This lemma given below is useful for ana-
lyzing the number of users whose channel shapes lie in one of
a set of congruent disks on the surface of a hyper sphere. Such
analysis will appear frequently in the subsequent throughput
analysis.

Lemma 3 (Gupta and Kumar). Consider U random points
uniformly distributed on the surface of a unit hyper-sphere in
CNt and N disks on the sphere surface that have equal volume
denoted as A. Let Tn denote the number of points belong to the
nth disk. For every τ1, τ2 > 0:

Pr

(
sup

1≤n≤N

∣∣∣∣
Tn

U
− A

∣∣∣∣ ≤ τ1

)
> τ2 U ≥ Uo, (19)

where

Uo = max
{

3
τ1

log
16c
τ2

,
4
τ1

log
2
τ2

}
, (20)

and c is a constant.

5. THROUGHPUT SCALING: HIGH SNR

In this section, the throughput scaling law of uplink SDMA
in the high SNR regime (γ 
 1) is analyzed. The expected
SINR in (5) for this regime is simplified as

Ψ(α)
u = ρu∑

m∈A,m /=u ρmεm
, (21)

where the superscript (α) is added to indicate the high SNR
regime. Using the analytical tools discussed in Section 4, the
throughput scaling laws are derived in Sections 5.1 and 5.2
for orthogonal and zero-forcing beamforming, respectively.

5.1. Throughput scaling for orthogonal beamforming

In this section, we analyze the throughput scaling laws for
orthogonal beamforming in the high SNR regime. Two cases
are considered. First, both the number of users U and the
quantization codebook size N are large. For this case, we de-
rive an upper and a lower bounds for the throughput scaling
factor as functions of U and N . Second, U is large but N
is fixed. For this case, the exact throughput scaling factor in
terms of U is obtained.

5.1.1. U→∞ andN→∞
To derive the throughput scaling law for U→∞ and N→∞,
the following approach is adopted. First, we derive an up-
per bound for the throughput scaling factor of the expected
throughput, which is defined in (6). To avoid confusion, the

expected throughput is denoted as R(α)
or where the superscript

specifies the high SNR regime and the subscript indicates or-
thogonal beamforming. Second, an achievable lower bound
is obtained by constructing a suboptimal scheduling algo-

rithm. Last, the throughput scaling law for R(α)
or is shown to

hold for the exact throughput.

An upper bound for scaling factor of R(α)
or is derived as fol-

lows. To avoid considering any specific scheduling algorithm
in the derivation, the following assumption is made.

Assumption 4. The channel power of a scheduled user is
lower-bounded as:

ρu ≥
1

logU + c
∀u ∈A. (22)

This assumption is justifiable under the current design
criterion of maximizing throughput. Under this criterion, as
U grows, the channel power of scheduled users increases but
the lower bound in (22) converges to zero. Since ρu ≥ 0 and
we are interested in the case of U→∞, Assumption 4 is justi-
fied. Using this assumption, an upper bound for the scaling

factor of R(α)
or is derived and shown in the following lemma.



Kaibin Huang et al. 7

Lemma 4. In the high SNR regime and for the case of U→∞
andN→∞, the scaling factor of the expected throughput R(α)

or in
(6) is upper bounded as

lim
U→∞
B→∞

R(α)
or(

Nt/
(
Nt − 1

))
(logU + logN)

≤ 1. (23)

The proof is given in Appendix B.
Next, an achievable lower bound for the scaling factor

of R(α)
or is obtained. The direct derivation of a scheduling al-

gorithm for maximizing the scaling factor of R(α)
or in (6) is

very difficult if not impossible. To overcome this difficulty,
we argue that it is unnecessary to consider channel power in
scheduling. In the sequel, we prove that the scheduling ne-
glecting channel power leads to a reasonable lower bound
of the optimum throughput scaling factor for orthogonal
beamforming. The reason for the above argument is that
scheduling users with largest channel power can at most in-
crease the scaling factor by only O(log logU) since the largest
power scales as logU [8]. Such an increment is negligible
because the expected scaling factor is O(logU) as shown in
Lemma 4. Thus, to achieve the optimum throughput scaling,
using minimum quantization errors {εu} as the scheduling
criterion suffices. In the high SNR regime that is interference
limited, such a criterion minimizes interference caused by
quantization errors. The use of only quantization errors as
the scheduling criterion leads to the following lower bound

for R(α)
or . Let χ2

1, χ2
2, . . . , χ2

Nt
denote a sequence of chi-squared

random variables representing the channel power of sched-
uled users. From (6) and (21),

Ror ≥ E

⎡
⎢⎢⎢⎣ max

1≤m≤M
max
uk∈I(m)

k

k=1,...,Nt

Nt∑

n=1

log

(
1 +

χ2
n∑ Nt

k=1,k /=nχ
2
kεuk

)
⎤
⎥⎥⎥⎦

≥ E

[
max

1≤m≤M

Nt∑

n=1

log

(
1+

χ2
n∑ Nt

k=1,k /=n χ
2
kmin u∈I(m)

k
εu

)]

≥ NtE

[
max

1≤m≤M

× log

(
1+

χ2
n

max1≤n≤Nt
min u∈I(m)

n
εu
∑ Nt

k=1,k /=nχ
2
k

)]

= NtE

[
log

(
1 +

χ2
n

ε�
∑ N

k=1, k /=nχ
2
k

)]
,

(24)

where

ε� = min
1≤m≤M

max
1≤n≤Nt

min
u∈I(m)

n

εu. (25)

A scheduling algorithm directly follows from the throughput
lower bound in (24). Define

m� = arg min
1≤m≤M

(
max

1≤n≤Nt

min
u∈I(m)

k

εu

)
. (26)

Then the scheduled user set A is given as

A =
{

arg min
u∈I(m�)

n

εu, 1 ≤ n ≤ Nt

}
. (27)

Using this scheduled algorithm, an achievable lower bound
of the throughput scaling factor is obtained and shown in
the following lemma.

Lemma 5. In the high SNR regime and for the case of U→∞
andN→∞, the scaling factor of the expected throughput R(α)

or in
(6) is lower-bounded as

lim
U→∞
N→∞

R(α)
or(

Nt/
(
Nt − 1

))
logU +

(
1/
(
Nt − 1

))
logN

≥ 1. (28)

The proof is given in Appendix C. The proof procedure
involves using the bins-and-balls model and Lemma 1 in Sec-
tion 4.1.

Proposition 1 implies the identical throughput scaling

factors for the expected throughput R(α)
or and the exact one,

denoted as C(α)
or , because their difference is no more than a

constant. By combining Proposition 1, Lemmas 5 and 4, the
main result of this section is obtained and summarized in the
following theorem.

Theorem 1. In the high SNR regime and for the case of U→∞
and N→∞, the scaling law of the throughput for orthogonal
beamforming is given as

lim
U→∞
N→∞

C(α)
or(

Nt/
(
Nt − 1

))
logU +

(
Nt/
(
Nt − 1

))
logN

≤ 1,

lim
U→∞
N→∞

C(α)
or(

Nt/
(
Nt − 1

))
logU +

(
1/
(
Nt − 1

))
logN

≥ 1.

(29)

A few remarks are in order.

(i) The bounds in (29) agree on that the throughput scal-
ing factor with respect to U is (Nt/(Nt − 1)) logU .

(ii) The lower and the upper bounds in (29) differ by Nt

times in the throughput scaling factor with respect to
N . The smaller scaling factor in the constructive lower
bound is due to the use of a suboptimal scheduling
algorithm. The design of a scheduling algorithm for
achieving the upper bound for the scaling factor in
(29) is a topic for future investigation.

(iii) No feedback of channel power is required for achiev-
ing the lower bound for the throughput scaling factor
in (29), because scheduling is independent of channel
power.

5.1.2. U→∞ andN fixed

In this section, the throughput scaling law for orthogonal
beamforming is analyzed for the high SNR regime and the
case where the codebook size N is fixed and the number of
users U→∞.
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The upper bound of the throughput scaling factor is
shown in the following lemma. The proof can be easily mod-
ified from that for Lemma 4 by substituting lim U→∞ logN/
logU = 0.

Lemma 6. In the high SNR regime and with N fixed, the
throughput scaling factor for orthogonal beamforming is upper-
bounded as

lim
U→∞

R(α)
or(

Nt/
(
Nt − 1

))
logU

≤ 1. (30)

Next, the equality in (30) is shown to hold using the fol-
lowing scheduling algorithm. First, among users belonging

to the index set I(m)
n , the one with the smallest quantiza-

tion error is selected. Second, among the selected users cor-

responding to the index sets {I(m)
n }, an arbitrary set of users

with orthogonal quantized channel shapes are scheduled and
these orthogonal vectors are applied as their beamforming
vectors. Using this scheduling algorithm, the index set of
scheduled users can be written as A = {arg min u∈I(m)

n
εu, 1 ≤

n ≤ Nt}. Based on the above scheduling algorithm and from
(6), the expected throughput is bounded as

R(α)
or ≥ NtE

[
log

(
1 +

χ2
n∑ N

k=1,k /=nχ
2
k min u∈I(m)

k
εu

)]
. (31)

Using the above throughput lower bound and Lemma 6, the
following lemma is proved.

Lemma 7. The upper bound of the throughput scaling factor in
(30) is achievable:

lim
U→∞

R(α)
or(

Nt/
(
Nt − 1

))
logU

= 1. (32)

The proof is given in Appendix D. This proof makes use
of the theory of uniform convergence in the weak law of large
numbers as discussed in Section 4.2.

By combining Lemma 7 and Proposition 1, the main re-
sult of this section is obtained and summarized in the follow-
ing theorem.

Theorem 2. In the high SNR regime (γ 
 1) and with a
fixed codebook size N , the throughput scaling law for orthog-
onal beamforming is

lim
U→∞

C(α)
or(

Nt/
(
Nt − 1

))
logU

= 1. (33)

Two remarks are given.

(i) The current throughput scaling factor is identical to
the first terms of the bounds in (29) corresponding to
the case of N→∞.

(ii) For Nt ≥ 3, the linear scaling factor in (33), namely,
Nt/(Nt − 1), is smaller than Nt , which is the number
of available spatial degrees of freedoms. This indicates
the loss in multiplexing gain for Nt ≥ 3.

5.2. Throughput scaling for zero-forcing beamforming

In this section, the scaling law for zero-forcing beamforming
in the high SNR regime is analyzed. Two cases are considered:
(1) U→∞ and N→∞ and (2) U→∞ and N is fixed, which
are jointly analyzed due to their similarity in analysis. De-
note the expected and the exact throughput for zero-forcing
beamforming in the high SNR regime as Rα

zf and Cα
zf .

The upper bounds of the throughput scaling factor for
orthogonal beamforming in Lemmas 4 and 6 can be shown
to hold for zero-forcing beamforming by trivial modifica-
tions of the proofs. Thus,

lim
U→∞
N→∞

R(α)
zf(

Nt/
(
Nt − 1

))
(logU + logN)

≤ 1,

lim
U→∞

R(α)
zf(

Nt/
(
Nt − 1

))
logU

≤ 1.

(34)

The above upper bounds for the throughput scaling fac-
tor of zero forcing beamforming can be achieved using the
following scheduling algorithm. Consider an arbitrary basis
of CNt , denoted as {q1,q2, . . . ,qNt}. Using this basis, we de-
fine the following index sets:

Jk =
{

1 ≤ u ≤ U | 1−∣∣q†n ŝu
∣∣2 ≤ τo

}
1 ≤ k ≤ Nt , (35)

where τo = sin2((π/4) − (ϕo/2)) = (1 + sin(ϕo))/2 and ŝu is
the quantized channel shape. The purpose of these index sets
is to select users who satisfy the zero-forcing beamforming
constraint in (14). Among the users in each of the index sets
{Jk}, the one with the smallest quantization error is sched-
uled. In other words, the index set of the scheduled users is

A =
{

arg min
u∈Jk

εu, 1 ≤ k ≤ Nt

}
. (36)

The beamforming vectors of the scheduled users are com-
puted from their quantized channel shapes using the zero-
forcing method. From the above, scheduling algorithm re-
sults in the following throughput lower bound:

R(α)
zf ≥ NtE

[
log

(
1 +

χ2
n∑ N

k=1,k /=nχ
2
kmin u∈Jkεu

)]
. (37)

Using the above throughput lower bound, we prove the
following theorem.

Theorem 3. In the high SNR regime, the throughput scaling
law for zero-forcing beamforming is given as follows.

(1) For U→∞, N→∞,

lim
U→∞
N→∞

C(α)
zf(

Nt/
(
Nt − 1

))
logU +

(
Nt/
(
Nt − 1

))
logN

= 1.

(38)

(2) For U→∞, N fixed

lim
U→∞
N→∞

C(α)
zf(

Nt/
(
Nt − 1

))
logU

= 1. (39)
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The proof is given in Appendix E. The proof uses the uni-
form convergence in the weak law of large numbers. As be-
fore, Proposition 1 is applied to equate the scaling laws be-
tween the expected and the exact throughput.

A few remarks are in order.

(i) For U→∞, N→∞, the throughput scaling factor for
zero-forcing beamforming upper bounds that for or-
thogonal beamforming (cf. (29)). Note that this does
not imply the former is larger since the achievability of
the same scaling factor for orthogonal beamforming is
unknown.

(ii) The same scaling laws as in (3) have been also proved
for downlink SDMA with limited feedback [6]. They
are derived using a different approach based on the
extreme value theory, though. This similarity demon-
strates uplink-downlink duality.

(iii) As for orthogonal beamforming, the scheduling algo-
rithm, which achieves the above scaling laws for zero-
forcing beamforming, requires no feedback of channel
power.

6. THROUGHPUT SCALING: NORMAL SNR

In this section, the throughput scaling law for uplink SDMA
in the normal SNR regime is analyzed. In this regime, nei-
ther the noise nor the interference dominates, thus the SINR
and scheduling metric are given, respectively, in (4) and (5).
The throughput scaling law for orthogonal beamforming and
zero-forcing beamforming are analyzed separately in Sec-
tions 6.1 and 6.2.

6.1. Orthogonal beamforming

In this section, the throughput scaling factor for orthogonal
beamforming is obtained by deriving an upper bound and an
achievable lower bound of this factor.

The upper bound of the scaling factor is given in the fol-
lowing lemma. This upper bound also holds for the low SNR
regime and the zero-forcing beamforming.

Lemma 8. For both the normal and low SNR regimes, the
throughput scaling factors for both orthogonal and zero-forcing
beamforming are upper-bounded as

lim
U→∞

Ror/zf

Nt log logU
≤ 1. (40)

The proof is similar to that for Lemma 4 and hence omit-
ted. In the proof, the upper bound of the throughput scaling
factor in (40) is derived by omitting interference. This im-
plies that reducing interference by increasing the codebook
size N has no effect on this upper bound. Thus it is unnec-
essary to consider the case of N→∞ in the analysis for the
normal SNR regime.

The scheduling algorithm for achieving the equality in
(40) is provided as follows. Define the user index sets

′
T

(m)
n =

{
1 ≤ u ≤ U | su ∈ B(m)

n

(
1

(logU)Nt−1

)}
(41)

and a scalar Uβ := exp (−dmin /4). Then
′
T

(m)
n ⊂ I(m)

n for all

U ≥ Uβ. From each set
′
T

(m)
n , the user with the maximum

channel power is selected. Next, among the selected users, up
to Nt users are scheduled using the criterion of maximizing
throughput. Using this scheduling algorithm and from (12),
a lower-bound of the throughput is obtained as

Ror

≥E
[

max
1≤m≤M

Nt∑

n=1

log

(
1+

γmaxu∈T (m)
n

ρu

1+γ
∑Nt

k=1, k/=umaxu′∈T (m)
k

ρu′(1/logU)

)]

U ≥ Uβ

≥E
[ Nt∑

n=1

log

(
1 +

γmax u∈T (m)
n

ρu

1 + γ
∑ Nt

k=1,k /=umax u′∈T (m)
k

ρu′(1/ logU)

)]

U ≥ Uβ.
(42)

Using the above lower bound, we prove the following theo-
rem.

Theorem 4. In the normal SNR regime, the scaling law for or-
thogonal beamforming is

lim
U→∞

Cor

Nt log logU
= 1. (43)

The proof is given in Appendix F. Again, the proof relies
on the uniform convergence in the weak law of large num-
bers.

A few remarks are in order.

(i) The throughput in the normal SNR regime scales as
log logU but that in the high SNR regime increases as
logU . Therefore, the throughput scaling rate is much
higher in the high SNR regime than in the normal SNR
regime.

(ii) The scaling law in Theorem 4 shows the full multiplex-
ing gain.

(iii) Besides quantized channel shapes, feedback of both
channel power and quantization errors from users are
required.

6.2. Zero-forcing beamforming

This section focuses on the throughput scaling law for zero-
forcing beamforming in the normal SNR regime. A schedul-
ing algorithm for achieving the scaling upper bound in
Lemma 8 is constructed as follows. Define the index sets,
{Tn}Nn=1, similar to (41) but based on the RVQ codebook for
zero-forcing beamforming (cf. Section 3.3.2). Next, define a
new index set

Lk = Jk ∩
( N⋃

n=1

Tn

)
, 1 ≤ k ≤ Nt, (44)
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where Jk is given in (35). From users in each of the sets
{Lk}, the one with the maximum channel power is sched-
uled. Thus, the index set of scheduled users is given as

A =
{

max
u∈Lk

ρu, 1 ≤ k ≤ Nt

}
. (45)

Using the above scheduling algorithm, we obtain the follow-
ing theorem by proving the achievability of the throughput-
scaling upper bound in Lemma 8.

Theorem 5. In the normal SNR regime, the scaling law for
zero-forcing beamforming is

lim
U→∞

Czf

Nt log logU
= 1. (46)

The proof is given in Appendix G. The proof involves re-
peated applications of Lemma 3, which show the uniform
convergence of the numbers of users in the index sets {Tn}
and Jn defined (35), respectively.

Comparing Theorems 4 and 5, the same scaling law
holds for both orthogonal and zero-forcing beamforming
in the normal SNR regime. Furthermore, this scaling law is
identical to that for downlink SDMA with limited feedback
[6, 8, 17].

7. THROUGHPUT SCALING: LOW SNR

In this section, the analysis of the throughput scaling law for
uplink SDMA focuses on the lower SNR regime where chan-
nel noise is dominant. In this regime, the expected SINR in
(5), denoted as Ψ(β), reduces to γ ρu. The following analysis is
presented in Sections 7.1 and 7.2, which correspond, respec-
tively, to orthogonal and zero-forcing beamforming.

7.1. Orthogonal beamforming

In the lower SNR regime, the throughput scaling law for or-
thogonal beamforming is obtained by achieving the upper
bound for the throughput scaling factor in Lemma 8 using a
specific scheduling algorithm. Denote the expected and exact

throughput as R
(β)
or and C

(β)
or , respectively.

A suitable scheduling algorithm can be modified from
that in Section 6.1 by replacing the index sets in (41) with
the following ones:

Ť (m)
n = {1 ≤ u ≤ U | su ∈ B(m)

n

((
dmin /4

)Nt−1)}
,

1 ≤ m ≤M, 1 ≤ n ≤ Nt.
(47)

Note that Ť (m)
n ∩ Ť (m′)

n′ = ∅ for all (m,n) /= (m′,n′).
The modified scheduling algorithm leads to the following
throughput lower bound:

R
(β)
or ≥ NtE

[
log

(
1 + γ max

u∈Ť (m)
n

ρu

)]
. (48)

Using the above throughput lower bound, the through-
put scaling law is obtained and summarized in the following
theorem.

Theorem 6. In the low SNR regime, the scaling law of uplink
SDMA with orthogonal beamforming is given as

lim
U→∞

C
(β)
or

Nt log logU
= 1. (49)

The proof is similar to that for Theorem 4. Specifically,
the proof uses the result of the extreme value theory in (B.6)
and Lemma 3 of the uniform convergence in the weak law of
large numbers. The details of the proof are omitted.

Comparing Theorems 4 and 6, the scaling laws in the
normal and the low SNR regimes are identical. The intuition
is that the interference power decreases continuously with U .
Thus, for a large U , both the low and normal SNR regimes
become noise limited, resulting in the same throughput scal-
ing laws.

7.2. Zero-forcing beamforming

As in the last section, the derivation of the throughput scaling
law for zero-forcing beamforming in the low SNR regime re-
lies on the use of a specific scheduling for achieving the scal-
ing upper bound in Lemma 8. This scheduling algorithm is
simplified from that in Section 6.2 as follows. For the current
algorithm, the scheduled users are selected from the index
sets {Jk} in (35) rather than {Lk} as in Section 6.2. Conse-
quently, the index set of scheduled users is

A =
{

max
u∈Lk

ρu, 1 ≤ k ≤ Nt

}
. (50)

Using the above scheduling algorithm, we prove the follow-
ing theorem.

Theorem 7. In the low SNR regime, the scaling law for zero-
forcing beamforming is

lim
U→∞

Czf

Nt log logU
= 1. (51)

The proof is a simplified version of that for Theorem 7
due to the similarity in scheduling algorithms. Unlike the
previous proof, the current proof requires only one-time ap-
plication of Lemma 3. Similar remarks for Theorem 6 are
also applicable here.

8. NUMERICAL RESULTS

In this section, based on simulation, orthogonal and zero-
forcing beamforming are compared in terms of uplink
SDMA throughput for an increasing number of users U .
Such a comparison is to evaluate the throughput difference
between orthogonal and zero-forcing beamforming in the
practical regime of U . Note that the throughput scaling laws
derived in previous sections indicate the same slopes for the
throughput versus U curves for both beamforming methods
in the asymptotic regime of U . Furthermore, uplink SDMA
with limited feedback is compared with uplink channel-
aware random access proposed in [28], which requires no
CSI feedback.
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Figure 3: Throughput comparisons between orthogonal and zero-forcing beamforming for uplink SDMA in (a) the high SNR regime and
(b) the low SNR regime. The number of antennas at the base station is Nt = 2 and the quantizer codebook size is N = 8. The plotted values
in brackets specify the SNR values in dB.
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Figure 4: Throughput comparisons between uplink SDMA with
limited feedback, SDMA with random scheduling, and uplink ran-
dom access in [28]. The number of antennas at the base station is
Nt = 2; the quantizer codebook size is N = 8; the SNR = 5 dB.

Orthogonal and zero-forcing beamforming are com-
pared for both the high and the low SNR regimes. For sim-
ulation, the scheduling criterion is minimum quantization
error in the high SNR regime and maximum channel power
in the low SNR regime. These criteria are shown to achieve

optimum throughput scaling in Sections 5 and 7. For zero-
forcing beamforming, the scheduling algorithms are modi-
fied from that proposed in [6] by using the above criterions
in greedy-search scheduling. For orthogonal beamforming,
the scheduling algorithms are identical to those proposed
in Sections 5.1 and 7.1. The throughput of orthogonal and
zero-forcing beamforming are compared in Figure 3 for an
increasing number of usersU . For this comparison, the num-
ber of antennas is Nt = 2, the quantizer codebook size is N =
8, and the SNRs are {−5, 0} dB for the low SNR regime and
{20, 30} dB for the high SNR regime. Several observations
are made from Figure 3. First, as shown Figure 3(a) for the
high SNR regime, orthogonal beamforming provides higher
(smaller) throughput than zero-forcing beamforming if the
number of users is large (small). The crossing point between
the curves for orthogonal and zero-forcing beamforming is
at U = 20 for SNR = 20 dB and at U = 28 for SNR = 30 dB.
Second, from Figure 3(b) for the low SNR regime, orthog-
onal beamforming always achieves higher throughput than
zero-forcing beamforming. Note that for U→∞, the curves
for orthogonal and zero-forcing beamforming have identical
slops according to the throughput scaling laws.

In Figure 4, the throughput of uplink SDMA is compared
with that of SDMA with random scheduling and uplink ran-
dom access [28], both of which require no CSI feedback. For
SDMA with random scheduling, a random set of users is
scheduled and their beamformers are columns of a random
orthonormal basis. Note that with single-scheduled users,
SDMA with random scheduling reduces to TDMA. For up-
link random access, transmitting users are selected distribu-
tively using a channel power threshold, which increases with
the total number of users [28]. For fair comparison, the up-
link random access design originally proposed in [28] for
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SISO channels is modified to allow transmit beamforming at
each user who has Nt antennas. For uplink SDMA with lim-
ited feedback, the scheduling algorithms used in the previous
comparison for the low SNR regime are applied. The simula-
tion parameters are SNR = 5 dB, Nt = 2, and N = 8. Several
observations are made from Figure 4. First, the throughput
for uplink SDMA is much higher than that of SDMA with
random scheduling and uplink random access. The through-
put gains of uplink SDMA result from scheduling at the base
station and the support of Nt simultaneous users. Second,
the throughput of SDMA with random scheduling and up-
link random access is insensitive to changes on the number
of users U for the following reasons. Without giving prefer-
ence to users with large channel power, random scheduling is
incapable of exploiting multiuser diversity. Next, uplink ran-
dom access achieves the throughput scaling of log log U but
such a function grows extremely slowly with U . In summary,
uplink SDMA outperforms SDMA with random scheduling
and uplink random access in [28] by a large margin at the
expense of finite-rate feedback from each user. Note that it
is possible to schedule feedback users so as to constraint the
total feedback overhead for uplink SDMA by following an
approach similar to those proposed in [18, 29].

9. CONCLUSION

In this paper, the scaling law of uplink SDMA with limited
feedback is analyzed for different SNR regimes and both or-
thogonal and zero-forcing beamforming. In the high SNR
regime and for orthogonal beamforming, for an increasing
quantizer codebook size, the throughput scales logarithmi-
cally with both the number of users and the codebook size;
for a fixed codebook size, the throughput scales logarithmi-
cally only with the codebook size. For both cases, the linear
scaling factor is smaller than the number of antennas, indi-
cating the loss in spatial multiplexing gain. Similar results are
obtained for zero-forcing beamforming. In the normal SNR
regime, for both orthogonal zero-forcing beamforming, the
throughput is found to scale double logarithmically with the
number of users and linearly with the number of antennas.
The same results are obtained for the low SNR regime.

Simulation results suggest that orthogonal and zero-
forcing beamforming achieve different uplink throughput
in nonasymptotic regimes even though they may follow the
same throughput scaling laws asymptotically. For a small
SNR or a large SNR coupled with many users, orthogonal
beamforming outperforms zero-forcing beamforming. The
reverse is true for a large SNR and a small number of users.

The analysis in this paper opens several interesting top-
ics for future investigation. First, how to design a scheduling
algorithm for uplink SDMA with orthogonal beamforming
that achieves the optimum throughput scaling factor in the
high SNR regime? Second, how to design scheduling algo-
rithms for maximizing uplink SDMA throughput in practi-
cal regimes? Note that the scheduling algorithms discussed
in this paper only ensure the asymptotic throughput scal-
ing. Third, how to select feedback users for reducing the sum
feedback rate along the vein of [18, 29]? Last, what is the rel-
ative efficiency of limited and analog feedback?

APPENDICES

A. PROOF OF PROPOSITION 1

Using the triangular inequality, |∠(vu, ŝu) − ∠(su, ŝu)| ≤
∠(vu, su) ≤ ∠(vu, ŝu) + ∠(su, ŝu). By definitions of ϕu and
θu, the above expression can be rewritten as

∣∣ϕu − θu
∣∣ ≤ ∠

(
vu, su

) ≤ ϕu + θu. (A.1)

From the given condition ϕu + θu ≤ ϕ0 + θ0 < π/2 and (A.1),
cos(∠(vu, su)) ≥ cos(ϕ0 + θ0). Using this inequality, (9), and
(4), then

C = E

[
∑

u∈A
log

(
1 +

γ ρucos2
(
∠
(
vu, su

))

1 + γ
∑

m∈A,m /=u ρmεmβm,u

)]

(a)≥ E

[
∑

u∈A
log

(
1 +

γ ρucos2
(
ϕ0 + θ0

)

1 + γ
∑

m∈A,m /=u ρmεm

)]

≥ E

[
|A| log

(
cos2(ϕ0 + θ0

))

+
∑

u∈A
log

(
1 +

γ ρu
1 + γ

∑
m∈A,m /=u ρmεm

)]

= |A| log
(
cos2(ϕ0 + θ0

))
+ R

≥ log
(
cos2(ϕ0 + θ0

))
+ R.

(A.2)

For (a), note that βm,n ≤ 1. Next, an upper bound is obtained
for the throughput C as follows:

C≤E

[
∑

u∈A
log

(
1+

γ ρu
1+min m∈A,m /=uβm,uγ

∑
m∈A,m /=u ρmεm

)]

≤E

⎡
⎢⎣
∑

u∈A
log

⎛
⎜⎝

⎛
⎜⎝1

/
min
m∈A
m /=u

βm,u

⎞
⎟⎠

+

⎛
⎜⎜⎝γ ρu

/
⎛
⎜⎜⎝min

m∈A
m /=u

βm,u+min
m∈A
m /=u

βm,uγ
∑

m∈A
m /=u

ρmεm

⎞
⎟⎟⎠

⎞
⎟⎟⎠

⎞
⎟⎟⎠

⎤
⎥⎥⎦

≤E

[
∑

u∈A
log

(
1 +

γ ρu
1 + γ

∑
m∈A,m /=u ρmεm

)]

+ |A|E
[
− log

(
min

m∈A,m /=u
βm,u

)]

(a)≤ R + |A| log
(|A| − 1

)
+ 1

Nt − 1

≤ R +
Nt

Nt − 1

[
log
(
Nt − 1

)
+ 1
]
,

(A.3)

where the inequality (a) is obtained by applying Lemma 1.
Combining (A.2) and (A.3) gives the desired result.
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B. PROOF OF LEMMA 4

From (6) and given Assumption 4,

R
(a)≤ E

[
max

1≤m≤M

Nt∑

n=1

log

(
1

max u′∈I(m)
k
εu′

+
(logU + c)max u∈I(m)

n
ρu

min u′∈I(m)
k
εu′

)]

≤ E

{
max

1≤m≤M

Nt∑

n=1

[
log

(
1 + (logU + c)max

u∈I(m)
n

ρu

)

− log

(
min
u′∈I(m)

k

εu′
)]}

(b)≤ NtE
[

log
(

1 + (logU + c) max
1≤u≤U

ρu

)]

−NtE

[
log

(
min

1≤m≤M
min
u′∈I(m)

k

εu′
)]

(B.4)

= NtE
[

log
(

1 + (logU + c) max
1≤u≤U

ρu

)]
−Π. (B.5)

The inequality (a) follows from (max u′∈I(m)
k
εu′ ≤ 1). The in-

equality (b) is obtained by moving the “max” operator in
(B.4) into the summation term. The definition of Π in (B.5)
is obvious.

The following result is well known from extreme value
theory (see, e.g., [8, Equation (A10)]):

Pr
(∣∣∣∣max

1≤u≤U
ρu − logU

∣∣∣∣ < O(log logU)
)
> 1−O

(
1

logU

)
.

(B.6)

From (B.5) and (B.6),

R ≤ Nt log
{

1 + (logU + c)
[

logU + O(log logU)
]}

×
[

1−O
(

1
logU

)]

+ NtE

[
log

(
1 + (logU + c)

U∑

u=1

ρu

)]
O
(

1
logU

)
+ Π

≤ O(log logU) + Nt log
{

1 + (logU + c)UE
[
ρu
]}

×O
(

1
logU

)
+ Π = O(log logU)

+ Nt log
[
1 + (logU + c)UNt

]
O
(

1
logU

)
+ Π.

(B.7)

Last, a close-form expression is derived for Π defined in
(B.5). Since

⋃
1≤m≤MI

(m)
n ∈ {u | 1 ≤ u ≤ U}, Π is upper-

bounded as

Π ≤ NtE
[
− log

(
min

1≤u≤U
εu
)]

(a)= NtE
[
− log

(
min

1≤u≤U
min

1≤n≤M
N−1/(Nt−1)

t βu,n

)]

(b)= Nt

Nt − 1

[
log (MU) + logNt +

1
Nt − 1

]
.

(B.8)

The equality (a) is a property of the quantization for orthog-
onal beamforming [17] where {βu,n} are i.i.d. delta random
variables, (b) is obtained by applying Lemma 1. The desired
result follows from (B.8) and (B.7).

C. PROOF OF LEMMA 5

The proof is divided according to three cases: N = o(U), N =
Θ(U), and N = O(U). Only the proof for the case N = o(U)
is presented below and those for other two cases are omitted
due to their similarity.

To begin, a bins-and-balls model is constructed for mul-
tiuser feedback of quantized channel shapes as follows. In
this model, the U balls of the channel shapes of U users,
which are i.i.d. points, uniformly distributed on the surface
of the unit hyper sphere. The small bins (cf. Section 4.1) are
N congruent disks on the unit hyper-sphere as defined be-
low:

B(m)
n (A) = {s ∈ CNt | ‖s‖2 = 1, 1− ∣∣s†v(m)

n

∣∣2 ≤ A1/(Nt−1)},

1 ≤ m ≤M, 1 ≤ n ≤ Nt,
(C.9)

where A = 1/U is the disk volume. Note that the volume of
the big bin is 1−N/U . Following this definition, each disk (or
small bin) is centered at a code vector in the codebook F (cf.
Section 3.3.1) and has a volume 1/U . The set of balls inside
the small bin B(m)

n is specified by the following index set:

T (m)
n = {1 ≤ u ≤ U | B(m)

n

(
U−1)}. (C.10)

Therefore, the number of balls in B(m)
n is T(m)

n = |T (m)
n |. De-

fine the mth cluster of small bins as {B(m)
n , 1 ≤ n ≤ Nt}.

Furthermore, define the index set for nonempty clusters:

Q = {1 ≤ m ≤M : T (m)
n /=∅ ∀1 ≤ n ≤ Nt

}
. (C.11)

Thus the number of nonempty clusters is Q = |Q|. The
above bins-and-balls model allows us to apply Lemma 1 for
characterizing Q. Specifically, Q satisfies (18) with p = 1/U .

Next, we derive the probability that a small bin lies inside

a Voronoi cell, namely, Pr (T (m)
n ⊂ I(m)

n ), where T (m)
n and

I(m)
n are defined in (C.10) and (13), respectively. This prob-

ability conditioned on a nonempty bin T (m)
n /= ∅ is given in

the following lemma.

Lemma 9. The index sets T (m)
n and I(m)

n have the following
relationship:

Pr
(
T (m)
n ⊂ I(m)

n | T (m)
n /=∅

) ≥
(

1− Nt4Nt−1

U

)M−1

.

(C.12)

Proof. Define sin2θ = U−1/(Nt−1).

Given T (m)
n /= ∅, a sufficient

condition for u ∈ T (m)
n ⇒ u∈I(m)

n is 1−|v†v(m)
n |2≥sin2(2θ)
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for all v ∈ F and v /= v(m)
n , whose proof is straightforward

and hence omitted. Using this sufficient condition,

Pr
(
T (m)
n ⊂ I(m)

n | T (m)
n /=∅

)

≥ Pr
(
1− ∣∣v†v(m)

n

∣∣2 ≥ sin2(2θ) ∀v ∈ F , v /= v(m)
n

)

(a)= [1−Nt(sin 2θ)2(Nt−1)]M−1

≥ [1−Nt
(
4sin2θ

)(Nt−1)]M−1
,

(C.13)

where (a) is a property of the quantization codebook for or-
thogonal beamforming, which consists of M randomly gen-
erated orthonormal sets [17]. The desired result follows from
the last equation and the definition of sin θ.

To use the result based on the bins-and-balls model, the
following variable is defined by replacing I(m)

n in (25) with

T (m)
n :

ε̃ = min
1≤m≤M

max
1≤n≤Nt

min
u∈T (m)

k

εu. (C.14)

A useful result is provided in the following lemma.

Lemma 10. The mean of ε̃ in (C.14) is upper-bounded as

E[ ε̃ ] ≤ U−1/(Nt−1)E
[
Q−1/Nt(Nt−1)

]
, (C.15)

where Q := |Q| andQ is defined in (C.11).

Proof. From (C.14) and the definition of Q in (C.11),

E[ ε̃ ] ≤ E

[
min
m∈Q

max
1≤n≤Nt

min
u∈T (m)

k

εu

]
. (C.16)

For u ∈ T (m)
n , εu ∼= U−1/(Nt−1)β, where β is a beta random

variable (cf. Lemma 1) and∼= denotes the equivalence in dis-
tribution. Therefore, from (C.16) and the definition of T (m)

n

in (C.10), then

E[ ε̃ ] ≤ E
[

min
m∈Q

max
1≤n≤Nt

εu | u ∈ T (m)
k

]

= E
[

min
m∈Q

max
1≤n≤Nt

U−1/(Nt−1)βm,n

]
.

(C.17)

Next, a close-form expression is derived for the lower bound
in (C.17). Since

Pr
(

max
1≤n≤N1

βm,n ≤ ε0

)
= ε(Nt−1)N1

0 , (C.18)

we have Pr (min 1≤m≤N2 max 1≤n≤N1 βm,n ≥ ε0) = (1 −
ε(Nt−1)N1

0 )N2 . Using the above CDF and following the simi-
lar procedure in the proof of Lemma 1 (cf. [21]), we obtain
that

E
[

min
m∈Q

max
1≤n≤Nt

βm,n

]
= E

[
Q−1/Nt(Nt−1)]. (C.19)

The desired result follows from the last equation and (C.17).

Using the above results, the lower bound of the scaling

factor of the expected throughput R(α)
or is readily obtained as

follows. From (24),

R(α)
or ≥ NtE

[
log
(
χ2
n

)]−NtE

⎡
⎢⎢⎣log

⎛
⎜⎜⎝

N∑

k=1
k /=n

χ2
k

⎞
⎟⎟⎠

⎤
⎥⎥⎦−NtE

[
log ε�

]

= O(1)−NtE
[

log ε�
]

(a)≥ O(1)−Nt logE
[
ε�
]

≥ O(1)−Nt logE[ε̃] Pr
(
ε̃ = ε�)

(b)≥ O(1)−Nt log
(
U−1/(Nt−1)E

[
Q−1/Nt(Nt−1)])Pr

(
ε̃ = ε�)

(c)≥ O(1)−Nt log
{
U−1/(Nt−1)

×
[
Mp−

√
logM var(Q)

]−1/Nt(Nt−1)}

× Pr (ε� = ε̃) Pr
(
Q ≥Mp −

√
logMvar(Q)

)

(d)≥ O(1)+

[(
Nt

Nt − 1

)
logU+

1
Nt − 1

logM+O(1)
]

×
(

1− Nt4Nt−1

U

)M−1(
1− 1

logM

)
.

(C.20)

The inequality (a) is the result of the Jensen’s inequality; (b) is
obtained by using Lemma 10; (c) results from Lemma 1. The
inequality (d) is obtained using Lemma 9, (25), and (C.14).
The desired result in Lemma 5 follows from the last inequal-
ity.

D. PROOF OF LEMMA 7

The idea for proof is summarized as follows. Consider a set
of disks as defined in (C.9). A user is said to be in a disk if
his/her channel shape belongs to the disk. First, the uniform
convergence of the numbers of users in the N disks is shown
using Lemma 3. Second, for a large number of users, a disk
is shown to lie inside a corresponding Voronoi cell. With this
result, considering only users in the disks rather than all re-
sults in a throughput lower bound that is tight for a large
number of users.

Consider a set of N disks {B(m)
n (1/ logU)} as defined in

(C.9), each has a volume of 1/ logU . A corollary of Lemma 3
is provided as follows. Define the index set of the users in the
disk B(m)

n (1/ logU):

T̂ (m)
n =

{
1 ≤ u ≤ U | su ∈ B(m)

n

(
1

logU

)}
,

1 ≤ m ≤M, 1 ≤ n ≤ Nt.
(D.21)

The following corollary follows from Lemma 3 by substitut-
ing A = 1/ logU and τ1 = τ2 = 1/ logU .
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Corollary 2. The numbers of users belonging to the index sets
(D.21) satisfy

Pr
(

min
m,n

∣∣T̂ (m)
n

∣∣ ≥ 2U
logU

)
≥ 1− 1

logU
∀U ≥ Uo,

(D.22)

where U is defined in (20) with τ1 = τ2 = 1/ logU .

Next, for a sufficiently large number of users, the disk

B(m)
n (1/ logU) is shown to lie inside the corresponding

Voronoi cell. Define the minimum distance of the codebook
F as

dmin = min
v,v′∈F

1− ∣∣v†v′∣∣2
. (D.23)

Therefore, su ∈ B(m)
n ((dmin /4)Nt−1) ⇒ u ∈ Im,n. Using this

fact and (D.21), there exists Uα such that for all U ≥ Uα,
T̂m,n ∈ Im,n. In other words, users in the disk B(m)

n must
also lie in the corresponding Voronoi cell. Using this fact, a
throughput lower bound follows by replacing Im,n in (32)
with T̂m,n:

R(α)
or ≥ E

[ Nt∑

n=1

log

(
1 +

χ2
n∑ N

k=1,k /=nχ
2
kmin u∈T̂ (m)

n
εu

)∣∣∣∣∣

T̂ (m)
n /=∅ ∀n,m

]
Pr
(
T̂ (m)
n /=∅∀n,m

)

∀U ≥ Uα.
(D.24)

By applying Corollary 2 on (D.24),

R(α)
or ≥ E

[ Nt∑

n=1

log

(
1 +

χ2
n∑ N

k=1,k /=nχ
2
kmin u∈Tm,nεu

)∣∣∣∣∣

∣∣Tm,n
∣∣ ≥ U

2 logU
∀n,m

](
1− 1

2 logU

)

∀U ≥ max
{
Uo,Uα

}

≥ −NtE

⎡
⎢⎢⎣log

⎛
⎜⎜⎝

N∑

k=1
k /=n

χ2
k min
u∈T̂ (m)

n

εu

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣

∣∣Tm,n
∣∣ ≥ U

2 logU
∀n,m

⎤
⎥⎦
(

1− 1
2 logU

)

+NtE
[

log
(
χ2
n

)](
1− 1

2 logU

)
∀U≥ max

{
Uo,Uα

}
.

(D.25)

Using E[log (χ2
n)] = O(1) and by applying Jensen’s inequality,

from (D.25),

R(α)
or ≥ −Nt log

⎛
⎜⎜⎝

N∑

k=1
k /=n

E
[
χ2
k

]
E
[

min
u∈Tm,n

εu |
∣∣T̂ (m)

n

∣∣≥ U

2 logU

]
⎞
⎟⎟⎠

×
(

1− 1
2 logU

)
+ O(1)

≥ −Nt log
(
Nt
(
Nt−1

)
E
[

min
u∈Tm,n

εu |
∣∣T̂ (m)

n

∣∣≥ U

2 logU

])

×
(

1− 1
2 logU

)
+ O(1).

(D.26)

Furthermore, using Lemma 1,

R(α)
or ≥−Nt log

[
N2

t

(
U

2 logU

)−1/(Nt−1)](
1− 1

2 logU

)

+ O(1).
(D.27)

The desired result follows from the above equation.

E. PROOF OF THEOREM 3

The proof procedure is similar to that in Appendix D. To ap-
ply the theory of uniform convergence in the weak law of
large numbers, the following corollary of Lemma 3 is ob-
tained.

Corollary 3. The number of users in the index sets {Jk} satis-
fies the following property:

Pr
(

min
1≤n≤Nt

∣∣Jn

∣∣ ≥ τNt−1
0 U

)
< 1− 1

U
∀U > Uo, (E.28)

where Uo is from (20) with τ1(U) = τ2(U) = 1/U .

Using this corollary and (38),

R(α)
zf ≥ E

[ Nt∑

n=1

log

(
1 +

χ2
n∑ N

k=1,k /=nχ
2
kmin u∈Jnεu

)∣∣∣∣∣

Jn /=∅∀n,m

]
Pr
(
Jn /=∅ ∀n,m

)

≥ E

[ Nt∑

n=1

log

(
γχ2

n∑ N
k=1,k /=nχ

2
kmin u∈Jnεu

)∣∣∣∣∣

Jn ≥ τNt−1
o U − 1 ∀n,m

](
1− 1

U

)
.

(E.29)

Following similar steps in Appendix D, we obtain that

R(α)
zf ≥ O(1)−Nt log

[(
NU

τNt−1
o

)−1/(Nt−1)](
1− 1

U

)
.

(E.30)
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It follows that

lim
U→∞
N→∞

R(α)
zf(

Nt/
(
Nt − 1

))
logU +

(
Nt/
(
Nt − 1

))
logN

≥ 1,

lim
U→∞

R(α)
zf(

Nt/
(
Nt − 1

))
logU

≥ 1.

(E.31)

From the above inequalities, (34), and Proposition 1, we ob-
tain the desired scaling factors.

F. PROOF OF THEOREM 4

From the definition in (41) and by applying Lemma 3,

Pr
(∣∣T (m)

n
∣∣≥ U

(logU)Nt−1

)
>1− 1

2(logU)Nt−1 ∀U>Uo,

(F.32)
where Uo is from (20) with τ1 = τ2 = 1/2(logU)Nt−1. From
(42) and (F.32),

R≥NtE

[
log

(
1+

γmax u∈T (m)
n

ρu

1 + γ
∑ Nt

k=1,k /=umax u′∈T (m)
k

ρu′(1/ logU)

)∣∣∣∣∣

∣∣T (m)
n

∣∣ ≥ U

(logU)Nt−1

](
1− 1

2(logU)Nt−1

)

∀U > U1

(a)≥ NtE

[
log
(

1+
log Ũ −O(log log Ũ)

1/γ +
[

log Ũ + O(log log Ũ)
]
(1/ logU)

)]

×
(

1− 1

2(logU)Nt−1

)[
1−O

(
1

logU

)]Nt

where Ũ = U

(logU)Nt−1 .

(F.33)

It follows from the last equation that lim U→∞(R/
Nt log logU) ≥ 1. The desired result is obtained by combin-
ing the above inequality, Lemma 8, and Proposition 1.

G. PROOF OF THEOREM 5

Define the index set

Ln =
{

1 ≤ u ≤ U | su ∈ Bn

(
1

2(logU)Nt−1

)}
1 ≤ n ≤ Nt.

(G.34)

By applying Lemma 3,

Pr
(∣∣Ln

∣∣ ≥ U

(logU)Nt−1

)
> 1− 1

2(logU)Nt−1 ∀U > U1,

(G.35)

where U1 = max {(3/2)(logU)Nt−1 log [10c(logU)Nt−1], (4/
2)(logU)Nt−1 log [2(logU)Nt−1]}. There exists U0 such that
Ln ∩L′

n = ∅ for all n /= n′.

Next, define Jn = |Jn ∩ (
⋃ Nt

n=1Ln)| and L = |⋃ Nt
n=1Ln|.

Again, by applying Lemma 3,

Pr
(
Jn ≥ τNt−1

o L− log L
)
> 1− logL

L
∀L ≥ L1, (G.36)

where L1=max{(3L/logL) log[10c(L/logL)], (4L/logL)log[2(L/
logL)]}. Denote Ũ = U/(logU)Nt−1:

R≥
Nt∑

n=1

E

[
log

(
1+

γmaxu∈Jnρu

1+γ
∑N

k=1,k /=nmaxu′∈Jk ρu′
(
2−1/(Nt−1)/ logU

)

)∣∣∣∣∣

L ≥ Ũ

]
Pr (L ≥ Ũ)

≥
Nt∑

n=1

E

[
log

(
1+

γmax u∈Jnρu

1+γ
∑N

k=1,k /=nmaxu′∈Jk ρu′
(
2−1/(Nt−1)/ logU

)

)∣∣∣∣∣

Jn ≥ τNt−1
o Ũ − log Ũ

]

Pr
(
Jn ≥ τNt−1

o Ũ − log Ũ | L ≥ Ũ
)

Pr (L ≥ Ũ)

≥
Nt∑

n=1

E
[

log
(

1 +
γ log U

1 + γ logU
(
2−1/(Nt−1)/ logU

)
)]

U −→ ∞.
(G.37)

The desired result following from the last inequality and
Proposition 1.
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