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The development of an efficient adaptively accelerated iterative deblurring algorithm based on Bayesian statistical concept has
been reported. Entropy of an image has been used as a “prior” distribution and instead of additive form, used in conventional
acceleration methods an exponent form of relaxation constant has been used for acceleration. Thus the proposed method is called
hereafter as adaptively accelerated maximum a posteriori with entropy prior (AAMAPE). Based on empirical observations in
different experiments, the exponent is computed adaptively using first-order derivatives of the deblurred image from previous two
iterations. This exponent improves speed of the AAMAPE method in early stages and ensures stability at later stages of iteration. In
AAMAPE method, we also consider the constraint of the nonnegativity and flux conservation. The paper discusses the fundamental
idea of the Bayesian image deblurring with the use of entropy as prior, and the analytical analysis of superresolution and the
noise amplification characteristics of the proposed method. The experimental results show that the proposed AAMAPE method
gives lower RMSE and higher SNR in 44% lesser iterations as compared to nonaccelerated maximum a posteriori with entropy
prior (MAPE) method. Moreover, AAMAPE followed by wavelet wiener filtering gives better result than the state-of-the-art
methods.
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1. INTRODUCTION

Image deblurring, process of restoration of an image from
its blurred and noisy version, is an enduring linear inverse
problem and is encountered in many application areas such
as in remote sensing, medical imaging, seismology, and
astronomy [1-3]. Generally, many linear inverse problems
are ill-conditioned since the inverse of linear operators either
does not exist or is nearly singular yielding highly noise
sensitive solutions. The methods for solving ill-conditioned
linear inverse problems can be classified into the following
two general categories: (a) methods based on regularization
[2-4] and (b) methods based on Bayesian theory [2, 4, 5].
The main idea of regularization and Bayesian approach
is the use of a priori information expressed by prior term.
The prior term gives a higher score to most likely images,
hence, helps in selection of single image from many images,
which fits the noisy and blurred observation. However,
modeling a prior for real-word images is not a trivial and

subjective matter. Many directions for prior modeling have
been proposed such as derivative energy in the Wiener filter
[3], the compound Gauss-Markov random field [6, 7], the
Markov random fields (MRFs) with nonquadratic potentials
(2, 8, 9], entropy [1, 3, 4, 10-12], and heavy-tailed densities
of images in wavelet domain [13]. An excellent review on
image deblurring methods is available in [14].

The weak points in the regularization setup and the
compound Gauss-Markov random field in the Bayesian
setup were conceived to model piecewise-smooth images.
By detecting boundaries between two smooth regions with
discrete random variables, the so-called line-field, these
priors improve the modeling accuracy near the edge in
comparison to the classical quadratic one. The MRFs have
been widely used to model local smoothness in images [15],
but it leads to computationally intensive deblurring methods.
In absence of any prior information, smoothness or texture,
about the original image entropy is considered as the best
choice to define prior term.
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In this paper, we describe the maximum a posteriori
with entropy prior (MAPE) method for image deblurring in
Bayesian framework. This method is nonlinear and solved
iteratively. However, it has the drawbacks of slow conver-
gence and being intensive in computation. Many techniques
for accelerating the iterative methods for faster convergence
have been proposed [1, 16-21]. These acceleration methods
can also be used for ensuring the acceleration of the MAPE
method. All these acceleration techniques use correction
term which is computed in each iteration and added to the
result obtained in the previous iteration. In most of these
acceleration methods, the correction term is obtained by
multiplying gradient of objective function with acceleration
parameter. Acceleration methods given in [17-19] use the
line search approach to find acceleration parameter to
maximize the objective function (likelihood/log-likelihood
function) at each iteration. It speeds up the iterative method
by a factor of 2~5, but requires a prior limit on acceleration
parameter to prevent the divergence. Maximizing a function
in the direction of the gradient is termed as steepest
ascent, and minimizing a function (in the negative gradient
direction) is called steepest descent. The main problem
with gradient-based methods is the selection of optimal
acceleration step. Large acceleration step speeds up the
algorithms, but it may introduce error. If error is amplified
during iteration, it can lead to instability. Thus, gradient-
based methods require an acceleration step followed by a
correction step to ensure the stability. This correction step
reduces the gain obtained by the acceleration step.

A gradient search method proposed in [20], known as
conjugate gradient (CG), method is better than the above
discussed methods. This approach has also been proposed
by the authors of [22] as well as [17, 21]. The CG method
requires gradient of the objective function and an efficient
line search technique. But drawback of CG method is that
several function evaluations are needed in order to accurately
maximize/minimize objective function, and in many cases
the objective function and its gradient are not trivial.

One of our objectives in this paper is to give simple and
efficient method which overcomes difficulties in previously
proposed methods. In order to cope with the problems
of earlier accelerated methods, the proposed AAMAPE
method requires minimum information about the iterative
process. Our method uses the multiplicative correction term
instead of using additive correction term. Multiplicative
correction term is obtained from derivative of conditional
log-likelihood. We use an exponent on multiplicative cor-
rection as an acceleration parameter which is computed
adaptively in each iteration, using first-order derivatives of
deblurred image from previous two iterations. The positivity
of pixel intensity in the proposed acceleration method is
automatically ensured since multiplicative correction term is
always positive, while in other acceleration methods based on
additive correction term, the positivity is enforced manually
at the end of iteration.

Another important objective of this paper is to analyze
the superresolution and the nature of noise amplification
in the proposed AAMAPE method. Superresolution means
restoring the frequency beyond the diffraction limit. It is

often bandied about nonlinear methods that they have
superresolution capability, but very limited insight for super-
resolution is available. In [23], an analysis of superresolution
is performed assuming that the point spread function (PSF)
of the system and the object intensity are Gaussian function.
In this paper, we present general analytical interpretation of
superresolving capability of the proposed AAMAPE method
and confirmed it experimentally.

It is a well-known fact about the nonlinear methods
based on maximum likelihood that the restored images
begin to deteriorate after certain number of iterations. This
deterioration is due to the noise amplification in successive
iterations. Due to the nonlinearity, an analytical analysis of
the noise amplification for a nonlinear method is difficult. In
this paper, we investigate the process of noise amplification
qualitatively for the proposed AAMAPE method.

The rest of the paper is organized as follows. Section 2
describes the observation model and the proposed AAMAPE
method. Section 3 presents analytical analysis for the super-
resolution and noise amplification for the proposed method.
Experimental results and discussion are given in Section 4.
The conclusion is presented in Section 5 which is followed
by references.

2. BAYESIAN FRAMEWORK FOR IMAGE DEBLURRING
2.1. Observation model

Consider an original image, x of size M X N, blurred by shift-
invariant point spreading function (PSF), h, and corrupted
by Poisson noise. Observation model for the blurring in case
of Poisson noise is given as

y =P((hex)(z)), (1)

where P denotes the Poisson distribution, ® is convolution
operator, z is defined on a regular M X N lattice Z =
tmy,my :my = 1,2,...,M, my = 1,2,...,N}. Alternatively,
observation model (1) can be expressed as

y(2) = (h @ x)(2) + n(2), (2)

where 1 is zero-mean with variance ¢2(z) = var{n(z)} =
(h ® x)(z). Blurred and noisy image, y, has mean, E{y(z)} =
(h ® x)(z), and variance, af(z) = (h ® x)(z). Thus,
the observation variance of(z) is signal dependent and,
consequently, spatially variant. For mathematical simplicity,
observation model (2) can be expressed in matrix-vector
form as follows:

y=Hx+n, 3)

where H is the blurring operator of size MN x MN
corresponding PSF h; X, ¥y, and 7 are vectors of size MN X 1
containing the original image, observed image, and sample
of noise, respectively, arranged in a column lexicographic
ordering. The aim of image deblurring is to recover an
original image, X, from its degraded version y.
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2.2. Entropy as a prior distribution constraint of flux conservation, >;x; = >;y; = N. We
o . . . consider the maximization of the following function:

The basic idea of Bayesian framework is to incorporate

the prior information, about the desired image. The prior

information is included using a priori distribution. The a L(%, ) = log p(x/7) (ZX] >> 9)

priori distribution p(x) is defined using entropy as [12]

p(x) =exp (AE(X)), A>0, (4)
where E(X) is the entropy of the original image x. The role
of entropy in defining the a prioridistribution has been in
discussion for four decades [24-26], and researcher proposed
many entropy functions [27]. Frieden first used the Shannon
form of entropy in the context of image reconstruction [25].
We also use the Shannon entropy, and, it is given as follows:

E(x) = —> x;logxi. (5)

It is important to note that in spite of the large volume
of literature justifying the choice of entropy as a priori
distribution, the entropy of an image does not have the
same firm conceptual foundation as in statistical mechanics
[14]. Trussell [28] has found a relationship between the use
of entropy as a prior in a maximum aposteriori (MAP)
image restoration and a simple maximum entropy image
restoration with constraints for the Gaussian noise case [3].
In the case of Gaussian noise first-order approximation of
MAP with Shannon entropy gives the well-known Tikhonov
method of image restoration [3].

2.3. Accelerated MAP with entropy prior

When 7 is zero in (3), we consider only blurring, the expected
value at the ith pixel in the blurred image is >’ ;hjx;. Where
hij is (i, j)th element of H and xj is the jth element of X.
Because of Poison noise, the actual ith pixel value, y;, in y
is one realization of Poisson distribution with mean >’ hijx;.
Thus, we have the following relation:

(3 jhijxj) " el=2M)
yil '

p(yi/x) = (6)

Each pixel in blurred and noisy image ¥ is realized by an
independent Poisson process. Thus, the likelihood of getting
noisy and blurred image ¥ is given by

T ) p(= 2 jhijxg)
p(y/)?) _ n((zjthXJ) e ) (7)

.|
: !

From Bayes’s theorem, we get a posteriori probability p(X/¥)
of x for given ¥ as

= p(y/x)
x/y) = —. 8

) r() ®)
MAPE method with flux conservation for image deblurring
seeks an approximate solution of (1) that maximizes the a
posteriori probability p(x/y) or log p(x/y), subject to the

where y is the Lagrange multiplier for flux conservation. On
substitution of p(x/y) from (8) into (9), we get

L(%, ) = log p(y/%) +log p(x) —log p(7) — #(ij - N>~
j
(10)

Substituting the p(x), p(¥/%) from (5), (7) in (10), we get the
following:

L(%p) = Z{ — D hijxj + yilog (Zhﬂxl)}
i F ]

(11)

- Aij log x;
J

—logp(») —y(ij —N).
j

From dL/dx; = 0 we get the following relation:

1+ pp =th,-j(Zl);liﬂx1> —p —log (xj), (12)

where p = 17!. Adding a positive constant C and introducing
an exponent g on both sides of (12), we get the following
relation:

q
q_ Y o ,
(1+pu+0C) {p;h,](zlhﬂxl) p log(x])+C} .
(13)
Equation (13) is nonlinear, and is solved iteratively. Multiply

both sides of (13) by x;, we arrive on the following iterative
procedure:

At = A {chu(zl P l)—P

where A = [T+ pu+C] . For ensuring the nonnegativity
of x;? and the computation of log(xf) in the next iteration

a constant ¢ > p + log(xjf) added both sides of (14). By
generalizing (14), we get the following:

q
—log (xf)+C} , (14)

q

1= AxF [pHT (y/Hx*) — p —log (7°) + C] ,  (15)
where superscript T denotes transpose of matrix, and
(/Hx") denotes the vector obtained by component-wise
division of 7 by Hx*. Likewise, component-wise multiplica-
tion of the vector ¥* and vector obtained from square bracket
of (15). In order to show that the iterative procedure (15)
has fixed point, we proved that it satisfies the condition of
contraction mapping (Section 2.6).
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In further discussions, we use the word “correction
factor” to refer to the expression in square bracket of
(15). The constant A is known if p, y are known and
their values must be such that at convergence >,;x; = N
holds. Accordingly, in the iteration (14), the constant A is
recalculated at each iteration so that > i x = N satisfied.
Summing both sides of (14) over all pixel values, we get

q

karl =A xk{ hl<L> —-p—1lo (xk) +C} .
; ! ; ! pg I\ S haxt PR

(16)

Using flux conservation constraint, > ; x;‘“ = N, in (16) we
get the following expression for A:

A= A(k)

_N[Zx;?{thij(Zl;le) —p—long?+C} ] .
j i !
17)

From (17), we see that the constant A does not depend on the
Lagrange multiplier y. Thus, iterative procedure (14), (15)
does not depend on p.

We observed that iteration given in (15) converges only
for some values of g lying between 1 and 3. Large values of
q(= 3) may give faster convergence but with the increased
risk of instability. Small values of g(= 1) lead to slow
convergence with reduced risk of instability. Between these
two extremes, the adaptive selection of exponent g provides
means for achieving faster convergence while ensuring
stability. Thus, (15) with an adaptive selection of exponent
q leads to the AAMAPE method. An empirical method for
adaptive selection of g is discussed in Section 2.5. Putting
q = 1in (15), we get the following equation:

T — Axk [pﬁT (y/ﬁyk> —p —log (%) + C]- (18)

Equation (18) is nonaccelerated maximum a posteriori with
entropy (MAPE) method for image deblurring. This can be
derived from (12).

As A—0 in (11), maximization of L(X,y) amounts to
maximize the first term of (11), equivalently log(y/x), with
respect to X. This leads to well-known Lucy-Richardson
method, where flux conservation and nonnegativity is
automatic. Hence, for large p, this method behaves like
the Lucy-Richardson method and can be expected to be
unstable in presence of noise. For large value of A the
prior probability term becomes dominant in L(X,u) and,
hence, prior probability is maximized when X is a uniform
image. Thus, small value of p imposes high degree of
uniformity in the restored image, and, hence, smoothing
of high frequency component. The optimal value of p is
obtained by trial and error. Starting with a small value for p
and iterating to convergence, the procedure must be repeated
with larger values of p until a value is found which sufficiently
sharpens the image at convergence and without undue noise
degradation.

2.4. Nonnegativity in AAMAPE

It is reported that disallowing the negative pixel intensity
strongly suppresses the artifact, increases the resolution,
and may speed up the convergence of the algorithm [14].
Nonnegativity is a necessary restriction for almost all kind
of images. In many algorithms, nonnegativity constraint is
imposed either by change of variable or replacing negative
values to some positive value at the end of each iteration.

In accelerated MAPE (15), for xX* > 0 the first term,
pHT (y/Hx"), is nonnegative and selection of constant C >
(p+log(x¥)) gives the correction factor and constant A, which
is given by (17), is always positive. Thus, in accelerated MAPE
the nonnegativity of intensity, X*! > 0, is automatically
guaranteed.

2.5. Adaptive selection of q

It is found that the choice of g in (15) mainly depends
on the noise, #, and its amplification during iterations. If
noise is high, smaller value of ¢ is selected and vice-versa.
The convergence speed of the proposed method depends on
the choice of the parameter q. Drawback of this accelerated
form of MAPE is that the selection of exponent g has to be
done manually by trial and error. We overcome this serious
limitation by proposing a method by which g is computed
adaptively as iterations proceed. We proposed an expression
for g based on an empirical observation as follows:

v*k
R )

_Ivel
vl

(19)

where Vx¥ stands for first-order derivative of X* and ||-||
denotes the L, norm. Main idea in using first-order derivative
is to utilize the sharpness of image. Due to blurring the
image becomes smooth, sharpness decreases, and edges
are lost or become weak. Debluring makes image nons-
mooth, and increases the sharpness. Hence, the sharpness
of deblurred image increases as iterations proceed. And the
ratio || Vxk||l/||Vxk—1| converges to one as the number of
iteration increases. For different levels of blur and different
classes of images, it has been found by experiments that
the ratio ||Vx?||/||Vx!| lying between 1 and 1.5. AAMAPE
emphasizes speed at the beginning stages of iterations by
forcing g around three. At the start of iteration, when the
exponential term in (19) is greater than three, the second
term, ||Vx?[|/||Vx!]l, limits the value of g within three to
prevent divergence. As iterations proceed the second term
forces g toward the value of one which leads to stability of
iteration. By using the exponent, g, the method emphasizes
speed at the beginning stages and the stability at later stages
of iteration. Thus, selecting g given by (19) for iterative
solution (15) gives AAMAPE. In order to initialize the
AAMAPE, first two iterations are computed using some fixed
value of g (1 < g < 3). In order to avoid instability at the
starting of iteration, g = 1 is preferable choice.
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2.6. Contraction mapping for AAMAPE

In order to show that the iterative procedure (15) gives the
solution of (13), we prove that (15) provides contraction
mapping [29, 30]. A function f on complete metric space
(X, y) is said to have contracting property, if for any x’, " in
X the inequality

y(f (), f(x7))

holds, for some fixed 0 < ¢ < 1.

Equation (15) can be considered as a function from R”
to R", where n = MN and R takes values in [0,G], and
G is the maximum gray code value. For (15), contracting
property holds, if for any %1, % in R" there exists a constant
0 < ¢’ < 1 such that following inequality holds

d(x xR < dd (xR, 50, (21)

<cy(x',x") (20)

where d is Euclidean distance in R".
In order to make mathematical steps simple and
tractable, we rewrite (15) using (A.1) as follows:

+1 = A(K)ZCF, (22)

_ _ (k) _
where CF* = [pH & - log@) +C]" , @ = (3 — H¥")/
Hx*. Index is used with exponent, ¢, in order to show the
result for AAMAPE in which exponent varies with iteration.

For any X', x* in R" we get the following relation:
XAt = A(ky)x9 CFY,

- (23)

7t = A(ky)) xR CF .

Upon using (23), we get Euclidian distance between x**!,
%t as follows:

d(szﬂ §k1+1
b

(24)

Z( k2+1 k1+1
_Z( ky ko ki 1)2
=2\pjxj = PjXi)

j

= A(k)ﬁlj. Putting value of A(k) from (17) and
2 xj? = N, we get following relation for pﬁ?:

where p?

logx +C}

- A,
j

ijj{ (H " )
Since C > (p +log(xk)) |H k| < 1, and ¥ > 0, therefore

p] > 0. It is also evident from (25) that pj < 1. Replacing pj
in (24) by minimum of all pf, we get following inequality:

d(xk2+l’fk1+l) < Pzz(x;(z _xjfl)

J
_ pzd(sz,}kl),

where p = min{p{', p5',..., pk, 2, p52,..., pke} is lying
between 0 and 1. Thus, for any ¥, X in R” there exists a
constant 0 < ¢’(= p?) < 1 such that inequality (21) holds;
and therefore contraction mapping property is satisfied for
(15).

(25)
- long + C}

2

(26)

2.7. Implementation and computational
considerations

In implementation of MAPE and AAMAPE, we use the
shift-invariant property of the PSE. For linear shift-invariant
system, convolution in spatial domain is equivalent to
pointwise multiplication in Fourier domain [31]. In the

MAPE and AAMAPE, evaluation of the array HT(?/HE")
involves the heaviest computation in each iteration. This
has been accomplished using Fast Fourier Transform (FFT)
ﬁ(f, 1), X€(&,1) of the PSE, h, and the image corresponding
to %, in four steps as follows: (1) form Hx* by taking inverse
FFT of the product fz(f, nx*(&,n); (2) replace all elements
less than 1 by 1 in Hx*, and form the ratio, y/HX*, in the
spatial domain; (3) compute the FFT of the result obtained
in step 2 and multiply it by complex conjugate of h(E, n); (4)
take the inverse FFT of the result of step 3 and replace all
negative entries by zero.

The FFT is the heaviest computation in each iteration of
the MAPE and AAMAPE method. Thus the overall compu-
tational complexity of these methods is O(MN log MN).

3. SUPERRESOLUTION AND NOISE
AMPLIFICATION IN AAMAPE

3.1. Superresolution

It is often mentioned that the nonlinear methods have
superresolution capability, restoring the frequency beyond
the diffraction limit, without any rigorous mathematical
support. In spite of highly nonlinear nature of AAMAPE
method, we explain its superresolution characteristic quali-
tatively by using simplified form of (15) given as

X1 = AKI%* + gpAKT % H ' o, (27)

where #* = (¥ — Hx*)/Hx*, and K = C —log(x*). Derivation
of (27) is given in Appendix A. An equivalent expression of
(27) in Fourier domain is obtained by using convolution,
correlation theorem as [31]

Xk+1(f) AKqu(f) + qP

k * k
AR X(F) o H* (U,

(28)

where superscript * denotes the conjugate transpose of a
matrix; and X*t1, Xk and U* are discrete Fourier transforms
of size M X N corresponding to the variable in lower case
letters; f is 2-D frequency index. H is the Fourier transform
of PSE, h, and it is known as optical transfer function (OTF).
The OTF is band limited, say, its upper cutoff frequency is fc;
that is, H(f) = 0 for | f| > fc. In order to make explanation
of superresolution easy, we rewrite (28) as follows:

Xk+l(f) AKqu(f)

quK (29)

ZXWf—WHﬂWUW)

At any iteration, the product H*U* in (29) is also band
limited and has the frequency support at most as that of H.
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TaBLE 1: Blurring PSF, BSNR, and SNR.

. Blurring BSNR SNR
Experiment  Image

PSF [dB] [dB]

Exp.1 Cameraman 5 X 5 Box-car 40 17.35

Exp.2 Lenna 5 X 5 Box-car 32 20.27

Exp.3 Anuska 5% 5 Gauss, scale=3 38.60 22.95

Due to multiplication of H* U* by X* and summation over
all available frequency indexes, second term of (29) is never
zero. Indeed, the inband frequency components of X* are
spread out of the band. Thus, the restored image spectrum,
X*1(f), has frequencies beyond the cutoff frequency, fc. It
is important to note that the observation, y, is noisy and
noise has frequency component at high frequencies. Thus,
the restored frequencies are contaminated and spurious high
frequencies are also present in restored image. How to ensure
the fidelity of the restored frequencies and rejection of
spurious high frequencies without knowing the frequency
present in the true data, X, is challenging and an open
problem.

3.2. Noise amplification

In this section, signal dependent noise characteristic of
noise amplification has been investigated qualitatively. It
is worth noting that the complete recovery of frequencies
present in true image from the observed image requires large
number of iterations. But due to noisy observation, noise also
amplifies as iteration increases. Hence, restored image may
become unacceptably noisy and unreliable at large number of
iterations. Noise in (k + 1)th iteration is estimated by finding
the correlation of the deviation of restored spectra X**!(f)
form its expected value E [Xk“(?)]. This correlation is the
measure of noise and is given as follows:

W)}
= E[{X*'(f) — E[xX* () X' () — EIXF' (D]}
(30)

where * denotes the complex conjugate. In order to get
simple and compact expression for amplified noise (30),
we assume that the correlation at two different spatial
frequencies is independent, that is, vanishing correlation
at two different spatial frequencies. Substituting X**! from
(29) into (30) and using this assumption we get following
relation:

NEL(F) = NE(F) = (a2 = 1)NE(S)
+ B2 [HW) IV () PNE(F - v)
+2aB> Re(H* (v)U*(v))E(IX*(F)I°)
— 2aBS Re(H* (\)U(v)) [E(X*(F)) %,
(31)

(a) (b)

(e) (f)

FIGURE 1: “Cameraman” image (a) original image, (b) noisy and
blurred image; PSF 5 X 5 Box-Car, BSNR = 40dB, (c) restored
image by MAPE corresponding to maximum SNR (348 iterations),
(d) restored image by AAMAPE correspondsing to maximum SNR
(201 iterations), (e) residual corresponding (c), and (f) residual
corresponding (d).

where, a = AK4, B = gpAK?'/MN and N&(f) = uk&(f, f)
represents the noise in X at frequency f. Derivation of (31)
is given in Appendix B. From third and fourth term of (31), it
is clear that in AAMPAE amplified noise is signal dependent.
Moreover, noise from one iteration to next is cumulative.
Thus, increasing number of iterations does not guarantee
that the restored quality of image will become acceptable. We
can find total amplified noise by summing (31) over all MN
frequencies, provided that the statistics of the restored spatial
frequency is known at each iteration. But in practice, there is
no way to estimate statistics of spatial frequency—E(X*(f)),

=12 . . -
E(IX*(f)|")—at each iteration. Moreover, due to intricate
relation between spatial frequencies it is almost impossible
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25 T T T

SNR (dB)

17 1 1 1 1
0 100 200 300 400 500

Number of iterations
()
18 T T T T

RMSE

0 100 200 300 400 500
Number of iterations

(b)

FIGURE 2: “Cameraman” image (a) SNR of the MAPE (solid line)
and AAMAPE (dotted line). (b) RMSE of the MAPE (solid line)
and AAMAPE (dotted line).

to give reliable and exact noise amplification formula. In
derivation of (31), we use the assumption that one spatial
frequency is independent from the other, that is, correlation
term at two different spatial frequencies is zero. Thus, Monte
Carlo simulations are the only realistic way to assess the
amplified noise. Equation (31) is for understanding the well-
known fact that the amplified noise is signal dependent in
this nonlinear method.

4. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we describe three experiments demonstrating
the performance of the AAMAPE method in comparison

(e) (f)

FIGURE 3: “Lenna” image (a) original image, (b) noisy and blurred
image; PSF 5 x 5 Box-Car, BSNR = 32dB, (c) restored image
by MAPE corresponding to maximum SNR (79 iterations), (d)
restored image by AAMAPE corresponding to maximum SNR
(44 iterations), (e) residual corresponding (c), and (f) Residual
corresponding (d).

with MAPE method. Test images used in these experiments
are Cameraman (Experiment 1), Lenna (Experiment 2), and
Anuska (Experiment 3); all are 256 x 256, 8-bit gray scale
image. The corrupting noise is of Poisson type for both
experiments. Table 1 displays the blurring PSF, BSNR, and
SNR for all three experiments. The level of noise in the
observed image is characterized in decibels by blurred SNR
(BSNR) and defined as

S (Hx — (1/MN) sz)z]

BSNR = 10 loglo[ o2MN

(32)

S (H% — (1/MN) sz)z]

~ 101 [
0810 S (7 - Hx)
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TaBLE 2: SNR, iterations, and time for MAPE, AAMAPE, WaveGsm_TTI [32], ForWaRD [33], and RI [34].

Method

Exp.1

SNR [dB]
Exp.2

Exp.3

Exp.1

No. of iterations
Exp.2

Exp.3

Exp.1

Time [sec.]
Exp.2

Exp.3

MAPE
AAMAPE
WaveGSM _TI
ForWaRD

RI

24.46
24.46
21.63
25.17
25.50

24.54
24.54
21.81
25.64
25.74

28.63
28.65
27.84
26.58
27.94

348
201
504

79
44

124
71
105

39.1
22.5
2349.4

20.0

9.2
5.0
772.57

14.6
7.8
601.5

25 T T T

SNR (dB)

20 1 1 1
0 50 100 150 200

Number of iterations

(a)

12 T T T

RMSE

0 50 100 150 200
Number of iterations

(b)

FIGURE 4: “Lenna” image (a) SNR of the MAPE (solid line) and
AAMAPE (dotted line). (b) RMSE of the MAPE (solid line) and
AAMAPE (dotted line).

where ¢ is the standard deviation of noise. The following
standard imaging performance criterions are used for com-
parison of AAMAPE method and MAPE method:

RMSE = \/(MIN) S (x-%)
EL )

)
2 |x -7

(33)
SNR = 10log,, <

Most of these criteria actually define the accuracy of
approximation of the image intensity function. There is no
one-to-one link between the image quality and the above
criteria. Another criterion based on residual, 7 = y — HxF,
is discussed in [14]. The deblurred image, x* is acceptable,
if the residual are consistent with statistical distribution
of noise in observed image y. If any systematic structure
in residual is observed, or if the residual distribution is
inconsistent with noise statistics of y, there is something
wrong with the deblurred image. In most of the deblurring
method, particularly in linear methods, there is tradeoff
between residual and artifacts appearing in the deblurred
image [14]. Excellent residual does not guarantee that the
deblurred image has less or free from artifact. Thus, a visual
inspection, which of course is quite subjective, continues to
be the most important final performance criterion.

Figures 1(c)-1(d), Figures 3(c)-3(d), and Figures 5(c)-
5(d) show the restored images, corresponding to the max-
imum SNR, of Experiments one, two, and three. It is clear
from these figures that the AAMAPE gives almost same visual
results in less number of iterations than MAPE method for
all experiments. Figure 2, Figure 4, and Figure 6 show the
variations of SNR, RMSE versus iterations for experiments.
It is observed that the AAMAPE has faster increase in SNR
and faster decrease in RMSE in comparison to that of MAPE
method, for all three experiments. It is clear from Figures
1(e)-1(f), Figures 3(e)-3(f), and Figures 5(e)-5(f), that the
AAMAPE gives same residual as MAPE in lesser number of
iteration. Hence, the performance of the proposed AAMAPE
method is consistently better than the MAPE method. In
Figures 7(a)-7(c), it can be seen that the exponent g has value
near three at the start of the iteration and approaching to
one as iterations increase. Thus, AAMAPE method prefers
speed at the beginning stage of iteration, and stability at
later stages. It can be observed in Figures 2, 4, and 6 that
the SNR is increasing and the RMSE is decreasing up to
certain number of iteration, and after that SNR decreases
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(e) (f)

FIGURE 5: “Anuska” image (a) original image, (b) noisy and blurred
image; PSF 5 X 5 Gauss, BSNR = 38.6dB, (c) restored image
by MAPE corresponding to maximum SNR (124 iterations), (d)
restored image by AAMAPE corresponding to maximum SNR
(71 iterations), (e) residual corresponding (c), and (f) residual
corresponding (d).

and RMSE increases. This is due to the fact that the noise
amplification is signal dependent, as discussed in Section 3.
Thus, increasing number of iterations does not necessarily
improve the quality of restored image. In order to terminate
the iterations corresponding to the best result, some stopping
criterion must be used [14, 35].

Table 2 shows the SNR, number of iterations, and
computation time of the MAPE, proposed AAMAPE,
WaveGSM_TT [32], ForWaRD [33], and RI [34] for Expe-
riments 1-3. Matlab implementation of ForWaRD is avai-
lable at http://www.dsp.rice.edu/software/, and RI at http://
www.cs.tut.fi/ ~lasip/#re software.

The proposed AAMAPE method gives same SNR as
MAPE in less iteration and less computation time. The
performance of AAMAPE is better—higher SNR, less itera-

29

SNR (dB)

23 : : :
0 50 100 150 200
Number of iterations

(a)

RMSE

0 50 100 150 200
Number of iterations

(b)

FIGURE 6: “Anuska” image (a) SNR of the MAPE (solid line) and
AAMAPE (dotted line). (b) RMSE of the MAPE (solid line) and
AAMAPE (dotted line).

tion and less computation time—than the iterative method
WaveGSM_TL. In Experiments 1 and 2, the SNR achieved
in AAMAPE is less than ForWaRD and RI (= 1dB). This is
due to the fact that in the ForWaRD and the RI, deblurring
is performed followed by denoising. We achieved the SNR
26.0dB, 26.20dB, and 29.3dB, for Experiments 1, 2, and
3, respectively; when the result obtained form AAMAPE is
denoised by Wavelet-domain Wiener Filter (WWF) [36].
Hence, our proposed AAMAPE method with WWE yields
higher SNR in comparison to the state-of-the-art methods
ForWaRD and RI. Moreover, we performed experiments
with many images of different types (optical, CT, MRI,
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2.6 1

2.2 E

1.8 E

1.4 j

0 100 200 300 400 500
Number of iterations

(a)

2.6 b

1.8 H E

1.4} h
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Number of iterations

(b)

2.5 B

1 ) ) )
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Number of iterations
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FIGURE 7: Iteration versus q (a) Cameraman image, (b) Lenna
image, and (c) Anuska image.

(c) (d)

FIGURE 8: Spectra of images from Figure 5. All spectra are range
compressed with logio(1 + | -1?), (a) original image in Figure 5(a),
(b) blurred and noisy image Figure 5(b), (c) Figure 5(c), and (d)
Figure 5(d).

ultrasound), with different blurs and noise levels; we found
that the proposed AAMAPE performs better than the state-
of-the-arts methods [32-34].

In order to illustrate the superresolution capability of
the MAPE and AAMAPE, we present the spectra of the
original, blurred, and restored images in Figure 8 for the
third experiment. It is evident that the restored spectra, as
given in Figures 8(c)-8(d), have frequency component that
are not present in observed spectra as in Figure 8(b). But
restored spectra are not identical to that of original image
spectra as shown in Figure 8(a). In principle, an infinite
number of iteration are required to recover the true spectra
from the observed spectra using any nonlinear method. But
due to noisy observation, noise also gets amplified as the
number of iteration increases and the quality of restored
image degrades.

5. CONCLUSIONS

In this paper, we proposed AAMAPE method for image
deblurring. The AAMAPE method uses a multiplicative
correction term which has been calculated using an exponent
on the correction factor. The proposed empirical technique
computes the exponent adaptively in each iteration using
first-order derivative of the restored image in previous
two iterations. With this exponent, the AAMAPE method
emphasized speed and stability, respectively, at the early
and late stages of iterations. The experimental investigations
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suggest that AAMAPE method give better results in terms of
low RMSE and high SNR, even when 44% lesser iterations
than MAPE method. This adaptive method has simple
form and very easy to implement. Moreover, computations
required per iteration in AAMAPE are almost the same as
those in MAPE. AAMAPE yields better result, in terms of
SNR, than the recently published state-of-the-art methods.
The noise amplification and the superresolution capability
of AAMAPE method are not evident due to extremely intri-
cate restoration process. We explained the superresolution
property of the proposed accelerated method analytically and
verified it experimentally. For interpreting the noise ampli-
fication of the proposed method, we have also performed
an analytical analysis, which confirms its signal dependent
nature of amplified noise.

In AAMAPE, we assumed that the PSF is known and is
shift-invariant. However, in many cases, the PSF is unknown.
In such blind deblurring problems, the PSF and true image
must be estimated simultaneously from noisy and blurred
observation. Extension of AAMAPE for shift-variant PSF and
blind deblurring is subject of future research.

APPENDICES
A. DERIVATION OF (27)

The term in square bracket of (15) is expressed as follows:
pﬁ%%) —p—log(®)+C

:p[ﬁT(% —T+T> — b — log (&) +c] .

() o=t - .
(A.3)

where K = C — log(ik). It is observed that IHTﬁkI < 1,
for sufficiently large k. Moreover, by the Riemann-Lebesgue

lemma it is possible to show that the sum H' % has value
very close to zero [4]. It is obvious that p/K < 1, and hence,

|(p/K H' o < 1. Expanding square bracket in left-hand
side of (A.3) using Taylor series expansion:

- q
Kq[l + %HTﬁk]

_ 2
= Kq[l +q£ﬁTﬂk - M(%ﬁ%") + ]

= K9+ qpK9™'H ¢ +

In both experiments we use p = 10000, C = 11000, and

found that at higher iteration most of the values of \H |
are in between 107'° and 1078, Moreover, we observed that
the IHTﬁkI fall below 1072 just in four iterations. In order to
calculate maximum possible value of third term of (A.4), at
higher iteration, we take image intensity value 255 and q = 3.
From these we found that third term of (A.4) is between 10~%
and 107*. Thus, the third and higher order term in (A.4)
is very small. Retaining only first-order term we arrive on
following relation:

' (2) —p—tog (&) + C| = K9+ qors—H' st
p Hrz) P~ log(x) + =Ki+qp u.
(A.5)

Using (A.5) in (15) we get the following:

X1 = AKI%* + gpAKI % H 7. (A.6)

In order to validate this approximation, we perform
the simulation for Experiment 1. The results are shown
in Figure 9. From Figures 9(a)-9(b) and Figures 1(d), 1(f),
we see that the simplified form, (A.6), gives almost same
restored image and residual as AAMAPE. Moreover, from
Figure 9(c), we see that RMSE variation of simplified form,
(A.6), agrees with RMSE of AAMAPE.

B. DERIVATION OF (31)

In order to make mathematical step understandable, we
rewrite (29) as follows:

XML = aXK(f) + BYR(F), (B.1)

where

YE(f) = D XK(f = v)H* (v)Ur(v). (B.2)

For estimating noise amplification during iteration, we use
covariance analysis. By using covariance, we find the rule
for evolution of spatial frequency from one iteration to next
iteration. By using (30) and (B.1), covariance of X**! for two
different spatial frequencies is given as

W) = @k (F )+ BPus (F F)

_ _ (B.3)
+aPuly (fs )+ aPukey (f ),
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(a) (b)

16

RMSE

0 100 200 300 400 500
Number of iterations

(c)

FIGURE 9: Result for Experiment 1 using (27): (a) restored image by
simplified form (27) of AAMAPE (15) corresponding to maximum
SNR (203 Iterations), (b) residual corresponding (a), and (c)
RMSE of the MAPE (solid line with x), AAMAPE (solid line), and
AAMAPE simplified form given by (27) (dotted line).

where

FXY* (? 7 )

= E[{X*(f) - ~E[Y" ()]}

(B.4)

E[XOIHYY (F)

Using (30) and (B.2) we get
W (Fof) = S S HHWH (V)UK U (v')

X E[X*(F = vX* (F =v)])
= S SHWHE ()UK W)U ()
o x EXF(f = IEXF (F =)},
u(F )
= Z S{HWH* MU () (F - wF ).
(B.5)

Using (B.2) into (B.4) we get yi‘(y*

V§Y* (?’ ?l)
= S{H@)UF WE[X*(HXS (F =)}
= S{HOUX WEX*(HEXY (F - )]}
v (B.6)
Similarly,
.”I}((*Y(z?,)
= Z{H “ (V) UFEIXF (HXE(F = )]}
—Z (H* () UKE[XF (DE[X*(F - )]}
(B.7)

It is evident from (B.6) and (B.7) that pxy+ = [px+y]™. We
use the assumption that one spatial frequency is independent
from the other, that is, correlation term at two different
spatial frequencies is zero. Using (B.7), (B.6), and (B.5) into
(B.3) we have

U f) = auk (f, f)
+B23 [HW PO ) i (F — v, f =)
+20BS Re(H* () U*()) E(| XX(F) | )

— 2aBS Re(H* (V)UK(w)) | E(X*()) |,
' (B.8)

where Re denotes the real part of complex quantity.

ABBREVIATIONS

MAPE:  maximum a Posteriori with entropy prior;
AAMAPE: adaptively accelerated MAPE;

RMSE: root mean square error;
SNR: signal-to-noise ratio;
PSE: point spread function.
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