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1. INTRODUCTION

In 1973 Black, Scholes and Merton [1, 2] reasoned that under
certain idealized market assumptions the prices of stocks and
the derivatives on these stocks are coupled. One of the crucial
assumptions is that the traded asset price S follows

dSt = μStdt + σStdBt, (1)

where Bt is a Brownian motion. μ and σ are called, respec-
tively, drift and volatility of the stock; both are deterministic
constants. Nevertheless, it turns out that the assumption of
constant volatility does not hold in practice.

Traders in the market are supposed to assess returns
which have different horizon times in order to predict
volatility. Researchers in empirical finance have, therefore,
developed an increasing interest in the possibility of uncov-
ering the complex volatility dynamics that exist both within
and across different financial markets. Even to the most
casual observer of markets, it should be clear that volatility
is a random variable. Stochastic volatility models provide
a framework for such modeling, especially when dealing
with high frequency data. Shephard and Andersen trace the
origins of the subject in [3] and attributes it to five sets
of people. Back in 1995, the ARCH/GARCH models were
a hot topic in econometrics research, and their discoverer,
Robert Engle, published a collection of papers on the topic.

Now, ten years later, the ARCH/GARCH models are still
widely used but their limitations are motivating research
into alternative models, specifically, stochastic volatility
models (usually abbreviated as SV models). In modern
finance, stochastic volatility models represent the latest
research which tries to understand financial volatility in
continuous time. The resulting process is the nonnegative
spot volatility which is assumed to have càdlàg sample paths.
The preference given to SV models necessarily follows from
the theoretical development of stochastic calculus, which
is closely related to continuous time Markov processes. SV
models are expected to allow for more comprehensive empir-
ical investigation of the fundamental determinants of certain
phenomena:

(a) options with different strikes and maturities have
different implied volatilities;

(b) the empirical distributions of stock returns are lep-
tokurtic.

SV models, consequently, allow for safer measures of risk, for
pricing accurately and for hedging options.

We refer to Shephard (2005) [4] in order to have a
thorough account of the topic of stochastic volatility. All the
following studies, for instance, Hull and White (1987) [5],
E. M. Stein and J. C. Stein (1991) [6], Heston (1993) [7],
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Scott (1997), support only offline processing. They aim to
calibrate a given model for the volatility dynamics, on the
observed sample path of the asset price. The main feature of
the method proposed in this paper is an online estimation
of volatility: the object to be estimated is one particular
trajectory of the volatility process. We use the trajectory of
the stock price process, as and when its observation proceeds.
Jazwinski in [8] studied the problem of online estimation
within continuous time models. In the context of a nonlinear
model identification, the use of nonlinear filters such as the
unscented Kalman’s filter [9, 10] is required.

It is proven, however, in [10, 11] that traditional UKF
is ill-suited for the problem of time-varying volatility
estimation. Actually, the UKF never updates prior beliefs,
and consequently, it is not able to track volatility fluctuations.
We do, however, implement UKF as literature provides no
online estimation methods for volatility. Furthermore, we
have recourse to an offline estimation method. It is based
on an SV model: a continuous time model of volatility
dynamics in the form of a stochastic differential equation. Its
driving process is Lévy rather than Brownian. The method
has been the subject of a recent paper [12]. The model
frame is built by a “shaping filter” technique [13], using
prior information on the covariance function of the squared
volatility process.

2. THE PROPOSEDMETHOD

To estimate the latent instantaneous volatility σt of the stock
price St, the stochastic differential equation for the log-price
yt = log St is considered. Applying Itô’s formula to (1) yields

dyt =
(
μ− σ2

t

2

)
dt + σtdBt. (2)

This SDE may be expressed as

dyt = F(t)dt. (3)

The basic idea of the proposed method is to build a predictor
from (3) for the observation yt at t = ti+1. Consequently, (3)
is to be discretized at observation instants; this leads us to the
question of numerical stability of discretization schemes. It is
well known that implicit schemes, such as

yi+1 = G(yi−1, yi,Fi,Fi+1, . . .) (Fi = F(ti)), (4)

guarantee numerical stability better [14]. Generally, implicit
formulae use constant time steps. However, since observa-
tions here are made according to arbitrary sampling (i.e.,
discretization instants are not necessarily equally spaced),
only the so-called order-1 and order-2 Adams Moulton
formulae are applicable. It is indeed the latter formula (the
trapezoidal) that has been chosen:

yi+1 = yi +
ti+1 − ti

2
[Fi + Fi+1]. (5)

Previously, it has also been used for the identification of a
continuous time autoregressive model [15]. Equations (2)–
(5) lead to

yi+1 = yi + μ(ti+1 − ti)− (ti+1 − ti)
4

(σ2
i + σ2

i+1)

+
1
2
σiΔBi +

1
2
σi+1ΔBi+1.

(6)

The terms holding the Brownian increments ΔB have
null expectations. Thus the following predictor ŷi+1 of the
observation yt at t = ti+1 is unbiased:

ŷi+1 = yi + μ(ti+1 − ti)− (ti+1 − ti)
4

(σ2
i + σ2

i+1). (7)

The sense of this choice is that the best model will cause
the drift to capture the main course line of the dynamics to
the detriment of the diffusion part. Having such a predictor,
the estimate of σi+1 (σt at t = ti+1) that minimizes the
mean square prediction error is computed in a recursive
way using a stochastic gradient algorithm, the so-called least
mean squares algorithm abbreviated to LMS. In this context,
the LMS minimizes at each discretization time the following
criterion J :

J (i) = (yi − ŷi
)2

, (8)

using a gradient optimization formula:

σ̂i+1 = σ̂i − λ
∂J

∂σi

∣∣∣∣
σi=σ̂i

. (9)

The resulting formulae are ordered as follows:

σ̂ (1)
i+1 = σ̂ (1)

i

(
1− λ

(
yi − ŷi

)
(ti+1 − ti)

)
,

ŷi+1 = yi + μ(ti+1 − ti)− (ti+1 − ti)
4

(
σ̂2
i +

[
σ̂ (1)
i+1

]2
)

,

σ̂i+1 = σ̂i
(
1− λ

(
yi+1 − ŷi+1

)
(ti+1 − ti)

)
.

(10)

Initial values ŷ0, σ̂ (1)
0 and σ̂0 are taken nonstrictly null but

arbitrarily small. As usual when using an LMS algorithm, it
is the parameter λ that is responsible for the robustness and
the right track [16].

3. ILLUSTRATION

In order to show the performance of the proposed method,
different models for the volatility are considered. A constant
volatility, for example, is useful in order to evaluate the
performance in terms of residual error. A volatility sample
path as a step function is interesting in order to evaluate the
influence of the initial value on convergence. In addition,
it has been widely documented that there is a systematic
pattern in average volatility; where this is the case, we will
show how estimation of the periodic component of the
volatility is feasible. Furthermore, the volatility is modeled
as a stochastic process, the solution for an SDE of Vasicek.
Finally, we apply our method to real data: the German
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Figure 1: True constant volatility (dashed) versus its estimate
(continuous).

electricity price observed each hour from the 1st of July 2000
to the 30th of June 2001 and the daily price of the Hang
Seng index of the Hong Kong market from 1995 to 2007. It
is worth noting that in all illustrative synthetic examples of
this paragraph, the parameters can be chosen arbitrarily. The
only essential thing to account for are realistic values of the
volatility.

The proposed method is compared with the UKF for,
first, the case of a periodic function of time, and second
the case of a “synthetic” stochastic process. UKF is based
on a state which has the unobservable volatility process as
one of its components. UKF equations of the time and mea-
surement updates for the first moment μ of the conditional
density are, respectively,

μ(ti+1|ti) = μ(ti|ti) + E(Fi)(ti+1 − ti),

μ(ti+1|ti+1) = μ(ti+1|ti),
(11)

Estanding for the mathematical expectation. UKF, thus,
does not update prior estimates μ(ti+1|ti), and consequently
it is not able to track time-varying volatility. Similar behavior
is exhibited in [10, 11].

Next, a comparison is made between the above method
and an offline estimation of the volatility. The latter was
proposed in [12] which deals with the construction of a
black-box continuous time model for the squared volatility
process in the form of a stochastic differential equation.
The starting point in this construction is a parametric form
for the covariance function of this process. The model
frame derives from a control theory technique known as the
shaping filter. We give a brief account of the work presented
in [12] and show that our present study outperforms it.

As regards observations, they are made according to both
periodic and nonperiodic sampling schemes. For instance,
the case of jitter sampling, as in [15], is considered in
Section 3.2. The obtained performance is as good as that of a
periodic sampling scheme.
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Figure 2: True volatility (dashed) versus its estimate (continuous).

3.1. Constant volatility

The observations are simulated with a volatility of 0.15.
The initial value of the volatility, in the proposed method,
is deliberately taken equal to the true value (= 0.15) so
that we evaluate the residual estimation error. A periodic
sampling scheme has been used. The result is reported in
Figure 1. Both the mean value and the standard deviation
of the relative error of estimation are about 1% and
6%, respectively. They are calculated by time averaging
since the volatility value is constant along its trajec-
tory.

3.2. Volatility as a step function

In order to illustrate the convergence behavior of the
proposed method, a step function with the initial value
of 0.1 and the final value of 0.2 is taken as the volatility
sample path. The proposed method is implemented with
an initial value of 0.1 for the volatility. A jitter sampling
scheme has been used with maximum value of half the
sampling period. Many simulations have been carried out
with different values of λ; the value 0.04 for λ makes a good
tradeoff between robustness and right track. The result is
reported in Figure 2; it shows the capability of the algorithm
to follow rapid variations even for nonuniformly sampled
data. Both the mean value and the standard deviation of
the relative error of estimation are about 1% and 10%,
respectively. Here again they are calculated by time averaging;
this is legitimate since there is piecewise repetition of the
volatility value along its trajectory. To explore further the
performance evaluation of this result, we have computed
the Theil index. It is approximately 3·10−5. The Theil index
formula is

Theil = 1
N

∑
samples

σest

σref
log
(
σest

σref

)
. (12)
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Figure 3: True volatility (dashed) versus the mean for 100 of its
estimates (continuous).

Here N is the number of samples in the reference trajectory
to be estimated. σest is the estimate of the volatility σt
at t = ti+1, denoted by σ̂i+1 in Section 2, and σref is the
reference: the (true) volatility σt at t = ti+1, denoted
σi+1 (i = 0, . . . ,N − 1).

In addition, Monte Carlo simulations have been carried
out: the mean sample path for 100 estimated trajectories of
the volatility is reported in Figure 3. The mean value and
the standard deviation of its relative error of estimation
are about 1% and 5%, respectively. This shows that the
standard deviation of the estimation error drops significantly
as the simulation number increases. That is, as expected, the
empirical mean sample paths are to converge to the true
mean.

As has been said in the introduction to Section 3,
the parameters can be chosen arbitrarily within all syn-
thetic examples. The only essential thing to take into
consideration is the realistic values of the volatility. The
general validity of our method should thus be studied
by varying these parameters. They are the initial and
the final values of the step function in the context of
this subsection. Column 1 in Table 1 shows initial values
of three different step functions; column 2 shows their
corresponding final values. Columns 3 and 4 show the
mean value and the standard deviation of the relative error
of estimation obtained by Monte Carlo simulations (25
estimated trajectories of the volatility for each couple of
parameters). The last two columns show the mean Theil
index of the 25 estimated trajectories of the volatility using
our method versus the Theil index of UKF for each couple of
parameters.

3.3. Volatility as a deterministic periodic
function of time

Whenever the volatility is subject to seasonality, we wish to
recover the season(s) using our method. We consider the
following deterministic function of time for the volatility
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Figure 4: True (dashed) versus estimated volatility: proposed
method (continuous), UKF (dotted).

trajectory:

σ(t) = a0 + a1 sin(ω1t) + a2 sin(ω2t). (13)

The pulsations ω1 and ω2 correspond to a one-week and
a one-day seasonality; this is, for instance, the case of
German electricity price treated in 3.6. a0, a1 and a2 are
chosen so as to have realistic values of the volatility. In
the simulation of Figure 4, they are 0.15, 0.05, and 0.01,
respectively.

Both the true volatility and its estimate for a periodic
sampling scheme, and for λ of 0.07, are plotted in Figure 4.
The estimated volatility using UKF is constant, yet the
proposed method is able to track the volatility oscillations.
The Theil index is about 10−3; UKF yields a Theil index
of 10−2. The mean value and the standard deviation of the
relative error are about 1% and 16%, respectively; they are
calculated by time averaging. To justify this, we do check
error ergodicity. This is done by fixing an instant, repeating
again the simulation several times with respect to the same
volatility trajectory till this instant. The mean value and
the standard deviation of the relative error for this instant
are obtained by averaging on simulations. Their values are
in the order of what is given above. Besides, we proceed
likewise in the following (the mean value and the standard
deviation of the relative error are to be calculated by time
averaging).

The mean trajectory of 100 estimated trajectories of the
volatility is reported in Figure 5. The mean value and the
standard deviation of its relative error of estimation are about
1% and 8%, respectively. In addition, the power spectral
densities (PSD) for the true volatility sample path and the
mean of its estimates are confronted in Figure 6; the two
PSDs therein are clearly close to each other.

We furthermore vary the parameters a1 and a2 and
perform Monte Carlo simulations (100 estimated trajectories
of the volatility for each couple of parameters) so that we
obtain the results in Table 2.
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Table 1

Initial value Final value Relative error mean Relative error StD Theil index Theil index UKF

0.1 0.2 −0.2·10−5 0.05 2·10−3 0.2

0.05 0.25 0.6·10−4 0.1 4·10−2 1.49

0.01 0.29 −1.5·10−4 0.06 1.5·10−2 20

Table 2

a1 a2 Relative error mean Relative error StD Theil index Theil index UKF

0.05 0.01 0.015 0.08 10−4 3·10−2

0.1 0.01 2·10−2 0.1 2·10−3 0.4
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Figure 5: True volatility (dashed) versus the mean for 100 of its
estimates (continuous).

3.4. Volatility as a stochastic process

To synthesize sample paths of the volatility process as well as
the stock price, the following SDE of Vasicek is considered:

dσt = α(θ − σt)dt + ξdBt , (14)

where α = 0.0001, θ = 0.15, and ξ = 0.0007. We assume the
drift μ is known (μ = 0.015). The true volatility sample path
and the estimated one, using both the proposed method and
UKF, are reported in Figure 7. The volatility is estimated at
every half hour for 416 days. For this simulation, we choose
the initial value of the volatility equal to θ(= 0.15). As above,
the estimated volatility using UKF is constant. The proposed
method, however, is able to track the volatility fluctuations.

The empirical distribution of the estimation error for the
sample path in Figure 7 is reported in Figure 8. Like UKF,
the proposed method is subject to bias, but the bias is clearly
smaller. The standard deviation obtained with UKF is 0.033,
whereas within the proposed method, it is 0.015.

3.5. Illustration using real data

Figure 9 shows the daily price of the Hang Seng index of
the Hong Kong market from 1995 to 2007. This sample
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Figure 6: PSD of the true volatility (continuous) and that of its
estimate (dotted).

path exhibits a volatility clustering phenomenon: periods
of high-price fluctuations are followed by periods of high
fluctuations, and the same can be said about periods of low-
price fluctuations. The implementation result on this sample
path is shown in Figure 10. Notice the beginning of a period
of high volatility around the 700th day; this corresponds to
the Asian financial crisis of October 1997.

3.6. Comparisonwith offline estimation
of the volatility

We assume prior information about the unknown process
(σt)

2: its stationarity in the large sense and a parametric
model for its covariance function. Let the covariance func-
tion of the process (σt)

2 be given by the following formula:

k(τ) = De−α|τ| α > 0, (15)

where D is the process variance. This type of covariance
function allows one to fit the observed time dependence in
the returns. Such a covariance function includes memory in
the correlation pattern of the volatility. The spectral density
of (σt)

2 is then given by the formula

s(ω) = 1
2π

2Dα
ω2 + α2

. (16)
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Figure 7: True (continuous) versus estimated volatility sample
path: proposed method (dotted), UKF (dashed).
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Figure 8: Empirical distribution for the estimation error. (a) The
proposed method, (b) UKF.

The spectral density s(ω) is rewritten as

s(ω) = 1
2π

∣∣∣∣H( jω)
F( jω)

∣∣∣∣
2

, ω ∈ R, (17)

where

H( jω) =
√

2Dα, F( jω) = jω + α. (18)

Now

Φ(s) = H(s)
F(s)

, s ∈ C, (19)

represents the transfer function of a stationary linear system;
the system is, furthermore, stable as the root of F(s) is in
the left half-plane of the complex variable s. Recalling that
1/2π is the spectral density of a white noise of intensity 1, we
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Figure 9: Log-price of the Hang Seng index.
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Figure 10: Estimated volatility sample path.

come to the following conclusion. (σt)
2 may be considered

as the response of the filter whose transfer function is Φ(s)
to a white noise with unit intensity. From the ordinary
differential equation describing such a filter, we obtain the
following stochastic differential equation as a model for
the squared volatility process (σt)

2. This is the first state
component denoted by X1

t :

dX1
t = X2

t dt,

dX2
t = −αX1

t dt −
√

2DαdWt.
(20)

Here, W is a stochastic process with independent and
stationary increments of intensity 1. If we suppose that
W starts at 0 and that its trajectories are continuous in
probability, then we can give it the name Lévy process. We
suppose further the existence of stationary solutions to the
SDE when W has positive increments so as to assure the
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Figure 12: Histograms of online volatility estimate (b) and an
offline one (a).

positivity of X1
t . According to the above notation, (2) is

rewritten in the form

dyt =
(
μ− X1

t

2

)
dt +

√
X1
t dBt. (21)

We suppose that the condition in the proposition of
paragraph 4 of [12] applies, which ensures that (20) has
stationary solutions. We then calibrate the model (20)-
(21) on the observations from which seasonality has been
removed. The calibration is based upon stochastic calculus
and the Lévy processes theory.

First, we apply the above offline method to electricity
price; observations of the German market for each hour from
the 15th of June 2000 to the 31st of December 2003 are
processed. Figure 11 shows the asset log-price trajectory. The
obtained variance D and rate α amount to around 2.98·10−6

and 0.03, respectively. Figure 12 displays two histograms: at
the top is the histogram of the sample path of the volatility
process obtained from the above method, at the bottom is
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Figure 13: Histogram of sample paths for the true volatility (a),
histogram of the offline volatility estimate (b), and histogram of the
online volatility estimate (c).

the histogram of the volatility sample path estimated by the
main method of the paper. Second, since volatility is actually
impossible to observe, showing only an application of the
online method on real data is not ideal for a comparison with
the offline method of this subsection. We compare the two
methods on the synthetic stochastic process of Section 3.4;
this is shown in Figure 13 below.

4. CONCLUSION

Evidence to date suggests that stochastic volatility models for
market prices are likely to be useful in practice. A real-time
estimation algorithm of the volatility when observing the
market asset price is proposed. The obtained estimate shows
a clear improvement of precision when compared with the
unscented Kalman filter. The proposed method inherits a low
computational cost from LMS algorithms. Our algorithm
has a complexity of 9 elementary operations per sample.
It outperforms the offline method inasmuch as it does not
require any effort to transform data, for example, to take
seasonality off. This, on the other hand, was necessary in the
method of the previous subsection.
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