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This paper investigates a time-division multiuser multiple-input multiple-output (MIMO) antenna system in K-block flat fading
where users are given individual outage rate probability constraints and only one user accesses the channel at any given time slot
(or block). Assuming a downlink channel and that the transmitter knows only the statistical information about the channel, our
aim is to minimize the overall transmit power for achieving the users’ outage constraint by jointly optimizing the power allocation
and the time-sharing (i.e., the number of time slots) of the users. This paper first derives the so-called minimum power equation
(MPE) to solve for the minimum transmit power required for attaining a given outage rate probability of a single-user MIMO
block-fading channel if the number of blocks is predetermined. We then construct a convex optimization problem, which can
mimic the original problem structure and permits to jointly consider the power consumption and the probability constraints
of the users, to give a suboptimal multiuser time-sharing solution. This is finally combined with the MPE to provide a joint
power allocation and time-sharing solution for the time-division multiuser MIMO system. Numerical results demonstrate that
the proposed scheme performs nearly the same as the global optimum with inappreciable difference.
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1. INTRODUCTION

Due to the instability nature of wireless channels, there has
long been the challenge of communicating reliably and effi-
ciently (in terms of both power and bandwidth) over wireless
channels [1], and the subject of providing diversity transmis-
sions and receptions is still a very hot ongoing research area
today. An attractive means to obtain diversity is through the
use of multiple antennas (or widely known as multiple-input
multiple-output (MIMO) antenna systems), which gain di-
versity benefits without the need for any bandwidth expan-
sion and increase in transmit power (e.g., see [2–8]).

In the past, most efforts focused on which rate a partic-
ular wireless channel can support. In particular, in an addi-
tive white Gaussian noise (AWGN) channel, practical coding
techniques with finite (but long) code length are available to
approach the Shannon capacity within a fraction of decibel
[9, 10]. Later in [11], Goldsmith and Varaiya derived the er-
godic capacity of a fading channel and showed that ergodic
capacity can be achieved without knowing the channel state
information at the transmitter (CSIT) if a very long code-
word is permitted. Similar conclusion has also been drawn

to MIMO channels [2, 3], which offer a capacity increase by
a factor determined by the rank of the channel. Results of this
sort are undoubtedly important to system optimization if the
aim is to maximize the rate over a wireless channel.

However, for delay-sensitive applications, the rate is usu-
ally preset and the preferred aim would be to minimize the
transmission cost for a given outage probability constraint
(i.e., the probability that the target rate is not reached) [12–
18]. To model this, it is customary to consider a K-block fad-
ing channel in which the fade is assumed to occur identically
and independently from one block to another, but it remains
static (or time-invariant) within a block (A packet of infor-
mation data for communications may be regarded as a block.
In the context of this paper, the terminologies such as block,
packet and time slot will be used interchangeably.) of sym-
bols [19]. In light of this, a delay constraint can be described
as the probability of the outage event, which allows to in-
clude the target rate, the time-delay in the number of blocks,
and the outage tolerance in probability as a single constraint
[17, 18].

Recently, there have been some profound contributions
in delay-limited channels assuming the use of causal CSIT.
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In [14], Negi and Cioffi investigated the optimal power
control for minimizing the outage probability using a dy-
namic programming (DP) approach with certain power con-
straints. Similar methodology was also proposed in [15] for a
two-user downlink channel for expected capacity maximiza-
tion with a short-term power constraint. Furthermore, in
[16], Berry and Gallager looked into the delay-constrained
problem taking into account the size of the buffer. Most re-
cently in [17], an algorithm that finds the optimal power allo-
cation over the blocks to minimize the overall transmit power
while constraining an upper bound of the outage proba-
bility constraint was proposed. Unfortunately, the assump-
tion of having perfect CSIT is questionable, and the required
amount of channel feedback may not justify the diversity
gain obtained from the intelligent power control.

The scope of this paper is fundamentally different from
the previous works in that field. Only the receiver has per-
fect channel state information (CSIR), but the transmitter
knows only the channel statistics (CST). Moreover, a time-
division multiuser MIMO system in the downlink is con-
sidered. (Note that the works in [12–17] are all limited to
single-user (or two-user) single-antenna channels.) In this
setup, each user is given an individual outage rate probability
constraint and only one user is allowed to access the channel
for each block. Our goal is to optimize the power allocation
among the users and to schedule the users smartly so that the
overall transmit power is minimized while the outage proba-
bility constraints of the users are satisfied. Assuming that all
users are subjected to a delay tolerance of K-blocks, (The re-
sult of this paper is extendable to the case where users have
different K . However, this assumption greatly simplifies the
presentation of this paper and makes it more accessible to
the readers.) the exact order of how the users are scheduled
within the blocks is irrelevant. As a consequence, our aim
boils down to finding the optimal power allocation and the
optimal time-sharing (i.e., the number of blocks/time slots
assigned) among the users. The problem under investigation
is specially crucial if the target rates of the users are predeter-
mined and the cost of transmission is to be minimized with
only statistical channel feedback. Note that this paper can be
thought of as an extension of [18] to MIMO channels.

Our proposed approach is based on two major contri-
butions: (1) the minimum power equation (MPE), and (2)
a convexization of the original multiuser joint power allo-
cation and time-sharing problem by upper bound formula-
tion and relaxation. The solution of the MPE gives the min-
imum transmit power required for ensuring a given outage
rate probability for a single-user MIMO n-block fading chan-
nel, while the convex problem enables to find a sensible time-
sharing solution for a time-division multiuser MIMO chan-
nel by taking into account both users’ potential power con-
sumption and their likelihood of being in an outage. An algo-
rithm that intelligently combines the MPE and convex prob-
lem is presented to obtain a suboptimal joint multiuser time-
sharing and power allocation solution, which will be shown
by numerical results to yield near optimal performance with
inappreciable difference.

The remainder of the paper is structured as follows. In
Section 2, we present the block-fading channel model for a

time-division multiuser MIMO antenna system, and formu-
late the joint multiuser time-sharing and power allocation
problem. Section 3 derives the MPE for a single-user MIMO
block-fading channel. Section 4 proposes a convex problem
to obtain a suboptimal multiuser time-sharing solution. In
Section 5, an algorithm which finds a joint time-sharing and
power allocation solution is presented. Numerical results will
be provided in Section 6. Finally, we have some concluding
remarks in Section 7.

2. SYSTEMMODEL AND PROBLEM FORMULATION

2.1. Single-userMIMOblock-fading channel

Let us first assume a block flat-fading noisy channel as in [14,
17, 19]. Every set of information symbols T0 is encoded as
a single codeword and transmitted as one block (in a time
slot). Data are required to arrive at the receiver in at most K-
blocks of symbols. The channel is assumed to fade identically
and independently from one block to another, but the fade
can be considered static within a block of T0 symbols. (In
this paper, the exact value of T0 is not important but it is
assumed to be large enough so that noise can be averaged out
from the information-theoretic perspective and the classical
Shannon capacity formula is permitted.) We will use ck to
denote the channel power gain in block k and assume that
the channel amplitude

√
ck is in Rayleigh fading so that ck

has the following probability density function (pdf):

F
(
ck
) =

{
e−ck , ck ≥ 0,

0, ck < 0.
(1)

For a given block, say k, the Gaussian codebook is used with
an assigned power of Q/K per block (i.e., with total power of
Q), and the rate can be expressed in bps/Hz as

rk = log 2

(
1 +

C0d−γQck
KN0

)
, (2)

where N0 is the noise power, d denotes the distance between
the transmitter and the receiver, γ is the power loss exponent,
and C0 is the distance-independent mean channel power
gain. An outage is said to occur if

∑ K
k=1rk ≤ R for some target

rate R.
Our assumption is that the transmitter knows (1) and

the channel statistical parameter C0d−γ (i.e., CST), but the
receiver knows {cn}n≤k at time slot k (i.e., CSIR) so that
maximum-likelihood decoding can be used to realize the rate
in (2).

The above single-antenna model can be extended easily
to a channel with MIMO antennas. This extension can be
done by replacing the scalar channel

√
ck by a matrix channel,

Hk = [h(k)
i, j ] ∈ Cnr×nt , where nt and nr antennas are, respec-

tively, located at the transmitter and the receiver. The ampli-

tude square of each element, |h(k)
i, j |

2
, has the pdf of (1) as that

of ck, and the elements of Hk are independent and identically
distributed (i.i.d.) for different k and antenna pairs. The rate
achieved for block k can be written in bps/Hz as [3]

rk = log 2 det
[
I +

(
C0d−γQ
ntK

)
HkH

†
k

N0

]
, (3)
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where det (·) denotes the determinant of a matrix, and the
superscript † is the conjugate transposition. In (3), we have
used the fact that the transmit covariance matrix at time k
is QI/ntK because the transmitter does not have the instan-
taneous channel state information, and thus it transmits the
same power across the antennas. By transmitting power of
Q/ntK at each antenna, the transmit power at each block is
kept as Q/K . For conciseness, in the sequel, we will assume
that nt ≥ nr and that the matrix Hk is always of full rank.
The case of nt < nr can be treated in a similar way and thus
omitted.

2.2. Time-divisionmultiuserMIMO system

In a time-division multiuser system, each block (or time slot)
will be given to one of the users. If CSIT is available, it will
be possible to gain multiuser diversity by assigning the time
slot to a user with a strong channel. In that case, schedul-
ing of users will be specific to the instantaneous CSIT. In this
paper, however, only CST is known to the transmitter, and
multiuser diversity of such kind is not obtainable. In what
follows, the exact order of how the users are scheduled for
transmission within the K-blocks is unimportant, and the
only thing that matters is the amount of channel resources
(such as the number of time slots) allocated to the users.

As a result, for a U-user system wherewu time slots are al-
located to user u (note that

∑
uwu ≤ K), we can now assume,

without loss of generality, that user u accesses the channels in
time slots (or blocks) k such that

k ∈Du ≡
{

∀k ∈ Z :
u−1∑

j=1

wj + 1 ≤ k ≤
u∑

j=1

wj

}

. (4)

Following the model described previously, the sum-rate at-
tained for user u is given in bps/Hz by

∑

k∈Du

rk =
∑

k∈Du

log 2 det

[

I +
(
C(u)

0 Qu

ntwu

)
H(u)

k H(u)†
k

N0

]

, (5)

where Qu denotes the transmit power, H(u)
k is the MIMO

channel matrix from the transmitter to user u at slot k, and
C(u)

0 � C0d
−γ
u refers to the mean channel power gain between

the transmitter and user u. The statistical property of the am-

plitude squared entries of H(u)
k follows exactly (1).

Given a target rate Ru for user u in K-blocks, an outage
will occur if

∑
k∈Du

rk < Ru, and the outage tolerance of a user
can be characterized by the outage probability constraint

P

({
∑

k∈Du

rk < Ru

})

≤ εu, (6)

where P (A) denotes the probability of an event A, and εu
denotes the maximum allowable outage probability for user
u. Note that (6) can be viewed as a probabilistic delay con-
straint which enables us to consider requirements such as
target rate (Ru), outage tolerance (εu), and time delay in a
number of time slots (K) altogether [17].

2.3. The jointmultiuser time-sharing and
power allocation problem

The problem of interest is to minimize the overall transmit
power (i.e.,

∑
uQu) while ensuring the users’ individual out-

age probability constraints by jointly optimizing the time-
sharing (i.e., the number of allocated time slots {wu}) and
the power allocation (i.e., {Qu}) for the users. Mathemati-
cally, this is written as

M �−→

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
{Qu},{wu}

U∑

u=1

Qu s.t.P
({ ∑

k∈Du

rk ≤ Ru

})
≤εu∀u,

Qu ≥ 0 ∀u,

U∑

u=1

wu ≤ K , wu ∈ {1, 2, . . . ,K −U + 1}∀u,

(7)

where

(i) Qu is the total power allocated to user u;

(ii) wu is the number of blocks (or the amount of time)
allocated to user u;

(iii) Du is the set storing the indices of the channel assigned
to user u;

(iv) U is the total number of users;

(v) K is the number of blocks;

(vi) Ru is the target rate for user u;

(vii) εu is the outage probability requirement for user u.

The challenge of M is that it is a mixed integer problem
which has no known method of achieving the global opti-
mum [20]. The rest of the paper will be devoted to solving
(7). In particular, Section 3 will look into obtaining the op-
timal {Qu} for a given {wu}. Section 4 will focus on finding
the suboptimal time-sharing parameters {wu} using relax-
ation followed by convex optimization. Section 5 combines
the two approaches to suboptimally solve (7). Numerical re-
sults in Section 6 will, however, show that the proposed sub-
optimal method performs nearly the same as the global opti-
mum with inappreciable difference.

3. MINIMUM POWER EQUATION

In this section, we will derive an equation to determine
the minimum power required for attaining a given outage
rate probability if the number of blocks is fixed. In time-
division systems, as each block is occupied by one user only,
if {wu} are fixed, then the optimization for the users is com-
pletely uncoupled and will be equivalent to multiple individ-
ual users’ power minimization. Therefore, it suffices to focus
on a single-user system for a given number of blocks, n, or

min
Q≥0

Q s.t.P
({
r1 + r2 + · · · + rn ≤ R

}) ≤ ε, (8)

where the user index u is omitted for convenience.
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To proceed further, we rewrite the outage probability as
follows:

Pout � P

({ n∑

k=1

log 2 det

[

I +
(
C0d−γQ
ntn

)
HkH

†
k

N0

]

≤ R

})

= P

({ n∑

k=1

log 2 det
(
I +

C0d−γQΛk

N0ntn

)
≤ R

})

,

(9)

where Λk � diag (λ(k)
1 , λ(k)

2 , . . . , λ(k)
nr ) with λ(k)

1 ≥ λ(k)
2 ≥ · · · ≥

λ(k)
nr > 0 standing for the ordered eigenvalues of HkH

†
k . Note

also from our assumption that nr = min {nt,nr} = rank(Hk)
for all k. The random variables of the outage probability are

the eigenvalues {λ(k)
j } whose joint pdf is [21]

F (Λ) =
(∏ nr

i=1λi
)nt−nr e−

∑ nr
i=1λi

nr !
∏ nr

i=1

(
nr − i

)
!
(
nt − i

)
!

×
∏

1≤i≤ j≤nr

(
λi − λj

)2
for λ1, . . . , λnr > 0,

(10)

where the time index k is omitted for conciseness. Evaluation
of the outage probability requires knowing the pdf of

∑
krk

with (10), and it has unfortunately been unknown so far. Re-
cently, it was found in [22] that the pdf of r (rk with the sub-
script k omitted) can be approximated as Gaussian (so does
the sum-rate

∑
krk) with the mean E[r] and variance VAR[r]

given, respectively, as [3, 22]

μ(Q) � E[r] =
∫∞

0
log 2

(
1 +

C0d−γQλ
ntnN0

)

×
nr−1∑

j=0

j!λnt−nr e−λ
(
j + nt − nr

)
!

[
L(nt−nr )
j (λ)

]2
dλ,

(11)

where L(nt−nr )
j (x) denotes the generalized Laguerre polyno-

mial of order j, and

σ2(Q) � VAR[r]

= nr

∫∞

0
ω2(Q, λ)p(λ)dλ

−
nr∑

i=1

nr∑

j=1

(i− 1)!( j − 1)!
(
i− 1 + nt − nr

)
!
(
j − 1 + nt − nr

)
!

×
[∫∞

0
λnt−nr e−λL(nt−nr )

i−1 (λ)L(nt−nr )
j−1 (λ)ω(Q, λ)dλ

]2

(12)

in which ω(Q, λ) � log 2(1 + C0d−γQλ/ntnN0) and

p(λ) � 1
nr

nr∑

i=1

(i− 1)!
(
i− 1 + nt − nr

)
!
λnt−nr e−λ

[
L(nt−nr )
i−1 (λ)

]2
.

(13)

In [22], it was revealed that using Gaussian approxima-
tion on the rate of a MIMO channel is accurate even with
small number of antennas, and this claim will be substanti-
ated in Section 4 where numerical results will be provided to
verify its validity. In light of this, we will use Gaussian ap-
proximation on the sum-rate

∑ n
k=1rk (as this is a sum of in-

dependent random variables, clearly, the approximation will
further improve if n increases). Consequently, the probability
constraint can be expressed as

1
2

{
1 + erf

[
R− nμ(Q)
σ(Q)

√
2n

]}
≤ ε, (14)

where erf(x) � (2/
√
π)

∫ x
0 e−t

2
dt. This probability constraint

can further be simplified as

g(Q) � nμ(Q)− [√
2n erf−1(1− 2ε)

]
σ(Q)− R ≥ 0.

(15)

Accordingly, (8) can be re-expressed as

Sn �−→
⎧
⎨

⎩

min
Q≥0

Q

s.t. g(Q) ≥ 0.
(16)

Intuitively, g should be a strictly increasing function of Q be-
cause more transmit power leads to less chance of being in an
outage. As a result, the minimum value of Q occurs when the
equality of (15) holds, or the constraint becomes active, that
is, g(Qmin) = 0. Throughout this paper, we will refer to this
equation as the minimum power equation (MPE). Because
of the monotonicity of g, the solution of MPE is unique,
and solving the MPE numerically can be done very efficiently
using methods such as “fzero” in MATLAB. The challenge,
however, remains to derive the closed-form expressions for
the mean (11) and the variance (12).

In Appendix A, we have derived that

μ
(
Γ0
) = 1

ln 2

nr−1∑

�=0

�∑

m=0

�!
(� + δ)!

[
1
m!

(
� + δ
m + δ

)]2

×
∫∞

0
ln

(
1 + Γ0λ

)
λδ+2me−λdλ

+
2

ln 2

nr−1∑

�=1

�−1∑

i=0

�∑

j=i+1

�!
(� + δ)!

(−1)i+ j

i! j!

×
(
� + δ
i + δ

)(
� + δ
j + δ

)∫∞

0
ln

(
1 + Γ0λ

)
λδ+i+ j e−λdλ,

σ2(Γ0
) = 1

ln 22

nr−1∑

�=0

�∑

m=0

�!
(� + δ)!

[
1
m!

(
� + δ
m + δ

)]2

×
∫∞

0
ln 2(1 + Γ0λ

)
λδ+2me−λdλ

+
2

ln 22

nr−1∑

�=1

�−1∑

i=0

�∑

j=i+1

�!
(� + δ)!

(−1)i+ j

i! j!

×
(
� + δ
i + δ

)(
� + δ
j + δ

)∫∞

0
ln 2(1 + Γ0λ

)
λδ+i+ j e−λdλ
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− 1

ln 22

nr−1∑

i=0

nr−1∑

j=0

i! j!
(i + δ)!( j + δ)!

[ i∑

m=0

j∑

�=0

(−1)m+�

m!�!

(
i + δ
m + δ

)

×
(

j + δ
� + δ

)∫∞

0
λδ+m+�e−λ ln

(
1 + Γ0λ

)
dλ

]2

,

(17)

where Γ0 � C0d−γQ/ntnN0 and δ � nt−nr . Further, the inte-
grals of the forms

∫∞
0 λje−λ ln (1+Γ0λ)dλ and

∫∞
0 λje−λln 2(1+

Γ0λ)dλ are, respectively, given by
∫∞

0
λje−λ ln

(
1 + Γ0λ

)
dλ

= e1/Γ0

Γ
j−1
0

j∑

�=0

(−1)�
(
j
�

)
( j − �)!

(1/�) j−�
E1

(
1
Γ0

)

+
1

Γ
j
0

j−1∑

�=0

j−�∑

p=1

(−1)�
(
j
�

)
( j − �)!

(1/�) j−�
· 1
j − � + 1− p

+
1

Γ
j+1
0

j−2∑

�=0

j−�∑

p=2

p−1∑

q=1

(−1)�

×
(
j
�

)
( j − �)!

( j − � − p + 1)!
Γ
p
0

j − � − q + 1
(18)

and
∫∞

0

[
ln

(
1 + Γ0λ

)]2
λje−λdλ

= e1/Γ0

Γ
j+1
0

j∑

�=0

(−1)�
(
j
�

)
( j − �)!
(
1/Γ0

) j−�

×
{
Γ0

[(
ln

1
Γ0
− γEM

)2

+
π2

6

]

− 23F3

(
[1, 1, 1]; [2, 2, 2];− 1

Γ0

)}

+
2e1/Γ0

Γ
j
0

j−1∑

�=0

j−�∑

p=1

(−1)�
(
j
�

)
( j − �)!
(
1/Γ0

) j−�

· 1
j − � + 1− p

E1

(
1
Γ0

)

+
2

Γ
j
0

j−2∑

�=0

j−�−1∑

p=1

j−�∑

q=p+1

(−1)�
(
j
�

)
( j − �)!
(
1/Γ0

) j−�

· 1
( j − � + 1− p)( j − � + 1− q)

+
2

Γ
j+1
0

j−3∑

�=0

j−�∑

t=3

t−2∑

p=1

t−1∑

q=p+1

(−1)�
(
j
�

)
( j − �)!

( j − � − t + 1)!

· Γt0
( j − � + 1− p)( j − � + 1− q)

(19)

in which E1(·) stands for the exponential integral, pFq is the
generalized hypergeometric function, and γEM is the Euler-
Mascheroni constant [23].

To summarize, we now have the MPE to determine the
minimum required transmit power for achieving a given in-
formation outage probability in an n-block MIMO fading
channel. Presumably, if the time-sharing parameters (i.e.,
{wu}) of a time-division multiuser system are known, then
the corresponding optimal power allocation for the users can
be found from the MPEs. And, the optimal solution of (7)
could be found using the MPE by an exhaustive search over
the space of {wu} (see Section 6.1 for details). However, this
searching approach will be too complex to be done even if
the number of users or blocks is moderate. To address this,
in the next section, we will focus on how a sensible solution
of {wu} can be found suboptimally.

4. MULTIUSER TIME-SHARING FROM
CONVEX OPTIMIZATION

In this section, our aim is to optimize the time-sharing pa-
rameters {wu} by joint consideration of the power consump-
tion and the probability constraints of the users. Ideally, it
requires to solve M, that is, (7), which is unfortunately not
known. Here, we propose to mimic M by considering a sim-
pler problem with the probability constraints replaced by
some upper bounds, that is,

P
({ ∑

k∈Du

rk ≤ Ru

})

≤ P

({
∑

k∈Du

log 2

(
1 +

C(u)
0 Qu

ntwu
·λ

(u,k)
max

N0

)
≤ Ru

})

< P

({

ρ �
∏

k∈Du

λ(u,k)
max ≤

(
wuntN0

C(u)
0 Qu

)wu

2Ru

})

� P (u)
UB ,

(20)

where λ(u,k)
max denotes the maximum eigenvalue of the channel

for user u at time slot k. The first inequality in (20) comes
from ignoring the rates contributed by the smaller spatial
subchannels, while the second inequality removes the unity
inside the log expression (which may be regarded as a high
signal-to-noise ratio (SNR) approximation). The pdf of λ(u,k)

max
is given by [24, 25]

F (λ) =
nr∑

i=1

(nt+nr )i−2i2∑

j=δ

(
di, j· i

j+1

j!

)
λje−iλ, λ > 0, (21)

where the coefficients {di, j} are independent of λ. In [25], the
values of di, j for a large number of MIMO settings have been
enumerated.

The original outage rate probability constraint in (7) can
therefore be ascertained by constraining the upper bound of

the outage probability {P (u)
UB ≤ εu}. The advantage by do-

ing so is substantial. First of all, the optimizing variable Qu

can be separated from the random variable, and secondly,
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the distribution of ln ρ can be approximated as Gaussian,

which permits to evaluate P (u)
UB as

P (u)
UB =

1
2

+
1
2

erf

(
ln

[(
wuntN0/C

(u)
0 Qu

)wu

2Ru
]−wuμ̃√

2wuσ̃

)

,

(22)

where μ̃ and σ̃ are derived in Appendix B as

μ̃ = E[ln λ] =
nr∑

i=1

(nt+nr )i−2i2∑

j=δ
di, j

(
Hj − γEM − ln i

)
,

σ̃2 = VAR[ln λ]

=
nr∑

i=1

(nt+nr )i−2i2∑

j=δ
di, j

[

γ2
EM + 2

(
ln i−Hj

)
γEM

+
π2

6
− 2Hj ln i + (ln i)2 + 2

j−1∑

t=1

Ht

t + 1

]

− μ̃2,

(23)

where H� is the harmonic number defined as
∑ �

m=1(1/m).

The constraint {P (u)
UB ≤ εu} can therefore be simplified to

Qu ≥ ntN0

C(u)
0 eμ̃

· wu
(
2Ru

)1/wu

[
e−
√

2σ̃erf−1(1−2εu)
]1/
√
wu
. (24)

Using the upper bound constraints in the multiuser problem
(7), we then have

M̃ �−→

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
{Qu},{wu}

U∑

u=1

Qu

s.t. Qu ≥ ntN0

C(u)
0 eμ̃

· wu
(
2Ru

)1/wu

[
e−
√

2σ̃erf−1(1−2εu)
]1/
√
wu
∀u,

U∑

u=1

wu ≤ K , wu ∈ {1, 2, . . . ,K −U + 1} ∀u,

(25)

where the constraints are now written in closed forms.
It is anticipated that the power allocation from the

modified problem (25) may be quite conservative, that is,
Qopt|M̃ � Qopt|M, because the upper bound may be loose.
However, our conjecture is that the problem structure of M
on {wu} would be accurately imitated by M̃. Accordingly,
we may be able to obtain near optimal solution for {wu}
by solving M̃, though accurate power consumption cannot
be estimated from M̃. Following the same argument, the ex-
act tightness of the upper bound and also how accurate the
Gaussian approximation is in evaluating the upper bound
probability are not important, as long as M̃ preserves the
structure to balance the users’ channel occupancy and power
consumption to meet the outage probability requirements.

One remaining difficulty of solving M̃ is that the opti-
mization is mixed with combinatorial search over the space
of {wu} because they are integer-valued [20]. To tackle this,

we relax {wu} to positive real numbers {x2
u} so that M̃ can be

rewritten as

M̃r �−→

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
{xu}

ntN0

eμ̃

U∑

u=1

1

C(u)
0

·x
2
u

(
au
)1/x2

u

(
bu
)1/xu

s.t.
U∑

u=1

x2
u ≤ K , 1 ≤ xu ≤

√
K −U + 1,

(26)

where au � 2Ru and bu � e−
√

2σ̃erf−1(1−2εu). Apparently, both
constraints in (26) are convex, and if the cost is also convex,
the problem can be solved using known convex program-
ming routines [20].

Now, let us turn our attention to a function of the form

f (x) = x2·a
1/x2

b1/x
≡ x2h(x) for a, b, x > 0, (27)

where h(x) � a1/x2
/b1/x. Our interest is to examine if f (x) is

convex, or equivalently whether f ′′(x) > 0. To show this, we
first obtain

h′(x) = h(x)
(−2 ln a

x3
+

ln b

x2

)
,

h′′(x) = h(x)
(−2 ln a

x3
+

ln b

x2

)2

+ h(x)
(

6 ln a

x4
− 2 ln b

x3

)
.

(28)

Applying these results, f ′′(x) can be found as

f ′′(x)
h(x)

=
(−2 ln a

x2
+

ln b

x

)2

+
(−2 ln a

x2
+

2 ln b

x

)
+ 2.

(29)

Letting α = 2 ln a/x2 and β = − ln b/x, we have

f ′′(x)
h(x)

= (α + β)2 − α− 2β + 2

=
(
α− 1

2

)2

+ (β− 1)2 +
3
4

+ 2αβ > 0

(30)

since α,β > 0, which can be seen from the definition of (a, b)
that α > 0 and β > 0 for εu < 0.5. (It should be emphasized
that the convexity of f is subjected to the condition that εu <
0.5. However, in practice, it would not make sense to have a
system operating with outage probability greater than 50%.)
Together with the fact that h(x) > 0 for all x > 0, we can
conclude that f ′′(x) > 0, and therefore f (x) is convex. As
the cost function in (26) is a summation of the functions of
the form f (x), it is convex, hence the problem (26) or M̃r .

With M̃r being convex, we can find the globally opti-
mal {xu}opt at polynomial time complexity. In particular,
the complexity grows like O(U3), which is scalable with the
number of users [20]. The remaining task, however, is to
derive the integer-valued {wu} from {xu}. Simply, setting
wu = x2

u would result in noninteger solutions, while round-
ing them off could lead to violation of the outage rate prob-
ability constraints. In this paper, a greedy approach will be
presented to obtain a feasible solution of {wu} from {xu},
which will be described in the next section.
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5. THE PROPOSED ALGORITHM

Thus, so far we have presented two main approaches: one
that determines the optimal transmit power {Qu} based on
MPE (see Section 3) and another one that finds the subop-
timal (relaxed) time-sharing parameters {wu} by constrain-
ing the upper bound probability (see Section 4). In this sec-
tion, we will devise an algorithm that combines the two ap-
proaches to jointly optimize the power allocation and time-
sharing of the users. Our idea is to first map the optimal so-
lution {xu}opt from M̃r to a proper {wu} in M by rounding
the results to the nearest positive integers, and then to step
by step allocate one more block to the user who can mini-
mize the overall required power using MPE. The proposed
algorithm is described as follows.

(1) Solve {xu} in M̃r (see (26)) using convex optimization
routines such as interior-point method [20].

(2) Initialize wu = x2
u� for all u, where y returns the great-

est integer that is smaller than y. Notice that at this
point, {wu} and {Qu} from M̃r may not give a feasible
solution to M, and some outage rate probability con-
straints may not be satisfied.

(3) For each user u, compute the minimal required power
to ensure the outage rate probability constraint by
solving MPE:

Qu=arg
{
gu
(
Q | wu

) = 0
} = arg min

Q≥0

∣
∣gu

(
Q | wu

)∣∣,

(31)

where the function gu(Q | wu) is defined similarly as in
(15). The notation (Q | wu) is used to emphasize the
fact that wu is given as a fixed constant.

(4) Then, initialize m = K −∑ U
u=1wu.

(5) Compute the power reduction metrics

�Qu = Qu − arg min
Q≥0

∣
∣gu

(
Q | wu + 1

)∣∣ ∀u. (32)

(6) Find u∗ = arg max u�Qu and update

wu∗ := wu∗ + 1,

Qu∗ := Qu∗ −�Qu∗ ,

m := m− 1.

(33)

If m ≥ 1, go back to step (5). Otherwise, go to step (7).
(7) Optimization is completed and the solutions for both

{wu} and {Qu} have been found.

A first look at the algorithm reveals that the required
complexity of the proposed algorithm is

Cproposed = O
(
U3) + mUCfzero

� O
(
U3) + U2Cfzero,

(34)

where Cfzero denotes the required complexity for finding a
zero of g(Q). The actual complexity for finding the root de-
pends on the method used (e.g., bisection, secant, Brent’s,
etc.) and the required precision of the solution. For more de-
tails, we refer the interested readers to the classical paper [26]
if Brent’s method is used (note that fzero in MATLAB also
implements Brent’s method).

6. NUMERICAL RESULTS

6.1. Setup and benchmarks

Computer simulations are conducted to evaluate the per-
formance of the proposed algorithm for the power-
minimization problem with outage rate probability con-
straints. Only CST has been assumed, and capacity-achieving
codec is used so that the expression log 2(1 + SNR) can be
used to express the rate achieved for each block. The total
transmit SNR, defined as ((1/U)

∑U
u=1C

(u)
0 )(

∑ U
u=1Qu)(1/N0),

is considered as the performance metric. To compute the re-
quired SNR for a given set of simulation parameters such as
the numbers of users and blocks, the users’ target rates, and
outage probabilities, the algorithm presented in Section 5,
which iteratively solves the MPE, is used. Note that the MPE
itself has already taken into account the randomness of the
channel for outage evaluation.

Results for the proposed algorithm will be compared with
the following benchmarks.

(1) Global optimum: with MPE presented in Section 3, it
is possible to find the global optimal solution of time and
power allocations for the users by solving M over the space
of {wu} at the expense of much greater complexity, that is,

M �−→

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min
{wu}

U∑

u=1

arg
{
gu
(
Qu | wu

) = 0
}

s.t.
U∑

u=1

wu ≤ K , wu ∈
{

1, 2, . . . ,K−U+1
} ∀u.

(35)

The required complexity is given by

Coptimum =
(
K
U

)

UCfzero ≈
(
K
U

)[
Cproposed −O

(
U3

)

U

]
.

(36)

For large K , we have

Coptimum

Cproposed
≈ 1

U

(
K
U

)

(37)

and the complexity saving by the proposed scheme will be
enormous. For instance, if U = 4 and K = 30, the ratio is
approximately 6851.

(2) Equal-time with optimized power: an interesting
benchmark is the system where each user is allocated more
or less an equal number of blocks (i.e., wu ≈ K/U� for
all u with

∑
uwu = K), while the power allocation for each

user is optimized by solving MPE. Obviously, if the system
has homogeneous users (e.g., users with the same channel
statistics and outage requirements), then equal-time alloca-
tion should be optimal. This system can show how important
time-sharing optimization is if the system has highly hetero-
geneous users.

(3) Equal-time with suboptimal power (see (24)): a subop-
timal power allocation to achieve a given outage probability
can be found by (24) based on the upper bound probability
without relying on the MPE. This system enables us to see
how important the MPE is.
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Figure 1: Comparison between the actual and approximated distri-
butions for a (3,2) MIMO system with SNR per block of 10 dB.

6.2. Results

The cumulative distribution functions (cdfs) of the actual
sum-rate and Gaussian approximation for a (3,2) system
with 10 dB of SNR per block for various numbers of blocks n
and target rates are compared in Figure 1. As we can see, for a
wide range of outage probabilities (e.g., ε ≥ 10−5), they have
inappreciable difference even if n is as small as 1. This shows
that using a Gaussian cdf to evaluate the outage probability
for a block-fading MIMO channel is accurate and reliable.

Results in Figure 2 are provided for the transmit SNR
against the outage probability requirements for a 3-user sys-
tem with 20 blocks (i.e., K = 20). The users are considered
to have target rates (R1,R2,R3) = (8, 12, 16) bps/Hz, channel

power gains (C(1)
0 ,C(2)

0 ,C(3)
0 ) = (0.8, 1, 1.2), multiple receive

antennas (n(1)
r ,n(2)

r ,n(3)
r ) = (2, 3, 2), and the same outage

probability requirements (ε). The number of transmit anten-
nas at the base station is set to be 4 (i.e., nt = 4). Results in
this figure show that the total transmit SNR of the proposed
scheme decreases if the required outage probability increases.
For example, there is about 2 dB power reduction when ε in-
creases from 10−5 to 10−1. Results also illustrate that the pro-
posed method performs nearly the same as the global opti-
mum. However, compared with the equal-time method with
optimum power solution, there is only about 0.2 dB reduc-
tion in SNR by the proposed method. This is because the
optimal strategy tends to allocate similar number of blocks
to the users, which can be observed from configuration 1 of
Table 1. In addition, as can be seen, the transmit SNR of the
equal-time method with suboptimal power is much greater
than that with optimum power, which shows that the MPE
is very important in optimizing the power allocation. In par-
ticular, more than 3 dB of SNR is required when compared
with the equal-time method with optimal power solution.

The SNR results against the target rate for a 3-user sys-
tem with total numbers of blocks K = 15, (ε1, ε2, ε3) =
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Figure 2: Results of the transmit SNR against the outage probability
when U = 3, K = 20, (R1,R2,R3) = (8, 12, 16) bps/Hz, (C(1)

0 ,C(2)
0 ,

C(3)
0 ) = (0.8, 1, 1.2), nt = 4, and (n(1)

r ,n(2)
r ,n(3)

r ) = (2, 3, 2).
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Figure 3: Results of the transmit SNR against the target rate when
U = 3, K = 15, (ε1, ε2, ε3) = (10−4, 10−3, 10−2), (C(1)

0 ,C(2)
0 ,C(3)

0 ) =
(0.5, 1, 1.5), nt = 3, and (n(1)

r ,n(2)
r ,n(3)

r ) = (2, 2, 2).

(10−4, 10−3, 10−2), and (C(1)
0 , C(2)

0 , C(3)
0 ) = (0.5, 1, 1.5) are

plotted in Figure 3. Also, 3 transmit antennas and 2 receive
antennas per users are considered, and all the users have the
same target rate R. Results indicate that the total transmit
SNR increases dramatically with R (e.g., 10 dB increase from
8 bps/Hz to 32 bps/Hz for the proposed method). As can be
observed, the increase in SNR is almost linear with R. In ad-
dition, the proposed method consistently performs nearly as
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Table 1: Various configurations tested from Figures 2–5. The superscript� highlights the solution that is not the same as the optimum.

Configuration u Ru (bps/Hz) εu C(u)
0 n(u)

r (wu)opt (wu)proposed (wu)equal-time

1 (nt = 4 and K = 20)
1 8 10−3 0.8 2 6 6 6

2 12 10−3 1 3 5 6� 7�

3 16 10−3 1.2 2 9 8� 7�

2 (nt = 3 and K = 15)
1 16 10−4 0.5 2 6 6 5�

2 16 10−3 1 2 5 5 5

3 16 10−2 1.5 2 4 4 5�

3 (nt = 4 and K = 12)
1 16 10−2 1.5 4 2 2 4�

2 20 10−3 1 3 3 3 4�

3 24 10−4 0.5 2 7 7 4�

4 (nt = 4 and K = 20)
1 8 10−1 1.5 3 2 3� 6�

2 16 10−3 1 3 6 7� 7�

3 24 10−4 0.5 3 12 10� 7�

6 8 10 12 14 16 18 20
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Figure 4: Results of the transmit SNR against the number of
blocks when U = 3, (ε1, ε2, ε3) = (10−2, 10−3, 10−4), (R1,R2,R3) =
(16, 20, 24) bps/Hz, (C(1)

0 ,C(2)
0 ,C(3)

0 ) = (1.5, 1, 0.5), nt = 4, and
(n(1)

r ,n(2)
r ,n(3)

r ) = (4, 3, 2).

the global optimum although the gap between the proposed
method and the equal-time method with optimal power so-
lution is not very obvious.

In Figure 4, we have the results for the transmit SNR
against the total number of blocks K for a 3-user system
with (ε1, ε2, ε3) = (10−2, 10−3, 10−4), (R1,R2,R3) = (16, 20,
24) bps/Hz, and (C(1)

0 ,C(2)
0 ,C(3)

0 ) = (1.5, 1, 0.5). The num-
ber of transmit antennas is 4 while users’ numbers of re-
ceive antennas are (n(1)

r ,n(2)
r ,n(3)

r ) = (4, 3, 2). Note that in
this case, we have set the conditions for different users, such
as users’ requirements and channel conditions, to be quite
different from each other to see how the proposed scheme
performs. As we can see, the total transmit SNR decreases as
K increases. In particular, the SNR for the proposed method

2 3 4
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Figure 5: Results of the transmit SNR against the receive antennas
when U = 3, K = 20, (ε1, ε2, ε3) = (10−1, 10−3, 10−4), (R1,R2,R3) =
(8, 16, 24) bps/Hz, (C(1)

0 ,C(2)
0 ,C(3)

0 ) = (1.5, 1, 0.5), and nt = 4.

decreases by 8 dB when K increases from 6 to 18. Again, re-
sults show that the performance of the proposed scheme is
nearly optimal, while this time the gap between the proposed
method and the equal-time methods becomes more obvious
(about 5 dB for K = 6 and 2 dB for K = 18). This is because
the optimal strategy tends to allocate more blocks to high-
demand poor-channel-condition users (the numbers of allo-
cated blocks for the users for different methods with K = 12
are shown in configuration 3 of Table 1).

Figure 5 plots the SNR results against the number of re-
ceive antennas for a 3-user system with K = 20, (ε1, ε2, ε3) =
(10−1, 10−3, 10−4), (R1,R2,R3) = (8, 16, 24) bps/Hz, (C(1)

0 ,
C(2)

0 , C(3)
0 ) = (1.5, 1, 0.5), and nt = 4. As expected, the re-

quired transmit SNR decreases with the number of receive
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antennas. This can be explained by the fact that the trans-
mission rate mainly depends on the rank of the MIMO sys-
tem, which is limited by the number of receive antennas (nr).
The actual number of block allocation for various methods
is provided in configuration 4 of Table 1.

7. CONCLUSION

This paper has addressed the optimization problem of power
allocation and scheduling for a time-division multiuser
MIMO system in Rayleigh block-fading channels when the
transmitter has only the channel statistics of the users, and
the users are given individual outage rate probability con-
straints. By Gaussian approximation, we have derived the so-
called MPE to determine the minimum power for attaining
a given outage rate probability constraint if the number of
blocks for a user is fixed. On the other hand, we have pro-
posed a convex programming approach to find the subopti-
mal number of blocks allocated to the users. The two main
techniques have been then combined to obtain a joint solu-
tion for both power and time allocations for the users. Re-
sults have demonstrated that the proposed method achieves
near optimal performance.

APPENDICES

A. DERIVATION OF μ = E[r] AND σ2 = VAR[ r ]

A.1. Main derivation

Before we proceed, we find the following expansion of the
generalized Laguerre polynomial useful:

Lδ� (λ) =
�∑

m=0

(−1)m
(� + δ)!

(� −m)!(δ + m)!m!
·λm. (A.1)

To make our notation succinct, we define Γ0 � C0d−γQ/
ntnN0 and

bm(�, δ) � (−1)m
(� + δ)!

(� −m)!(δ + m)!m!
= (−1)m

m!

(
� + δ
m + δ

)

(A.2)

so that

Lδ� (λ) =
�∑

m=0

bm(�, δ)λm. (A.3)

Also, in the following derivation, we will treat δ = nt − nr
for convenience. As a result, the mean μ can be derived as
follows:

u =
∫∞

0
log 2

(
1 + Γ0λ

)nr−1∑

�=0

�!λδe−λ

(� + δ)!

[
Lδ� (λ)

]2
dλ

=
nr−1∑

�=0

�!
(� + δ)!

∫∞

0
log 2

(
1 + Γ0λ

)
λδe−λ

[
Lδ� (λ)

]2
dλ

=
nr−1∑

�=0

�!
(� + δ)!

∫∞

0
log 2

(
1 + Γ0λ

)
λδe−λ

[ �∑

m=0

bm(�, δ)λm
]2

dλ

=
nr−1∑

�=0

�!
(� + δ)!

∫∞

0
log 2

(
1 + Γ0λ

)
λδe−λ

×
[ �∑

m=0

b2
m(�, δ)λ2m + 2

�−1∑

i=0

�∑

j=i+1

bi(�, δ)bj(�, δ)λi+ j

]

dλ

=
nr−1∑

�=0

�∑

m=0

�!
(� + δ)!

b2
m(�, δ)

∫∞

0
log 2

(
1 + Γ0λ

)
λδe−λλ2mdλ

+ 2
nr−1∑

�=1

�−1∑

i=0

�∑

j=i+1

�!
(� + δ)!

bi(�, δ)bj(�, δ)

×
∫∞

0
log 2

(
1 + Γ0λ

)
λδe−λλi+ jdλ

= 1
ln 2

nr−1∑

�=0

�∑

m=0

�!
(� + δ)!

[
1
m!

(
� + δ
m + δ

)]2

×
∫∞

0
ln

(
1 + Γ0λ

)
λδ+2me−λdλ

+
2

ln 2

nr−1∑

�=1

�−1∑

i=0

�∑

j=i+1

�!
(� + δ)!

(−1)i+ j

i! j!

×
(
� + δ
i + δ

)(
� + δ
j + δ

)∫∞

0
ln

(
1 + Γ0λ

)
λδ+i+ j e−λdλ,

(A.4)

where the integral of the form
∫∞

0 λje−λ ln (1+Γ0λ)dλ is given
by (A.13) in Appendix A.2.

For the variance, we first express it using the standard re-
sult as

σ2 =
∫∞

0
log 2

2

(
1 + Γ0λ

)nr−1∑

�=0

�!λδe−λ

(� + δ)!

[
Lδ� (λ)

]2
dλ

−
nr−1∑

i=0

nr−1∑

j=0

i! j!
(i + δ)!( j + δ)!

×
[∫∞

0
λδe−λLδi (λ)Lδj (λ)log 2

(
1 + Γ0λ

)
dλ

]2

≡ I1 − I2,

(A.5)

which boils down to evaluating the integrals I1 and I2. After
some manipulations, we have I1 as

I1 = 1

ln 22

nr−1∑

�=0

�∑

m=0

�!
(� + δ)!

(
1
m!

(
� + δ
m + δ

))2

×
∫∞

0
ln 2(1 + Γ0λ

)
λδ+2me−λdλ

+
2

ln 22

nr−1∑

�=1

�−1∑

i=0

�∑

j=i+1

�!
(� + δ)!

(−1)i+ j

i! j!

×
(
� + δ

i + δ

)(
� + δ
j + δ

)∫∞

0
ln 2(1 + Γ0λ

)
λδ+i+ j e−λdλ,

(A.6)
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where
∫∞

0 λje−λ ln (1 + Γ0λ)2dλ is derived in Appendix A.2 as
(A.17). On the other hand, I2 can be obtained as follows:
∫∞

0
λδe−λLδi (λ)Lδj (λ)log 2

(
1 + Γ0λ

)
dλ

=
∫∞

0
λδe−λlog 2

(
1 + Γ0λ

)
( i∑

m=0

bm(i, δ)λm
)

×
( j∑

�=0

bm( j, δ)λ�
)

dλ

(A.7)

=
∫∞

0
λδe−λlog 2

(
1 + Γ0λ

)
( i∑

m=0

j∑

�=0

bm(i, δ)b�( j, δ)λm+�

)

dλ

(A.8)

=
i∑

m=0

j∑

�=0

bm(i, δ)b�( j, δ)
∫∞

0
λδ+m+�e−λlog 2

(
1 + Γ0λ

)
dλ.

(A.9)

Now, combining the results (A.5), (A.6), and (A.9), we have

σ2 = 1

ln 22

nr−1∑

�=0

�∑

m=0

�!
(� + δ)!

[
1
m!

(
� + δ
m + δ

)]2

×
∫∞

0
ln 2(1 + Γ0λ

)
λδ+2me−λdλ

+
2

ln 22

nr−1∑

�=1

�−1∑

i=0

�∑

j=i+1

�!
(� + δ)!

(−1)i+ j

i! j!

×
(
� + δ
i + δ

)(
� + δ
j + δ

)∫∞

0
ln 2(1 + Γ0λ

)
λδ+i+ j e−λdλ

− 1

ln 22

nr−1∑

i=0

nr−1∑

j=0

i! j!
(i + δ)!( j + δ)!

×
[ i∑

m=0

j∑

�=0

(−1)m+�

m!�!

(
i + δ
m + δ

)

×
(

j + δ
� + δ

)∫∞

0
λδ+m+�e−λ ln

(
1 + Γ0λ

)
dλ

]2

,

(A.10)

where the integrals of the forms
∫∞

0 λje−λ ln (1 + aλ)dλ and
∫∞

0 λje−λln 2(1 + aλ)dλ are, respectively, given by (A.13) and
(A.17).

A.2. Evaluation of
∫∞

0 ln (1 + Γ0λ)λje−λdλ

To begin, we rewrite the integral as
∫∞

0
λje−λ ln

(
1 + Γ0λ

)
dλ

= e1/Γ0

Γ
j+1
0

∫∞

1
e−(1/Γ0)t(t − 1) j ln t dt

= e1/Γ0

Γ
j+1
0

j∑

�=0

(−1)�
(
j
�

)∫∞

1
e−(1/Γ0)tt j−� ln t dt,

(A.11)

where the integral of the last line of the right-hand side can
be derived as follows:
∫∞

1
e−(1/Γ0)tt j−� ln t dt

= Γ0

∫∞

1
e−(1/Γ0)t[t j−�−1 + t j−�−1( j − �) ln t

]
dt

= Γ0

(
Γ0

{
e−1/Γ0 +

∫∞

1
e−(1/Γ0)t

× [
( j − � − 1)t j−�−2 + ( j − �)t j−�−2

+ ( j − � − 1)( j − �)t j−�−2 ln t
]
})

...

= (
Γ0
)2
e−1/Γ0 +

(
Γ0
)3[

( j − � − 1) + ( j − �)
]

+
(
Γ0
)4[

( j − �)( j − � − 2)

+ ( j − � − 1)( j − � − 2) + ( j − � − 1)( j − �)
]

+ · · · +
( j − �)!
(
1/Γ0

) j−�

×
(∫∞

1
e−(1/Γ0)t ln t dt +

j−�∑

p=1

1
j − � + 1− p

∫∞

0
e−(1/Γ0)tdt

)

= e−1/Γ0

j−�∑

p=2

(
Γ0
)p ( j − �)!

( j−�−p+1)!

p−1∑

q=1

1
j−�−q+1

+
( j − �)!

(1/Γ0) j−�

×
(∫∞

1
e−1/Γ0 ln t dt + Γ0e

−1/Γ0

j−�∑

p=1

1
j − � + 1− p

)

.

(A.12)

Substituting this result into (A.11), we can get
∫∞

0
λje−λ ln

(
1 + Γ0λ

)
dλ

= e1/Γ0

Γ
j
0

j∑

�=0

(−1)�
(
j
�

)
( j − �)!

(1/�) j−�

∫∞

1
e−(1/Γ0)t ln t dt

+
1

Γ
j
0

j−1∑

�=0

j−�∑

p=1

(−1)�
(
j
�

)
( j − �)!

(1/�) j−�
· 1
j − � + 1− p

+
1

Γ
j+1
0

j−2∑

�=0

j−�∑

p=2

p−1∑

q=1

(−1)�

×
(
j
�

)
( j − �)!

( j − � − p + 1)!

(
Γ0
)p 1

j − � − q + 1
.

(A.13)

In Appendix A.4, we will show that
∫∞

1
e−(1/Γ0)t ln t dt = Γ0E1

(
1
Γ0

)
, (A.14)

where E1(·) denotes the exponential integral.
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A.3. Evaluation of
∫∞

0 [ln (1 + Γ0λ)]2λje−λdλ

We start by writing
∫∞

0

[
ln

(
1 + Γ0λ

)]2
λje−λdλ

= e1/Γ0

Γ
j+1
0

j∑

�=0

(−1)�
(
j
�

)∫∞

1
e−(1/Γ0)t(ln t)2t j−�dt,

(A.15)

where the integrand on the right can be evaluated as follows:
∫∞

1
e−(1/Γ0)t(ln t)2t j−�dt

= Γ0

∫∞

1
e−(1/Γ0)t[2t j−�−1 ln t + t j−�−1( j − �)(ln t)2]dt

= (
Γ0
)2

∫∞

1
e−(1/Γ0)t

× [
2t j−�−2 +2t j−�−2( j − � − 1) ln t+2t j−�−2( j−�) ln t

]
dt

+
(
Γ0
)2

∫∞

1
e−(1/Γ0)tt j−�−2( j − � − 1)( j − �)(ln t)2dt

...

= 2e−1/Γ0

j−�∑

t=3

(
Γ0
)t ( j − �)!

( j − � − t + 1)!

×
t−2∑

p=1

t−1∑

q=p+1

1
( j − � + 1− p)( j − � + 1− q)

+
( j − �)!
(
1/Γ0

) j−�

(∫∞

1
e−(1/Γ0)t(ln t)2dt

+ 2
j−�∑

p=1

1
j − � + 1− p

∫∞

1
e−(1/Γ0)t ln t dt

)

+
( j − �)!
(
1/Γ0

) j−�

∫∞

1
2e−(1/Γ0)t

×
j−�−1∑

p=1

j−�∑

q=p+1

1
( j − � + 1− p)( j − � + 1− q)

dt.

(A.16)

Using (A.16) into (A.15), we get
∫∞

0

[
ln

(
1 + Γ0λ

)]2
λje−λdλ

= e1/Γ0

Γ
j+1
0

j∑

�=0

(−1)�
(
j
�

)
( j − �)!
(
1/Γ0

) j−�

∫∞

1
e−(1/Γ0)t(ln t)2dt

+
2e1/Γ0

Γ
j+1
0

∫∞

1
e−(1/Γ0)t ln t dt

×
j−1∑

�=0

j−�∑

p=1

(−1)�
(
j
�

)
( j − �)!
(
1/Γ0

) j−� ·
1

j − � + 1− p

+
2

Γ
j
0

j−2∑

�=0

j−�−1∑

p=1

j−�∑

q=p+1

(−1)�
(
j
�

)
( j − �)!
(
1/Γ0

) j−�

· 1
( j − � + 1− p)( j − � + 1− q)

+
2

Γ
j+1
0

j−3∑

�=0

j−�∑

t=3

t−2∑

p=1

t−1∑

q=p+1

(−1)�

×
(
j
�

)
(
Γ0
)t ( j − �)!

( j − � − t + 1)!

· 1
( j − � + 1− p)( j − � + 1− q)

.

(A.17)

From [23, Section 4.331(2)], we can have
∫∞

1
e−(1/Γ0)t ln t dt = Γ0E1

(
1
Γ0

)
. (A.18)

Later in Appendix A.4, we will have
∫∞

1
e−(1/Γ0)t(ln t)2dt

= Γ0

[(
ln

i

Γ0
−γEM

)2

+
π2

6

]

−23F3

(
[1, 1, 1]; [2, 2, 2];− 1

Γ0

)
,

(A.19)

where pFq denotes the generalized hypergeometric function.

A.4. Evaluation of
∫∞

1 e−(1/Γ0)t(ln t)2dt

First of all, clearly, we have
∫∞

1
e−(1/Γ0)t(ln t)2dt

=
∫∞

0
e−(1/Γ0)t(ln t)2dt −

∫ 1

0
e−(1/Γ0)t(ln t)2dt.

(A.20)

The first integrand can be found from [23, Section 4.335(1)]
as

∫∞

0
e−(1/Γ0)t(ln t)2dt = Γ0

[(
ln

1
Γ0
− γEM

)2

+
π2

6

]

,

(A.21)

where γEM refers to the Euler-Mascheroni constant.
Likewise, the second integrand can be evaluated as

∫ 1

0
e−(1/Γ0)t(ln t)2dt =

∫ 1

0

∞∑

�=0

(− (
1/Γ0

)
t
)�

�!
(ln t)2dt

=
∞∑

�=0

(− 1/Γ0
)�

�!

∫ 1

0
t�(ln t)2dt

=
∞∑

�=0

(− 1/Γ0
)�

�!
· (−1)2·2!

(� + 1)3

= 2
∞∑

�=0

(− 1/Γ0
)�

�!
· 1

(� + 1)3

= 23F3

(
[1, 1, 1]; [2, 2, 2];− 1

Γ0

)

(A.22)
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in which pFq denotes the generalized hypergeometric func-
tion.

Finally, we have

∫∞

1
e−(1/Γ0)t(ln t)2dt = Γ0

[(
ln

1
Γ0
− γEM

)2

+
π2

6

]

− 23F3

(
[1, 1, 1]; [2, 2, 2];− 1

Γ0

)
.

(A.23)

B. DERIVATION OF μ̃ = E[ln λ] AND σ̃2 = VAR[ln λ]

B.1. Main derivation

Given a random variable λ with pdf in (21), μ̃ can be found
by

μ̃ = E[ln λ] =
nr∑

m=1

(nt+nr )m−2m2
∑

�=δ

(
dm,� ×m�+1

�!

)

×
∫∞

0
λ�e−mλ ln λdλ,

(B.1)

where
∫∞

0 λ�e−mλ ln λdλ is calculated as [23, Section 4.352(1)]

∫∞

0
λ�e−mλ ln λdλ = 1

ml+1
Γ(l + 1)

[
ψ(l + 1)− lnm

]
, (B.2)

where ψ(l+1) = −γEM +
∑ l

k=1(1/k) is referred to [23, Section
8.365(4)].

To find σ̃2, we first obtain E[(ln λ)2] by

E
[
(ln λ)2]

=
nr∑

m=1

(nt+nr )m−2m2
∑

�=δ

(
dm,� ×m�+1

�!

)∫∞

0
λ�e−mλ(ln λ)2dλ

=
nr∑

m=1

(nt+nr )m−2m2
∑

�=δ

(
dm,� ×m�+1

�!

)∫∞

0

(
t

m

)�

e−t(ln t − lnm)2 dt

m

=
nr∑

m=1

(nt+nr )m−2m2
∑

�=δ

(
dm,�

�!

)

×
∫∞

0
t�e−t

[
(ln t)2 − 2(ln t)(lnm) + (lnm)2]dt

=
nr∑

m=1

(nt+nr )m−2m2
∑

�=δ

(
dm,�

�!

)[
W(�)− 2(lnm)S(�) + (lnm)2�!

]
,

(B.3)

where S(�) = ∫∞
0 t�e−t ln t dt and W(�) �

∫∞
0 t�e−t(ln t)2dt.

Note that although the equation
∫∞

0 λ�e−mλ(ln λ)2dλ can be
calculated as (Γ(�+ 1)/m�+1){[ψ(� + 1)− lnm]2 + ζ(2, l+ 1)}
from [23, Section 4.358(2)] and ζ(2, l + 1) can be repre-
sented by an infinite series as

∑∞
n=0(1/(l + 1 + n)2) [23, Sec-

tion 9.521(1)], it is practically undesirable. In Appendix B.2,

instead, we provide the results of W(�) as a finite series,
which we give here as

W(�) = �!
(
γ2

EM − 2γEM +
π2

6

)
+ 2�!

�−1∑

j=1

Hj − γEM

j + 1
,

(B.4)

where Hj denotes the harmonic number. Using this result to-
gether with that for S(�) from (B.2), we can express E[(ln λ)2]
in closed form as

E
[
(ln λ)2]

=
nr∑

m=1

(nt+nr )m−2m2
∑

�=δ
dm,�

[

γ2
EM + 2

(
lnm−H�

)
γEM

+
π2

6
− 2(lnm)H� + (lnm)2 + 2

�−1∑

j=1

Hj

j + 1

]

.

(B.5)

As such, the variance is given by

σ̃2 = E
[
(ln λ)2]− (

E[ln λ]
)2

=
nr∑

m=1

(nt+nr )m−2m2
∑

�=δ
dm,�

[

γ2
EM + 2

(
lnm−H�

)
γEM

+
π2

6
− 2(lnm)H� + (lnm)2 + 2

�−1∑

j=1

Hj

j + 1

]

−
[ nr∑

m=1

(nt+nr )m−2m2
∑

�=δ
dm,�

(
H� − γEM − lnm

)
]2

.

(B.6)

B.2. Evaluation ofW(�) = ∫∞
0 t�e−t(ln t)2dt

Similar technique can be applied to derive W(�), and the first
is to have the recursive relation

W(�) =
∫∞

0
t�e−t(ln t)2dt

= −
∫∞

0
t�(ln t)2de−t

= 2
∫∞

0
t�−1e−t ln t dt + �

∫∞

0
t�−1e−t(ln t)2dt

= 2S(� − 1) + �W(� − 1).
(B.7)
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Applying this further, we can get

W(�) = 2S(� − 1) + �W(� − 1)

= 2S(� − 1) + 2�S(� − 2) + �(� − 1)W(� − 2)

= 2S(� − 1) + 2�S(� − 2) + 2�(� − 1)S(� − 3)

+ �(� − 1)(� − 2)W(� − 3)

...

= 2S(� − 1) + 2�S(� − 2) + 2�(� − 1)S(� − 3)

+ · · · + 2�(� − 1)(� − 2) · · · (2)S(0)

+ �(� − 1)(� − 2) · · · (2)(1)W(0)

= �!W(0) + 2
(
�!
1!

)
S(0) + 2

(
�!
2!

)
S(1)

+ 2
(
�!
3!

)
S(2)

+ · · · + 2
(

�!
(� − 1)!

)
S(� − 2) + 2

(
�!
�!

)
S(� − 1)

= �!W(0) + 2�!
�−1∑

j=0

S( j)
( j + 1)!

.

(B.8)

Again, note that

W(0) =
∫∞

0
e−t(ln t)2dt = γ2

EM +
π2

6
(B.9)

and use the result just derived in Appendix B.2 for S( j). We
can find W(�) as

W(�) = �!
(
γ2

EM − 2γEM +
π2

6

)
+ 2�!

�−1∑

j=1

Hj − γEM

j + 1
.

(B.10)
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