
Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2008, Article ID 691924, 15 pages
doi:10.1155/2008/691924

Research Article
Learning How to Extract Rotation-Invariant and
Scale-Invariant Features from Texture Images

Javier A. Montoya-Zegarra,1, 2 João Paulo Papa,2 Neucimar J. Leite,2

Ricardo da Silva Torres,2 and Alexandre X. Falcão2

1Computer Engineering Department, Faculty of Engineering, San Pablo Catholic University, Av. Salaverry 301,
Vallecito, Arequipa, Peru

2 Institute of Computing, The State University of Campinas, 13083-970 Campinas, SP, Brazil

Correspondence should be addressed to Javier A. Montoya-Zegarra, jmontoyaz@gmail.com

Received 2 October 2007; Revised 1 January 2008; Accepted 7 March 2008

Recommended by C. Charrier

Learning how to extract texture features from noncontrolled environments characterized by distorted images is a still-open task.
By using a new rotation-invariant and scale-invariant image descriptor based on steerable pyramid decomposition, and a novel
multiclass recognition method based on optimum-path forest, a new texture recognition system is proposed. By combining the
discriminating power of our image descriptor and classifier, our system uses small-size feature vectors to characterize texture
images without compromising overall classification rates. State-of-the-art recognition results are further presented on the Brodatz
data set. High classification rates demonstrate the superiority of the proposed system.

Copyright © 2008 Javier A. Montoya-Zegarra et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. INTRODUCTION

An important low-level image feature used in human
perception as well as in recognition is texture. In fact,
the study of texture has found several applications ranging
from texture segmentation [1] to texture classification [2],
synthesis [3, 4], and image retrieval [5, 6].

Although various authors have attempted to define what
texture is [7, 8], there still does not exist a commonly
accepted definition. However, the basic property presented
in every texture consists in a small elementary pattern
repeated periodically or quasiperiodically in a given region
(pixel neighborhood) [9, 10]. The repetition of those image
patterns generates some visual cues, which can be identified,
for example, as being directional or nondirectional, smooth
or rough, coarse or fine, uniform or nonuniform [11, 12].
Figures 1–4 show some examples of these types of visual cues.
Note that each texture can be associated with one or more
visual cues.

Further, texture images are typically classified as being
either natural or artificial. Natural textures are related to
nonman-made objects and among others they include, for
example, brick, grass, sand, and wood patterns. On the other

side, artificial textures are related to man-made objects such
as architectural, fabric, and metal patterns.

Regardless of its classification type, texture images may
be characterized by their variations in scale or directionality.
Scale variations imply that textures may look quite different
when varying the number of scales. This effect is analogous
to increase or decrease the image resolution. The bigger or
the smaller the scales are, the more different the images
are. This characteristic is related to the coarseness presented
in texture images and can be understood as the spatial
repetition period of the local pattern [13]. Finer texture
images are characterized by small repetition periods, whereas
coarse textures present larger repetition periods. In addition,
oriented textures may present different principal directions
as the images rotate. This happens because textures are not
always captured from the same viewpoint.

On the other hand, work on texture characterization
can be divided into four major categories [1, 14]: struc-
tural, statistical, model-based, and spectral. For structural
methods, texture images can be thought as being a set of
primitives with geometrical properties. Their objective is
therefore to find the primitive elements as well as the formal
rules of their spatial placements. Example of this kind of
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Figure 1: Directional versus nondirectional visual cues.

Figure 2: Smooth versus rough visual cues.

methods can be found in the works of Julesz [15] and
Tüceryan [16]. In addition, statistical methods study the
spatial gray-level distribution in the textural patterns, so that
statistical operations can be performed in the distributions
of the local features computed at each pixel in the image.
Statistical methods include among others the gray-level co-
occurrence matrix [17], second-order spatial averages, and
the autocorrelation function [18]. Further, the objective of
the model-based methods is to capture the process that
generated the texture patterns. Popular approaches in this
category include Markov random fields [19, 20], fractal [21],
and autoregressive models [22]. Finally, spectral methods
perform frequency analysis in the image signals to reveal
specific features. Examples of this may include Law’s [23, 24]
and Gabor’s filters [25].

Although many of these techniques obtained good
results, most of them have not been widely evaluated in
noncontrolled environments, which may be characterized
by texture images having (1) small interclass variations,
that is, textures belonging to different classes may appear
quite similar, especially in terms of their global patterns
(coarseness, smoothness, etc.) and the patterns may present
(2) image distortions such as rotations or scales. In this
sense, texture pattern recognition is a still-open task. The
next challenge in texture classification should be, therefore,
to achieve rotation-invariant and scale-invariant feature
representations for noncontrolled environments.

Some of these challenges are faced in this work. More
specifically, we focus on feature representation and recogni-
tion. In feature representation, we wish to emphasize some
open questions, such as how to model the texture images so
that the relevant information is captured despite of the image

Figure 3: Fine versus coarse visual cues.

Figure 4: Uniform versus nonuniform visual cues.

distortions, and how to keep low-dimensional feature vectors
so that texture recognition applications are facilitated, where
data storage capacity is a limitation. In feature recognition,
we wish to choose a technique that handles multiple
nonseparable classes with minimal computational time and
supervision. To deal with the challenges in feature extraction,
we propose a new texture image descriptor based on steer-
able pyramid decomposition, which encodes the relevant
texture information in small-size feature vectors including
rotation-invariant and scale-invariant characterizations. To
address the feature recognition requirements, we are using
a novel multiclass object recognition method based on the
optimum-path forest [26].

Roughly speaking, a steerable pyramid is a method by
which images are decomposed into a set of multiscale, and
multiorientation image subbands, where the basis functions
are directional derivative operators [27]. Our motivation in
using steerable pyramids relies on that, unlike other image
decomposition methods, the feature coefficients are less
affected by image distortions. Furthermore, the optimum-
path forest classifier is a recent approach that handles
nonseparable classes without the necessity of using boosting
procedures to increase its performance, resulting thus in a
faster and more accurate classifier for object recognition.
By combining the discriminating power of our image
descriptor and classifier, our system uses small-size feature
vectors to characterize texture images without compromising
overall classification rates. In this way, texture classification
applications, where data storage capacity is a limitation, are
further facilitated.

A previous version of our texture descriptor has been
proposed for texture recognition, using only rotation-
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Figure 5: First-level steerable pyramid decomposition using n
oriented bandpass filters.

invariant properties [28]. In the present work, the proposed
descriptor has not only rotation-invariant properties, but
also scale-invariant properties. The descriptor with both
properties was previously evaluated for content-based image
retrieval [29], but this is the first time it is being demon-
strated for texture recognition. The optimum-path forest
classifier was first presented in [30] and first evaluated for
texture recognition in [28]. Improvements in its learning
algorithm and evaluation with several data sets have been
made in [26] for other properties rather than texture.
The present work is using this most recent version of the
optimum-path forest classifier for texture recognition. We
are providing more details about the methods, more data
sets, and a more in deep analysis of the results: rotation-
and scale-invariance analyses, accuracy of classification with
different descriptors, and the mean computational time of
the proposed system.

The outline of this work is as follows. In Section 2, we
briefly review the fundamentals of the steerable pyramid
decomposition. Section 3 describes how texture images
are characterized to obtain rotation-invariant and scale-
invariant representations. Section 4 describes the optimum-
path forest classifier method. The experimental setup con-
ducted in our study is presented in Section 5. In Section 6,
experimental results on several data sets are presented
and used to demonstrate the recognition accuracy of our
system. Comparisons with state-of-the-art texture feature
representations and classifiers are further discussed. Finally,
some conclusions are drawn in Section 7.

2. STEERABLE PYRAMID DECOMPOSITION

The steerable pyramid decomposition is a linear multireso-
lution image decomposition method by which an image is
subdivided into a collection of subbands localized at different
scales and orientations [27]. Using a high- and low-pass
filter (H0, L0) the input image is initially decomposed into
two subbands: a high- and a low-pass subband, respectively.
Further, the low-pass subband is decomposed into K-
oriented band-pass portions B0, . . . ,BK−1, and into a low-
pass subband L1. The decomposition is done recursively by
subsampling the lower low-pass subband (LS) by a factor of
2 along the rows and columns. Each recursive step captures
different directional information at a given scale. Consider-

ing the polar-separability of the filters in the Fourier domain,
the first low- and high-pass filters, are defined as [31]
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Bk(r, θ) represents the kth directional bandpass filter used
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where αk= 2(k−1)((K − 1)!/
√
K[2(K − 1)]!).

Figure 5 depicts a steerable pyramid decomposition
using only one scale and n orientations.

3. TEXTURE FEATURE REPRESENTATION

This section describes the proposed modification of steerable
pyramid decomposition to obtain rotation-invariant and
scale-invariant representations, used further to characterize
the texture images.

3.1. Texture representation

Roughly speaking, texture images can be seen as a set
of basic repetitive primitives characterized by their spatial
homogeneity [32]. By applying statistical measures, this
information is extracted and used to capture the relevant
image content into feature vectors. More precisely, by
considering the presence of homogeneous regions in texture
images, we use the mean (μmn) and standard deviation (σmn)
of the energy distribution of the filtered images (Smn). Given
an image I(x, y), its steerable pyramid decomposition is
defined as

Smn(x, y) =
∑
x1

∑
y1

I
(
x1, y1

)
Bmn

(
x − x1, y − y1

)
, (4)
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where Bmn denotes the directional bandpass filters at stage
m = 0, 1, . . . , S − 1 and orientation n = 0, 1, . . . ,K − 1. The
energy distribution (E(m,n)) of the filtered images at scale m
and at orientation n is defined as

E(m,n) =
∑
x

∑
y

∣∣Smn(x, y)
∣∣. (5)

Additionally, the mean (μmn) and standard deviation
(σmn) of the energy distributions are found as follows:

μmn = 1
MN

Emn(x, y),

σmn =
√√√√ 1
MN

∑
x

∑
y

(∣∣Smn(x, y)
∣∣− μmn

)2
,

(6)

where M and N denote the height and width of the input

image, respectively. The corresponding feature vector (�f ) is
defined by using the mean and standard deviation as feature
elements. It is denoted as

�f = [μ00, σ00,μ01, σ01, . . . ,μS−1K−1, σS−1K−1
]
. (7)

The dimensionality of the feature vectors depends on the
number of scales (S) and on the number of orientations (K)
considered during image decomposition. The feature vector
dimensionality is computed by multiplying the number of
scales and orientations by factor of 2 (2× S×K). This factor
corresponds to the mean and standard deviation computed
in each filtered image.

3.2. Rotation-invariant representation

Rotation-invariant representation is achieved by computing
the dominant orientation of the texture images followed by
feature alignment. The dominant orientation (DO) is defined
as the orientation with the highest total energy across the
different scales considered during image decomposition [33].
It is computed by finding the highest accumulated energy
for the K different orientations considered during image
decomposition:

DOi = max
{
E(R)

0 ,E(R)
1 , . . . ,E(R)

K−1

}
, (8)

where i is the index where the dominant orientation
appeared and

E(R)
n =

S−1∑
m=0

E(m,n), n = 0, 1, . . . ,K − 1. (9)

Note that each E(R)
n covers a set of filtered images at

different scales but at same orientation.
Finally, rotation-invariance is obtained by shifting circu-

larly feature elements within the same scales, so that first
elements at each scale correspond to dominant orientations.

As an example, let �f be a feature vector obtained by using
a pyramid decomposition with S = 2 scales and K = 3
orientations:

�f = [μ00, σ00,μ01, σ01,μ02, σ02;μ10, σ10,μ11, σ11,μ12, σ12
]
.

(10)

Now suppose that the dominant orientation appears at index
i = 1 (DOi=1), thus the rotation-invariant feature vector,
after feature alignment, is represented as follows:

�f R = [μ01, σ01,μ02, σ02,μ00, σ00;μ11, σ11,μ12, σ12,μ10, σ10
]
.

(11)

3.3. Scale-invariant representation

Similarly, scale-invariant representation is achieved by find-
ing the scale with the highest total energy across the
different orientations (dominant scale). For this purpose, the
dominant scale (DS) at index i is computed as follows:

DSi = max
{
E(S)

0 ,E(S)
1 , . . . ,E(S)

S−1

}
, (12)

where E(S)
m denotes the accumulated energies across the S

different scales:

E(S)
m =

K−1∑
n=0

E(m,n), m = 0, 1, . . . , S− 1. (13)

Note that each E(S)
m covers a set of filtered images at

different orientations for each scale. As an example, let �f
be, again, the feature vector obtained by using a pyramid
decomposition with S = 2 scales and K = 3 orientations:

�f = [μ00, σ00,μ01, σ01,μ02, σ02μ10, σ10,μ11, σ11,μ12, σ12
]
.
(14)

By supposing that the dominant scale was found at index
i = 1 (second scale in the image decomposition), its scale-
invariant version, after feature alignment, is defined as

�f S = [μ10, σ10,μ11, σ11,μ12, σ12;μ00, σ00,μ01, σ01,μ02, σ02
]
.

(15)

For both rotation-invariant and scale-invariant repre-
sentations, the feature alignment process is based on the
assumption that to classify textures, images should be rotated
so that their dominant orientations/scales are the same.
Further, it has been proved that image rotation in spatial
domain is equivalent to circular shift of feature vector
elements [34].

4. TEXTURE FEATURE RECOGNITION

This section aims to describe the most recent version of
the optimum-path forest (OPF) classifier [26], which is an
important part of the texture recognition system proposed
in this work. Previous works have demonstrated that OPF
can be more effective and much faster than artificial neural
networks [35] and support vector machines [26, 30, 35].
The OPF approach works by modeling the patterns as being
nodes of a graph in the feature space, where every pair of
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INPUT: A λ -labeled training set Z1, prototypes Ω ⊂ Z1

and the pair (v,d) for feature vector and distance
computations.

OUTPUT: Optimum-path forest P, cost map C and label map
L.

AUXILIARY: Priority queue Q and cost variable cst.
1. For each s ∈ Z1 \Ω, set C(s) ← +∞.
2. For each s ∈ Ω, do
3. C(s) ← 0, P(s) ← nil, L(s) ← λ(s), and insert s in Q.
4. While Q is not empty, do
5. Remove from Q a sample s such that C(s) is minimum.
6. For each t ∈ Z1 such that t /=s and C(t) > C(s), do
7. Compute cst ← max{C(s),d(s, t)}.
8. If cst < C(t), then
9. If C(t) /= +∞, then remove t from Q.
10. P(t) ← s, L(t) ← L(s), C(t) ← cst,
11. and insert t in Q.

Algorithm 1: OPF algorithm.

nodes is connected by an arc (complete graph). This classifier
creates a discrete optimal partition of the feature space
such that any unknown sample can be classified according
to this partition. This partition is an optimum-path forest
computed in Rn by the image foresting transform (IFT)
algorithm [36]. The OPF classifier extends the IFT from the
image domain to the feature space, where the samples may
be images, contours, or any other abstract entities.

Let Z1, Z2, and Z3 be, respectively, the training, eval-
uation, and test sets with |Z1|, |Z2|, and |Z3| samples,
respectively. Let λ(s) be the function that assigns the correct
label i, i = 1, 2, . . . , c, from class i to any sample s ∈ Z1 ∪
Z2 ∪ Z3. Z1 and Z2 are labeled sets used to the design of the
classifier and the unseen set Z3 is used to compute the final
accuracy of the classifier. Let Ω ⊂ Z1 be a set of prototypes of
all classes (i.e., key samples that best represent the classes).
Let v be an algorithm which extracts n attributes (texture
properties) from any sample s ∈ Z1 ∪ Z2 ∪ Z3 and returns
a vector�v(s) ∈ Rn. The distance d(s, t) between two samples,
s and t, is the one between their feature vectors �v(s) and �v(t)
(e.g., Euclidean or any other valid metric).

Let (Z1,A) be a complete graph whose the nodes are
the samples in Z1. We define a path as being a sequence of
distinct samples π = 〈s1, s2, . . . , sk〉, where (si, si+1) ∈ A for
1 ≤ i ≤ k − 1. A path is said to be trivial if π = 〈s1〉.
We assign to each path π a cost f (π) given by a path-cost
function f . A path π is said to be optimum if f (π) ≤ f (π′)
for any other path π′, where π and π′ end at the same sample
sk. We also denote by π·〈s, t〉 the concatenation of a path
π with terminus at s and an arc (s, t). The OPF algorithm
uses the path-cost function fmax, for the reason explained in
Section 4.1,

fmax(〈s〉) =
⎧⎨
⎩

0 if s ∈ Ω,

+∞ otherwise,

fmax(π·〈s, t〉) = max
{
fmax(π),d(s, t)

}
.

(16)

We can observe that fmax(π) computes the maximum
distance between adjacent samples in π, when π is not a
trivial path.

The OPF algorithm assigns one optimum path P∗(s)
from Ω to every sample s ∈ Z1, forming an optimum-path
forest P (a function with no cycles which assigns to each
s ∈ Z1 \ Ω, its predecessor P(s) in P∗(s), or a marker nil
when s ∈ Ω). Let R(s) ∈ Ω be the root of P∗(s) which can
be reached from P(s). The OPF algorithm computes for each
s ∈ Z1, the cost C(s) of P∗(s), the label L(s) = λ(R(s)), and
the predecessor P(s), as follows.

Lines 1–3 initialize maps and insert prototypes in Q.
The main loop computes an optimum path from Ω to
every sample s in a nondecreasing order of cost (lines 4–
11). At each iteration, a path of minimum cost C(s) is
obtained in P when we remove its last node s from Q
(line 5). Lines 8–11 evaluate if the path that reaches an
adjacent node t through s is cheaper than the current path
with terminus t and update the position of t in Q, C(t),
L(t), and P(t) accordingly. The label L(s) may be different
from λ(s), leading to classification errors in Z1. The training
finds prototypes with zero classification errors in Z1, as
follows.

4.1. Training phase

We say that Ω∗ is an optimum set of prototypes when
Algorithm 1 propagates the labels L(s) = λ(s) for every s ∈
Z1·Ω∗ can be found by exploiting the theoretical relation
between minimum-spanning tree (MST) and optimum-path
tree for fmax [37]. The training essentially consists of finding
Ω∗ and an OPF classifier rooted at Ω∗.

By computing an MST in the complete graph (Z1,A),
we obtain a connected acyclic graph whose nodes are all
samples in Z1 and the arcs are undirected and weighted by
the distance d between the adjacent sample feature vectors.
This spanning tree is optimum in the sense that the sum
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INPUT: Training and evaluation sets, Z1 and Z2, labeled
by λ, number T of iterations, and the pair (v,d)
for feature vector and distance computations.

OUTPUT: Learning curveL and the best OPF classifier,
represented by the predecessor map P, cost map
C, and label map L.

AUXILIARY: False positive and false negative arrays, FP and
FN, of sizes c, and list LM of misclassified
samples.

1. For each iteration I = 1, 2, . . . ,T , do
2. LM ← ∅

3. Compute Ω∗ ⊂ Z1 as in Section 4.1 and P, L, C
4. by Algorithm 1.
5. For each class i = 1, 2, . . . , c, do
6. FP(i) ← 0 and FN(i) ← 0.
7. For each sample t ∈ Z2, do
8. Find s∗ ∈ Z1 that satisfies (17).
9. If L(s∗) /=λ(t), then
10. FP(L(s∗)) ← FP(L(s∗)) + 1.
11. FN(λ(t)) ← FN(λ(t)) + 1.
12. LM ← LM∪ t.
13. Compute L(I) by (20) and save P, L, and C.
14. While LM /=∅

15. LM ← LM \ t
16. Replace t by randomly objects of the same class
17. in Z1, except the prototypes.
18. Select the instance P, L, C of highest accuracy.

Algorithm 2: Learning algorithm.

of its arc weights is minimum as compared to any other
spanning tree in the complete graph. In the MST, every pair
of samples is connected by a single path which is optimum
according to fmax. The optimum prototypes are the closest
elements in the MST with different labels in Z1. By removing
the arcs between different classes, their adjacent samples
become prototypes in Ω∗ and Algorithm 1 can compute
an optimum-path forest with zero classification errors in
Z1.

It is not difficult to see that the optimum paths between
classes should pass through the same removed arcs of
the minimum-spanning tree. The choice of prototypes as
described above blocks these passages, avoiding samples
of any given class to be reached by optimum paths from
prototypes of other classes. Given that several methods
for graph-based clustering are based on MST, the relation
between MST and minimum-cost path tree for fmax [37]
makes interesting connections among the supervised OPF
classifier, these unsupervised approaches, and the previous
works on watershed-based/fuzzy-connected segmentations
[36, 38–43].

4.2. Classification

For any sample t ∈ Z3, the OPF considers all arcs connecting
t with samples s ∈ Z1, as if t was part of the graph.
Considering all possible paths from Ω∗ to t, we find the
optimum path P∗(t) from Ω∗ and label t with the class

λ(R(t)) of its most strongly connected prototype R(t) ∈ Ω∗.
This path can be identified incrementally by evaluating the
optimum cost C(t) as

C(t) = min{max{C(s),d(s, t)}}, ∀s ∈ Z1. (17)

Let the node s∗ ∈ Z1 be the one that satisfies the above
equation (i.e., the predecessor P(t) in the optimum path
P∗(t)). Given that L(s∗) = λ(R(t)), the classification simply
assigns L(s∗) to t. An error occurs when L(s∗) /= λ(t).

4.3. Learning algorithm

The performance of the OPF classifier improves when the
closest samples from different classes are included in Z1,
given that the prototypes will come from them, working as
sentinels on the boundaries between classes. On the other
hand, the computational time and storage cost increase with
the size of the training set. This section then describes how
to improve the OPF performance without increasing the
number of samples in Z1.

Algorithm 2 is a simple learning procedure, but very
effective. In each iteration, a set Z1 is used for training and
the classification is performed on Z2. The best prototypes are
assumed to be among the misclassified samples of Z2. So, the
algorithm randomly replaces misclassified samples of Z2 by
nonprototypes samples of Z1, and training and classification
are repeated during a few iterations. The algorithm outputs
a learning curve, which reports the accuracy values of each
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OPF’s instance during learning, and the instance with the
highest accuracy (which is usually the last one).

Lines 2–6 perform variable initialization and training
on Z1. The classification on Z2 is performed in lines 7–12,
updating the arrays of false positive and false negative for
accuracy computation (line 13). Misclassified samples of Z2

are stored in a list LM in line 12, and they are replaced by
nonprototype samples ofZ1 in lines 14–17. The OPF instance
with the highest accuracy is then selected in line 18.

The accuracy L(I) of a given iteration I , I = 1, 2, . . . ,T ,
is measured by taking into account that the classes may have
different sizes in Z2 (similar definition is applied for Z3). Let
NZ2(i), i = 1, 2, . . . , c, be the number of samples in Z2 from
each class i. We define

ei,1 = FP(i)∣∣Z2
∣∣− ∣∣NZ2(i)

∣∣ ,

ei,2 = FN(i)∣∣NZ2(i)
∣∣ , i = 1, . . . , c,

(18)

where FP(i) and FN(i) are the false positives and false
negatives, respectively. That is, FP(i) is the number of
samples from other classes that were classified as being from
the class i in Z2, and FN(i) is the number of samples from
the class i that were incorrectly classified as being from other
classes in Z2. The errors ei,1 and ei,2 are used to define

E(i) = ei,1 + ei,2, (19)

where E(i) is the partial sum error of class i. Finally, the
accuracy L(I) of the classification is written as

L(I) = 2c −∑c
i=1E(i)

2c
= 1−

∑c
i=1E(i)

2c
. (20)

5. EXPERIMENTS

5.1. Data sets

To evaluate the accuracy of our system, thirteen texture
images obtained from the standard Brodatz database were
selected. Before being digitized, each of the 512×512 texture
images was rotated at different degrees [44]. Figure 6 displays
the nonrotated version of each of the texture images.

From this database, three different image data sets
were generated: nondistorted, rotated-set, and scaled-set. The
nondistorted image data set was constructed from texture
patterns at 0 degrees. Each texture image was partitioned
into sixteen 128× 128 nonoverlapping subimages. Thus, this
data set comprises 208 (13 × 16) different images. Images
belonging to this data set will be used in the learning stage
of our classifier. Note that in previous works related to
texture recognition [45, 46], rotated or scaled-versions of the
patterns were included in both the training and classification
phases [47]. However, more recently works suggest that the
recognition algorithms should perform well, even by having
during the training phase nondistorted training samples,
which means patterns without rotations or scales [48, 49].

The second image data set referred to as rotated-set was
generated to evaluate the rotation-invariance capabilities of

our approach. It is further subdivided into two data sets:
rotated-set A and rotated-set B. The rotated image data set
A was generated by selecting the four 128 × 128 innermost
subimages from texture images at 0, 30, 60, and 120 degrees.
A total number of 208 images were generated (13 × 4 × 4).
In addition, in the case of the rotated image data set B, we
selected the four 128 × 128 innermost subimages of the
rotated image textures (512 × 512) at 0, 30, 60, 90, 120, 150,
and 200 degrees. This led to 364 (13× 4× 7) data set images.
The first data set was initially used to test our system under
the presence of few texture oriented images, whereas the
second one was used to show how our systems performs by
increasing the number of texture oriented images.

On the other side, the scaled image data set was parti-
tioned into two data sets: scaled-set A and scaled-set B. In
the scaled-set A, the 512× 512 nonrotated textures were first
partitioned into four 256 × 256 nonoverlapping subimages.
Each partitioned subimage was further scaled by using four
different factors, ranging from 0.6 to 0.9 with 0.1 interval.
This led to 208 (13 × 4 × 4) scaled images. To generate
the scaled-set B, each of the four partitioned subimages was
scaled by using seven different factors, ranging from 0.6 to 1.2
with 0.1 interval. In this way, 364 (13× 4× 7) scaled images
were generated.

5.2. Similaritymeasure for classification

Similarity between images is obtained by computing the
distance of their corresponding feature vectors (recall
Section 3). The smaller the distance, the more similar the
images. Given the query image (i), and the target image ( j) in
the data set, the distance between the two patterns is defined
as [50]

d(i, j) =
∑
m

∑
n

dmn(i, j), (21)

where

dmn(i, j) =
∣∣∣∣∣
μimn − μ

j
mn

α
(
μmn

)
∣∣∣∣∣ +

∣∣∣∣∣
σimn − σ

j
mn

α
(
σmn

)
∣∣∣∣∣, (22)

α(μmn) and α(σmn) denote the standard deviations of the
respective features over the entire data set. They are used for
feature normalization purposes.

6. EXPERIMENTAL RESULTS

Three series of experiments were conducted to demonstrate
the discriminating power of our system for recognizing
texture patterns. By considering that a recognition system is
comprised of two mainly parts (feature extraction module as
well as feature recognizer module), each of those parts was
evaluated.

In the first series of experiments (Section 6.1), we first
evaluated the effectiveness of the proposed rotation-invariant
feature representation against two other approaches: the
conventional pyramid decomposition [51] and with a recent
proposal based on Gabor wavelets [33]. To evaluate the effec-
tiveness of the feature recognizer module, we compared the
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Figure 6: Texture images from the Brodatz data set used in our experiments. From left to right, and from top to bottom, they include Bark,
Brick, Bubbles, Grass, Leather, Pigskin, Raffia, Sand, Straw, Water, Weave, Wood, and Wool.

recognition accuracy of the novel OPF multiclass classifier
against the well-known support vector machines technique.
For those purposes, we used the rotated image data sets A and
B.

The second series of experiments (Section 6.2) are used
to evaluate the scale-invariant properties in our feature
extraction module. Effectiveness of the multiclass recogni-
tion method under the presence of scale-invariant features
are further discussed. Again, we used the conventional
steerable pyramid decomposition [51] and the Gabor
wavelets [50] as references for comparing the scale-invariant
properties of our method. SVMs are used for evaluating
the classification accuracy of our feature recognizer module.
Further, scaled image data sets A and B were used in this set
of experiments.

In both series of experiments, we used steerable pyramids
having different decomposition levels (S = 2, 3, 4) at several
orientations (K = 4, 5, 6, 7, 8). Our experiments agree with

[52] in that the most relevant textural information in images
is contained in the first two levels of decomposition, since
little recognition improvement is achieved by varying the
number of scales during image decomposition. Therefore,
we focus our discussions on image decompositions having
(S = 2, 3) scales.

Given that the performance of the OPF classifier
can increase using a third set in a learning algorithm
(Section 6.3), we also employed this same procedure to the
SVM approach. The constraints in lines 16-17 of Algorithm 2
refer to keep the prototypes out of the sample interchanging
process between Z1 and Z2 for the OPF. We do the same
with the support vectors in SVM. However, they may be
selected for interchanging in future iterations if they are
no longer prototypes or support vectors. For SVM, we
use the LibSVM package [53] with radial basis function
(RBF) kernel, parameter optimization, and the one-versus-
one strategy for the multiclass problem to implement line 3.
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Figure 7: Classification accuracy comparison using the SVM
classifier obtained in rotated data set A using (S = 2, 3) scales with
(K = 4, 5, 6, 7, 8) orientations for Gabor wavelets, conventional
steerable pyramid decomposition, and our method.

The experiments evaluate the accuracy on Z3 and the
computational time of each classifier, OPF and SVM. In all
experiments, the data sets were divided into three parts: a
training set Z1 with 20% of the samples, an evaluation set
Z2 with 30% of the samples, and a test set Z3 with 50% of
the samples. These samples were randomly selected and each
experiment was repeated 10 times with different sets Z1, Z2,
and Z3 to compute the mean accuracy.

Recall that an important motivation in our study is to
use small-size feature vectors, in order to (1) show that the
recognition accuracy of our approach is not compromised,
and (2) facilitate texture recognition applications where data
storage capacity is a limitation.

6.1. Effectiveness of the rotation invariance
representation

To analyze the texture characterization capabilities of our
feature extraction method against the conventional pyramid
decomposition and the Gabor wavelets, we used Gaussian
kernel support vector machines (SVMs) as texture classi-
fication mechanisms (note that the SVM parameters were
optimized by using the cross-validation method).

Figure 7 compares the recognition accuracy obtained
by those three methods in the rotated data set A, whereas
Figure 8 depicts the recognition accuracy obtained in the
rotated data set B. From both Figures, it can be seen
that our image descriptor outperforms mostly the other
two approaches, regardless of the number of scales or
orientations considered during feature vector extraction.

In the case of the rotated data set A, the higher classifi-
cation accuracies achieved by our method were obtained by
using 7 orientations, which corresponds to image rotations
in steps of 25.71◦. By considering two and three decompo-
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Figure 8: Classification accuracy comparison using the SVM
classifier obtained in rotated data set B using (S = 2, 3) scales with
(K = 4, 5, 6, 7, 8) orientations for Gabor wavelets, conventional
steerable pyramid decomposition, and our method.

sition levels (S = 2, 3), those accuracies are, respectively,
100% and 97.31%. The equivalent classification accuracies
obtained by the Gabor wavelets are 90.36% and 93.90%
(S = 2, 3; K = 7), whereas for the conventional steerable
pyramid those accuracies are 89.67% and 90.36%. Note
that the classification accuracies obtained by using K =
6, 7, 8 orientations are very close to each other. Therefore, to
guarantee low-dimensionality feature vectors, we set S = 2
and K = 6 as the most appropriate parameter combinations
for our rotation-invariant image descriptor.

In the case of the rotated-set B, the higher classification
accuracies achieved by our descriptor were again obtained
by using 7 orientations. Classification rates of 95.86% and
95.73% correspond respectively to feature vectors with
S = 2, 3 scales and K = 7 orientations. Further, it is
found that both Gabor wavelets and conventional steerable
pyramid decomposition present lower classification rates,
being, respectively, 91.05%, 95.35% for the first method and
84.22%, 84.23% for the second one. As stated in the results
obtained in rotated data set A, the classification accuracies
are very close to each other, when using K = 6, 7 or K = 8
orientations. From those results, we can reinforce that the
most appropriate parameter settings for our descriptor are
S = 2 scales and K = 6 orientations.

Furthermore, from the bar graphs shown in Figures 7
and 8, the highest classification rate obtained by the Gabor
method is as good as the one obtained by our descriptor.
However, this rate is obtained at S = 3 scales, whereas our
proposed descriptor achieves the same performance using
only S = 2 scales. In this sense, an important advantage of
our method is its high performance rate at low-size feature
vectors.

Our objective now is to demonstrate the recognition
improvement of our novel classifier over the SVM approach.
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Figure 9: Classification accuracy comparison using the SVM
classifier obtained in rotated data set A using (S = 2, 3) scales with
(K = 4, 5, 6, 7, 8) orientations for Gabor wavelets, conventional
steerable pyramid decomposition, and our method.
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Figure 10: Classification accuracy comparison using the SVM
classifier obtained in rotated data set B using (S = 2, 3) scales with
(K = 4, 5, 6, 7, 8) orientations for Gabor wavelets, conventional
steerable pyramid decomposition, and our method.

From Figure 9 it can be seen, that for almost all feature
extraction configurations, the recognition rates of the OPF
classifier are higher than those of the SVM classifier. The
latter method presents the same recognition rates as the
ones of the OPF classifier when using S = 2 scales and
K = 6, 7 orientations. In the case of the image rotated
data set B, our classifier yields better recognition rates
for all feature extraction configurations (see Figure 10). By
considering that it was found that the most appropriate
parameter settings for our descriptor are S = 2 scales
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Figure 11: Classification accuracy comparison using the SVM
classifier obtained in scaled data set A using (S = 2, 3) scales with
(K = 4, 5, 6, 7, 8) orientations for Gabor wavelets, conventional
steerable pyramid decomposition, and our method.

and K = 6 orientations, it is worth to mention that, by
using this configuration, the recognition accuracy obtained
by the OPF classifier is 98.49% in comparison with the
corresponding accuracy of 95.48% obtained by the SVM
classifier.

6.2. Effectiveness of the scale invariance
representation

Figures 11 and 12 display the classification accuracy of our
scale-invariant image descriptor against the conventional
pyramid decomposition and the Gabor wavelets in the
scaled image data sets A and B, respectively. Those Figures
demonstrate the classification accuracy improvement of our
image descriptor over both methods.

From Figure 11 it can be noticed that by using just S =
2 scales and K = 7 orientations, our feature extraction
algorithm achieves a classification rate of 100%. This same
rate is achieved by the other two methods, but at the cost of
having larger image feature vectors. To obtain a classification
rate of 100%, both pyramid decomposition and Gabor
wavelets need at least S = 3 scales. Recalling Section 3.1,
the feature vector dimensionality is obtained by multiplying
the number of scales and orientations by a factor of 2, since
we considered the mean and standard deviation as feature
components. In this way, the dimensionality of our feature
vectors is of size of 28 (2 × 2 × 7) elements, in comparison
with a size of 42 (2×3×7) elements of their analogous feature
vectors. By considering that the typical storage space of a
float number is equal to 8 bytes, each of our feature vectors
requires only 224 bytes to be stored, in comparison with the
336 bytes required for their analogous feature vectors. In this
way, our image descriptor requires 66.7% less storage space
than the one belonging to the compared descriptors.
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Figure 12: Classification accuracy comparison using the SVM
classifier obtained in scaled data set B using (S = 2, 3) scales with
(K = 4, 5, 6, 7, 8) orientations for Gabor wavelets, conventional
steerable pyramid decomposition, and our method.
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Figure 13: Classification accuracy comparison using the SVM
classifier obtained in scaled data set A using (S = 2, 3) scales with
(K = 4, 5, 6, 7, 8) orientations for Gabor wavelets, conventional
steerable pyramid decomposition, and our method.

By analyzing the classification accuracies depicted in
Figure 12, we can notice again that our image features
perform better than the other two methods. However, the
main difference between the results presented in Figures 11
and 12 is that in the case of the scale data set B all methods
achieved higher classification rates. The reason for this lies
in the tested texture data set, which has more discriminative
samples to be used during the training phase of the classifier.
This can be thought of as having sufficient discriminatory
training data regardless of the testing data size.
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Figure 14: Classification accuracy comparison using the SVM
classifier obtained in scaled data set B using (S = 2, 3) scales with
(K = 4, 5, 6, 7, 8) orientations for Gabor wavelets, conventional
steerable pyramid decomposition, and our method.

Another important question that arises now is to know
how our feature classifier performs in both scaled data sets.
To answer this question, we compared in Figures 13 and
14 the classification accuracies of the OPF against those
obtained with SVMs. From Figure 13 we can see that by using
a 16 dimension feature vector (S = 2 scales and K = 4
orientations) the OPF achieves a classification accuracy of
100%, which increases in turn the corresponding accuracy
of the SVM up to 2%. Although this difference may appear
despicable, note that the SVMs achieved the same accuracy
when using a 28 dimension feature vector (S = 2 scales and
K = 7 orientations). Thus, our recognition system requires
almost only the half feature vector dimensionality to obtain
a complete recognition. In the case of the scaled data set
B, the OPF achieved a 100% classification rate by using 24
(S = 2 scales and K = 6 orientations) dimension feature
vectors. The SVMs achieved, in turn, this accuracy by using
30 (S = 3 scales and K = 5 orientations) dimension feature
vectors. By considering again an 8 byte storage space for
a float number, our recognizer uses 192 (8 × 24) bytes to
classify texture images in an efficient manner, whereas by
using SVMs 240 (8× 30) bytes are needed.

6.3. Summary of the results

In this subsection, we provide a summary of our experi-
mental results. For notation purposes, we will denote our
image descriptor, the Gabor wavelets, and the conventional
pyramid decomposition descriptors as ID1, ID2, and ID3,
respectively. The summary of our results for the rotated data
sets A and B is provided in Tables 1 and 2. Table 1 compares
for each rotated data set the mean recognition rates obtained
by the three texture image descriptors using different scales
(S = 2, 3) and different orientations (K = 4, 5, 6, 7, 8). In this
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Table 1: Mean recognition rates for the three different texture
image descriptors using Gaussian-kernel support vector machines
as classifiers in the rotated data sets A and B.

Rotated Scales (S)/
ID1 ID2 ID3

data set orientations (K)

A (S = 2; K = 4,5,6,7,8) 95.89% 93.19% 93.19%

A (S = 3; K = 4,5,6,7,8) 97.99% 92.36% 97.92%

B (S = 2; K = 4,5,6,7,8) 92.30% 85.30% 91.29%

B (S = 3; K = 4,5,6,7,8) 96.70% 85.76% 96.67%

Table 2: Mean recognition rates for the proposed rotation-
invariant texture image descriptor using both OPF and SVM
classifiers in the rotated datasets A and B.

Rotated Scales (S)/
OPF SVM

data set orientations (K)

A (S = 2; K = 4,5,6,7,8) 98.89% 95.89%

A (S = 3; K = 4,5,6,7,8) 98.61% 97.99%

B (S = 2; K = 4,5,6,7,8) 97.35% 92.30%

B (S = 3; K = 4,5,6,7,8) 96.74% 96.70%

Table 3: Mean recognition rates for the three different texture
image descriptors using Gaussian-kernel support vector machines
as classifiers in the scaled data sets A and B.

Scaled Scales (S)/
ID1 ID2 ID3

data set orientations (K)

A (S = 2; K = 4,5,6,7,8) 98.78% 93.19% 97.04%

A (S = 3; K = 4,5,6,7,8) 99.67% 99.66% 96.05%

B (S = 2; K = 4,5,6,7,8) 99.35% 97.12% 99.90%

B (S = 3; K = 4,5,6,7,8) 99.95% 99.83% 99.44%

Table 4: Mean recognition rates for the proposed scale-invariant
texture image descriptor using both OPF and SVM classifiers in the
scaled data sets A and B.

Scaled Scales (S)/
OPF SVM

data set orientations (K)

A (S = 2; K = 4,5,6,7,8) 99.03% 98.78%

A (S = 3; K = 4,5,6,7,8) 99.89% 99.67%

B (S = 2; K = 4,5,6,7,8) 99.58% 99.35%

B (S = 3; K = 4,5,6,7,8) 100% 99.95%

set of experiments, we used Gaussian-kernel support vector
machines (SVMs) as texture classification mechanisms. From
our results, it can be noticed that our texture image
descriptor performs better regardless of the data set used,
or the image decomposition parameters considered during
feature extraction (number of scales and orientations).
Furthermore, as it can be seen in Table 2, the OPF classifier
improves the recognition accuracies obtained by the SVM
classifier in all of our experiments. The summarized results
for the scale data sets A and B are presented in Tables 3 and
4. As we can see, our proposed recognition system performs
again better than the previously mentioned approaches in
both feature extraction and classification tasks.
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Figure 15: Average classification accuracy versus number of
training samples in rotated data set A.
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Figure 16: Average classification accuracy versus number of
training samples in rotated data set B.

6.4. Training sample classification rates

The achieved performances of our feature classifier using
different number of training samples are shown graphically
in Figures 15–18. The y-axis denotes the achieved average
classification rate, whereas the x-axis represents the number
of training samples considered. Each unique line belongs
to each of the evaluated image descriptors (Gabor wavelets,
conventional steerable pyramid decomposition, and our
method). From those Figures we can see that almost all
image descriptors attain reasonably good results even by
using small-dimensional feature vectors (85%+). However,
the superiority of our system can be clearly seen. Note that
in the case of the rotated data sets A and B (Figures 15
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Figure 17: Average classification accuracy versus number of
training samples in scaled data set A.
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Figure 18: Average classification accuracy versus number of
training samples in scaled data set B.

and 16, resp.) our system remained with high accuracies
above 97% and 95%, respectively. The analogous accuracies
of Gabor wavelets in both data sets have not reached the rates
of our descriptor in any number of training samples used.
At the same time, our improvements over the conventional
steerable pyramid decomposition are notorious. In contrast,
in the case of the scale data set A, we can see that the
accuracies of the image descriptors are very close to each
other. However, our system achieved a 100% classification
accuracy by using less training samples as the other two
methods (Figure 17). Moreover, it can be seen from Figure 18
that by increasing the number of training samples, the
conventional steerable pyramid decomposition does not

Table 5: Execution times of the OPF and SVM approaches in
seconds.

data set OPF SVM

Rotated data set A 0.0260 2.916

Rotated data set B 0.0480 6.256

Scaled data set A 0.0388 4.877

Scaled data set B 0.0487 6.151

improve much and in some cases it even deteriorates its
classification accuracies. The curves in this figure show that
the average classification accuracies between our proposed
image descriptor and the Gabor wavelets are almost the
same. However, the accuracies of our method are still higher.
Finally, by analyzing all those results, we can see clearly that
our method provides a significant improvement over the
other approaches.

6.5. Recognition processing time

We also computed the recognition processing time for the
classifiers in the evaluated data sets. Note that for computing
the processing time, we considered both training and
classification times together. Table 5 displays those values in
seconds.

As we can see, the OPF algorithm is extremely faster than
the SVM classifier. For the rotated data sets A and B as well
as for the scaled data sets A and B, the OPF classifier was
112.15, 130.33, 125.69, and 126.30 times faster, respectively.
The SVM algorithm had a slow performance due to the fact
of the optimization procedure implemented in the libSVM
[53]. However, by removing the optimization procedures,
this processing time could be decreased. In turn, this could
produce lower classification rates.

7. CONCLUSIONS

A novel texture classification system was proposed in this
work. Its main features are (1) a new rotation-invariant
and scale-invariant image descriptor, as well as (2) a recent
multiclass recognition method based on optimum-path
forest. The proposed image descriptor exploits the discrim-
inatory properties of the steerable pyramid decomposition
for texture characterization. By finding either the dominant
orientation or dominant scale value presented in the texture
images, the feature elements are aligned according to this
value. By doing this, a more reliable feature extraction pro-
cess can be performed, since corresponding feature elements
of distinct feature vectors coincide with images either at the
same orientations or at the same scales. In addition, our
system adopted a recent approach for pattern classification
based on optimum-path forest, which finds prototypes with
zero classification errors in the training set and learns
from errors in an evaluation set, without increasing the
training set size. By combining the discriminating power of
our image descriptor and classifier, our system uses small
size feature vectors to characterize texture images without
compromising overall classification rates, being ideally for
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real-time applications or for applications where data storage
capacity is a limitation.

State-of-the-art results on four image data sets derived
from the standard Brodatz database were further discussed.
For the rotation-invariance evaluation, our method obtained
a mean classification rate of 98.89% in comparison with a
mean accuracy of 95.89% obtained by using SVMs in the
rotated data set A. In the case of the rotated data set B, those
rates are 97.35% and 92.30%, respectively. Concerning the
scale-invariance evaluation, our system improves classifica-
tion rates from 98.78% to 99.03% in the case of the scaled
data set A, whereas in the scaled data set B those rates are
improved from 99.35% to 99.58%.

Further, the OPF multiclass classifier outperformed the
SVM in the four data sets. It is a new promising graph
tool for pattern recognition, which differs from traditional
approaches in that it does not use the idea of feature space
geometry, therefore, better results in overlapped databases
are achieved.
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